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Abstract	7	

For	a	rendezvous	space	mission	to	a	small	body,	the	gravity	field	is	usually	modelled	8	

with	 large	uncertainty	 in	the	preliminary	mission	design.	Consequently,	 the	orbital	9	

motion	in	the	vicinity	of	the	body	cannot	be	predicted	accurately.	In	this	research,	the	10	

automatic	domain	splitting	(ADS)	method	is	applied	as	an	indicator	to	characterize	11	

the	 dynamical	 structure	 and	 nonlinearity	 of	 the	 orbital	 motion	 from	 a	 new	12	

perspective,	which	is	instrumental	in	robust	mission	design.	The	uncertainties	of	the	13	

C20	 and	C22	 terms	 in	 the	 gravitational	 potential	 are	 considered	 as	 these	 harmonic	14	

terms	 are	 usually	 dominant.	 Asteroid	 Steins	 is	 taken	 as	 an	 example.	 The	 relation	15	

among	 the	 required	 accuracy,	 the	 expansion	 order	 and	 the	 integration	 time	 by	16	

applying	ADS	is	firstly	investigated.	Then	the	effects	of	the	uncertainties	of	both	the	17	

gravity	and	the	solar	radiation	pressure	(SRP)	perturbation	on	orbits	with	different	18	

geometries	 are	 studied.	 The	 orbital	 motion	 is	 found	 to	 be	 more	 sensitive	 to	 the	19	

uncertainty	of	the	C22	term	than	that	of	the	C20	term.	SRP	has	a	significant	effect	on	20	

the	 high-altitude	 motion.	 Moreover,	 the	 bounds	 of	 the	 state	 flow	 over	 the	21	

uncertainties	are	also	evaluated	along	with	the	propagation.	The	results	are	validated	22	

against	numerical	integrations	and	Monte	Carlo	simulations.	 	23	

 24	

Keywords: asteroid exploration, model uncertainty, automatic domain splitting, 25	

dynamical structure, robustness 26	

 27	

1. Introduction  28	

Asteroids	 usually	 have	 an	 irregular	 gravity	 field	 due	 to	 their	 non-spherical	 shape,	29	

which	 gives	 rise	 to	 highly	 nonlinear	 dynamics.	 Moreover,	 their	 gravity	 fields	 are	30	
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preliminarily	 modeled	 with	 large	 uncertainties	 due	 to	 the	 limited	 availability	 of	1	

ground	observations.	The	solar	radiation	pressure	(SRP)	perturbation	generally	plays	2	

an	essential	role	in	small	bodies'	motion.	SRP	cannot	be	accurately	determined	due	to	3	

an	 incomplete	 understanding	 of	 the	 reflection	 property	 of	 all	 the	 surfaces	 of	 the	4	

spacecraft.	Consequently,	the	motion	can	be	highly	unstable	due	to	the	perturbations	5	

of	the	irregular	gravity	field	and	the	SRP	and	cannot	be	estimated	accurately	due	to	6	

their	uncertainties.	Therefore,	identifying	regions	of	the	phase	space	robust	to	these	7	

uncertainties	is	essential	for	such	missions.		 			8	

	 	 Though	the	nonlinearity	of	the	dynamics	and	the	stability	of	motion	around	small	9	

bodies	have	been	extensively	addressed	[1],	the	analysis	of	the	effect	of	the	uncertain	10	

irregular	gravity	field	and	SRP	on	orbital	propagation	is	limited.	Using	Monte	Carlo	11	

(MC)	 simulation,	 Melman	 et	 al.	 [2]	 investigated	 the	 effects	 of	 Itokawa's	 uncertain	12	

gravity	on	the	evolution	of	the	so-called	solar	terminator	orbit	(STO)	whose	orbital	13	

plane	 is	perpendicular	 to	 the	Sun-asteroid	 line	 [1].	The	STO	was	 found	to	be	more	14	

sensitive	 to	 this	 uncertainty	 if	 the	 gravity	 of	 the	 asteroid	 is	 weak.	 Based	 on	 the	15	

averaged	dynamics	and	MC	simulations,	a	frozen-STO	was	found	to	be	more	robust	16	

against	 the	 execution	uncertainties	 or	 errors	 than	 a	 circular-STO	 [3]	 for	 the	 small	17	

asteroid	Bennu	with	a	weak	gravity	field.	By	applying	the	semi-analytical	Differential	18	

Algebra	(DA)	method,	Feng	et	al.	[4]	investigated	the	effect	of	uncertainties	in	Stein's	19	

gravity	field	on	the	orbits	with	different	geometries.	Retrograde	orbits	were	found	to	20	

be	more	robust	than	prograde	ones.	And	polar	orbits	were	found	to	be	more	sensitive	21	

to	these	uncertainties.	This	study	extends	the	previous	research	by	investigating	the	22	

effects	 of	 uncertainties	 of	 both	 the	 irregular	 gravity	 and	 the	 SRP	on	motions	with	23	

highly	nonlinear	dynamics	using	ADS.			24	

	 	 Generally,	the	uncertainties	are	propagated	with	two	main	approaches,	the	linear	25	

ones,	and	the	nonlinear	ones.	For	the	former	type,	the	state	transition	matrix	(STM)	26	

is	usually	applied,	which	maps	the	deviation	of	the	initial	state	of	a	trajectory	to	that	27	

of	the	final	state.	Eigenvalues	of	the	STM	indicate	the	linear	stability	of	this	trajectory	28	

[5].	 For	 the	 latter	 type,	 many	 different	 methods	 were	 developed	 to	 address	 the	29	

deficiency	 of	 the	 linearization.	 The	MC	method	 is	 a	 purely	 numerical	method	 that	30	
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performs	 pointwise	 simulations	 of	 the	 fully	 nonlinear	 dynamics,	 providing	 true	1	

trajectory	statistics.	However,	it	is	computationally	intensive,	and	the	computational	2	

time	 increases	with	 the	 increasing	number	of	 samples	 [6].	More	efficient	methods	3	

include	the	unscented	transformation	(UT)	[7],	the	Gaussian	mixtures	model	(GMM)	4	

[8],	 and	 the	 polynomial	 chaos	 expansion	 (PCE)	 [9],	 which	 are	 also	 sample-based	5	

methods.	They	are	also	classified	as	non-intrusive	methods	as	 they	do	not	 require	6	

access	to	the	details	of	the	dynamical	equations,	which	are	treated	as	a	black	box.	An	7	

alternative	 way	 to	 deal	 with	 the	 nonlinearity	 is	 approximating	 the	 flow	 of	 the	8	

dynamics	 in	 Taylor	 or	 polynomial	 series,	 i.e.,	 the	 DA	 method	 and	 the	 general	9	

polynomial	algebra	(GPA)	method	[10],	respectively.	These	methods	require	explicit	10	

knowledge	and	treatment	of	the	system's	dynamical	equations	and	are	categorized	as	11	

dynamic-based	or	intrusive	methods.	The	DA	method	computes	Taylor	expansions	of	12	

the	flow	up	to	an	arbitrary	order	with	automatic	differentiation	[11].	Then	pointwise	13	

propagations	are	performed	in	the	DA	framework	by	the	fast	evaluation	of	the	Taylor	14	

polynomials	 instead	 of	 running	 thousands	 of	 pointwise	 integrations	 as	 in	 the	MC	15	

method.	 Consequently,	 the	 computational	 time	 is	 reduced	 considerably,	 while	 the	16	

accuracy	can	be	tuned	by	adjusting	the	Taylor	expansion's	truncation	order.	DA	has	17	

been	applied	widely	 in	orbital	dynamics,	e.g.,	 asteroid	encounter	analysis	 [12]	and	18	

orbit	conjunction	analysis	[13].	19	

	 	 For	the	sample-based	methods,	the	main	drawbacks	are	that	the	number	of	samples	20	

(e.g.,	 UT)	 and	 the	 number	 of	 expansion	 terms	 (e.g.,	 PCE)	 change	 linearly	 and	21	

exponentially,	 respectively,	 with	 the	 dimension	 of	 input	 uncertainties,	 which	 is	22	

computationally	expensive	for	large-dimensional	uncertainties	of	complex	systems.	23	

On	 the	 other	 hand,	 the	 dynamics-based	methods	 are	 local	 and	 can	 barely	 handle	24	

dynamics	with	a	 large	uncertainty	set.	They	are	also	computationally	 intensive	 for	25	

high-order	approximations	of	a	high-fidelity	system.	For	instance,	DA	fails	when	the	26	

high	 nonlinearity	 of	 the	 dynamics,	 the	 large	 initial	 uncertainty	 set,	 and	 long-term	27	

propagation	prevent	good	convergence	of	the	Taylor	expansion,	and	a	single	Taylor	28	

expansion	 of	 the	 flow	 is	 not	 accurate	 enough	 to	 map	 the	 entire	 initial	 uncertain	29	

domain.	 Therefore,	 to	 apply	 these	 methods	 on	 motions	 with	 highly	 nonlinear	30	
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dynamics	and	large	uncertainties,	these	drawbacks	need	to	be	overcome.		1	

	 	 The	ADS	method	was	introduced	to	solve	the	above	issue	by	automatically	splitting	2	

the	 initial	 uncertain	 domain	 into	 two	 equal	 sub-domains	 whenever	 the	 Taylor	3	

expansion's	 truncation	 error	 reaches	 a	 predefined	 threshold.	 ADS	 was	 firstly	4	

introduced	by	Wittig	et	al.	 [14],	where	 it	was	applied	to	 the	orbital	propagation	of	5	

asteroid	 (99942)	Apophis	 considering	 its	 initial	 state	 uncertainty.	 The	non-impact	6	

and	 close-encounter	 regions	 of	 Apophis'	 state-space	 with	 respect	 to	 Earth	 were	7	

identified	and	validated	against	pointwise	simulations.	It	was	also	demonstrated	that	8	

ADS	can	 infer	 the	system's	dynamical	behavior	over	 the	 initial	uncertainty	domain	9	

through	the	resulting	splitting	structure	at	the	end	of	the	propagation.	Precisely,	the	10	

region	 of	 frequent	 splits	 corresponds	 to	 the	 dynamics'	 strong	 nonlinearity	 and	 is	11	

automatically	identified	by	the	algorithm.	More	details	of	ADS	are	given	in	Section	2.		12	

	 	 In	terms	of	dynamical	structure,	several	indicators	have	been	widely	applied.	For	13	

instance,	 the	 Lyapunov	 Characteristic	 Exponent	 (LCE)	 is	 obtained	 from	 the	 STM's	14	

eigenvalues	 of	 an	 autonomous	 system	 [15].	 Zero	 values	 of	 LCE	 indicate	 that	 the	15	

neighboring	of	this	trajectory	is	bounded,	and	the	positive	values	of	LCE	imply	that	16	

the	 neighboring	 trajectories	 deviate	 exponentially	 from	 the	 nominal	 one.	 Another	17	

indicator	is	the	so-called	Lagrangian	Coherent	Structure	(LCS)	[16].	It	is	defined	from	18	

the	Finite-time	LCE	(FTLE)	that	measures	the	divergence	rate	of	trajectories	flowing	19	

from	 neighboring	 initial	 conditions.	More	 specifically,	 LCSs	 are	 determined	 by	 the	20	

ridges	of	the	Finite-time	LCE	field	of	a	time-dependent	system	that	partition	the	phase	21	

space	 into	 coherent	 dynamic	 behavior	 regions.	 However,	 LCS	 is	 computationally	22	

intensive	for	systems	with	dimensions	higher	than	four.	The	Jet	Transport	method,	23	

which	 is	 based	 again	 on	 polynomial	 algebra,	 was	 demonstrated	 to	 be	 capable	 of	24	

detecting	different	dynamic	regimes	in	autonomous	and	non-autonomous	dynamical	25	

systems	by	identifying	the	separatrices	of	the	pendulum	and	the	invariant	manifolds	26	

of	 the	circular	restricted	 three-body	problem	[17].	 In	 this	study,	ADS	 is	used	as	an	27	

alternative	 indicator	 of	 the	 dynamical	 structure	 of	 a	 highly	 nonlinear	 system	with	28	

uncertainties,	 focusing	 on	 the	 stability,	 robustness,	 and	 boundedness	 of	 the	29	

associated	motion.	One	advantage	of	 this	 indicator	 is	 its	 capability	of	dealing	with	30	
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uncertain	dynamics,	which	is	very	different	from	the	previous	indicators	that	work	1	

with	deterministic	dynamics.	2	

		 	 As	 explained	 previously,	 the	 irregular	 gravity	 and	 the	 SRP,	 together	 with	 their	3	

uncertainties,	 are	 the	perturbations	 considered	 in	 the	dynamical	modeling.	 In	 real	4	

mission	operations,	the	gravity	field	of	a	small	body	is	usually	determined	in	terms	of	5	

spherical	harmonics	that	are	a	generalized	representation	of	an	arbitrary	gravity	field.	6	

In	addition,	the	spherical	harmonics	model	is	usually	applied	to	mission/orbit	design.	7	

Therefore,	 the	 irregular	 gravity	 in	 this	 research	 is	 represented	 by	 the	 spherical	8	

harmonics	 model.	 For	 the	 gravitational	 field	 represented	 by	 mascons	 and	9	

polyhedrons,	this	research	can	also	be	directly	applied,	as	long	as	the	distributions	of	10	

uncertainty	parameters	in	these	gravitational	models	are	available.	Recent	research	11	

[18]	 shows	 that	 the	 spherical	 harmonics	 model	 provides	 a	 way	 to	 quantify	 the	12	

uncertainty	of	a	given	stochastic	polyhedron	model.	In	particular,	since	the	C20	and	C22	13	

terms	are	generally	dominant	terms	of	the	irregular	gravity,	their	uncertainties	are	14	

believed	 to	 contribute	 to	 the	major	 impact	on	 the	orbital	motion	and	are	 the	only	15	

harmonic	terms	whose	uncertainties	are	considered	in	this	study.	Nevertheless,	it	is	16	

straightforward	to	generalize	this	research	to	consider	the	uncertainties	of	higher-17	

order	harmonic	terms,	especially	for	the	situation	of	highly	irregular	bodies.	As	far	as	18	

the	authors	know,	this	is	the	first	research	in	which	ADS	is	applied	to	investigate	the	19	

effect	of	model	uncertainties	on	motion	dynamics	around	small	bodies.		20	

	 	 The	paper	is	organized	as	follows.	First,	we	introduce	the	basics	of	using	ADS	as	a	21	

stability	indicator	and	its	comparison	with	the	FTLE	for	a	simple	pendulum	model.	22	

Second,	the	dynamics	of	orbital	motion	around	an	asteroid	is	modeled,	and	the	DA	23	

algorithm	is	applied	to	expand	the	dynamical	flow	to	high	orders	with	respect	to	the	24	

gravity	 uncertainty	 for	 the	 example	 asteroid	 Stein.	 Third,	 by	 applying	 ADS,	 the	25	

sensitivity	 of	 orbits	 with	 different	 geometries	 to	 the	 gravity	 uncertainty	 is	26	

systematically	investigated,	together	with	validation	against	numerical	simulations.	27	

By	including	the	SRP,	its	additional	effect	on	the	motion's	stability	and	robustness	is	28	

investigated.	Finally,	we	conclude	this	study	and	gives	prospects	for	future	work.		29	

2. Automatic Domain Splitting as a dynamical indicator 30	
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This	 section	 first	 introduces	 the	 ADS	 methodology	 in	 detail	 and	 then	 analyze	 its	1	

feasibility	as	a	dynamical	indicator	with	its	first	application	to	a	simple	pendulum.	2	

2.1	The	ADS	methodology	 	3	

As	already	mentioned	in	Section	1,	the	DA	method	computes	Taylor	expansions	of	the	4	

flow	of	the	dynamics	up	to	arbitrary	orders	with	automatic	differentiation.	The	main	5	

idea	of	the	ADS	is	to	determine	the	time	epoch	when	the	flow	expansion	over	a	given	6	

initial	 set	 is	 not	 capable	 of	 describing	 the	 dynamics	 with	 the	 required	 accuracy	7	

anymore,	 by	 applying	 an	 automatic	 algorithm.	 Once	 this	 situation	 is	 detected,	 the	8	

domain	of	the	original	Taylor	expansion	is	divided	into	two	sub-domains	of	the	same	9	

size	along	one	of	 the	expansion	variables.	Then	 the	dynamics	 is	 re-expanded	with	10	

respect	to	the	new	center	points	of	these	two	sub-domains,	respectively,	giving	rise	to	11	

two	separate	Taylor	expansions.	This	process	is	illustrated	in	Fig.1,	in	which	the	error	12	

is	 the	 truncation	 error,	 and	 it	 is	 an	 absolute	 value	 that	 measures	 the	 difference	13	

between	the	n+1	time	differentiable	function	and	its	Taylor	expansion	of	order	n.	The	14	

ε	is	the	required	accuracy.	Following	such	a	split,	in	each	subdomain	the	integration	15	

continues	in	the	same	manner	until	further	splits	are	required	or	the	final	integration	16	

time	 is	 reached.	 For	 the	 numerical	 integration,	 the	 DA	 framework	 applies	 the	17	

Dormand–Prince	Runge–Kutta	7/8	scheme	with	the	7th	order	solution	for	step	size	18	

control	and	the	8th	order	solution	for	propagation.	 	19	

 20	
Figure	1	Illustration	of	the	propagation	process	with	ADS	[14]	21	

	 	 Specifically,	all	splits	are	performed	in	the	direction	that	contributes	the	most	to	the	22	

truncation	error	of	the	Taylor	expansion,	resulting	in	the	maximum	reduction	of	this	23	

error.	 During	 the	 propagation,	 the	 splitting	 can	 occur	 along	 all	 directions,	 but	24	

predominantly	along	these	directions	to	which	the	dynamics	is	more	sensitive.	The	25	
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final	result	is	a	list	of	Taylor	polynomials	of	the	final	state,	each	of	which	describes	the	1	

evolution	of	each	sub-domain.	Therefore,	the	set	of	all	Taylor	polynomials	accurately	2	

maps	the	entire	initial	domain	into	the	final	domain.	A	minimum	domain	size	is	set	at	3	

the	beginning	of	the	integration.	Consequently,	it	is	possible	that	some	sub-domains	4	

cannot	reach	the	final	integration	time	as	they	reach	the	minimum	allowed	size	earlier.	5	

These	sub-domains	are	shown	to	correspond	to	regions	of	strong	nonlinearity	of	the	6	

dynamics,	which	 are	 automatically	 identified	by	 the	 algorithm.	 In	 addition,	ADS	 is	7	

capable	 of	 accurately	 propagating	 large	 sets	 of	 uncertainties	 in	 highly	 non-linear	8	

dynamics.	The	reader	can	refer	to	Wittig	et	al	[14]	for	more	detailed	description	and	9	

demonstration	about	ADS.	10	

2.2	Using	ADS	to	detect	structures	of	a	dynamical	system	11	

As	 indicated	 in	 Section	 2.1,	 the	 earlier	 the	 first	 split	 occurs,	 the	 stronger	 the	12	

nonlinearity	of	the	dynamics	is.	The	nonlinearity	is	closely	related	to	the	stability	and	13	

robustness	of	the	motion;	i.e.,	an	unstable	motion	tends	to	be	characterized	by	strong	14	

nonlinearities	either	on	the	state	or	on	the	dynamical	model	parameters,	which	make	15	

it	more	sensitive	and	less	robust	to	uncertainties.	Therefore,	the	first	split	time	of	the	16	

ADS	can	be	used	to	detect	the	overall	dynamical	structures	of	a	nonlinear	system	and	17	

also	the	transition	among	different	structures.	This	study	explores	the	feasibility	of	its	18	

application	to	orbital	motions	around	small	bodies	that	are	characterized	by	highly	19	

nonlinear	and	uncertain	dynamics.	As	a	straightforward	test	of	this	idea,	the	approach	20	

is	first	used	to	investigate	the	dynamical	structure	of	a	simple	pendulum	system.	21	

2.2.1	Detection	of	the	dynamical	structure	of	a	simple	pendulum	 	22	

As	 discussed	 in	 Section	 1,	 the	 FTLE	 is	 an	 efficient	 tool	 to	 address	 the	 stability	 or	23	

chaoticity	of	the	nonlinear	dynamics.	To	investigate	the	capability	of	ADS	detecting	24	

dynamical	structures,	we	first	apply	it	to	a	simple	pendulum	model	and	compare	its	25	

performance	with	that	of	the	FTLE.	The	dynamics	of	the	simple	pendulum	is	given	as	 	26	

!
𝜃̇ = 𝜉

𝜉̇ = −
𝑔
𝐿
sin	(𝜃)

	27	
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Given	 𝐿 = 𝑔,	the	numerical	FTLE	field	of	this	model	at	time	t=20	from	[19]	is	given	in	1	

the	left	plot	of	Fig.2.	It	is	evident	that	the	red	separatrix	region	has	the	largest	FTLE	2	

value,	 indicating	 the	 high	 divergence	 rate	 of	 the	 dynamics	 in	 this	 region.	 On	 the	3	

contrary,	 the	 blue	 region	 has	 the	 smallest	 FTLE	 value	 and	 has	 relatively	 better	4	

dynamical	stability.	Therefore,	this	FTLE	value	characterizes	the	dynamical	structure	5	

of	the	phase	space	of	a	simple	pendulum.	 	6	

As	described	in	Section	1,	for	the	DA-based	ADS	method,	all	the	evaluations	can	be	7	

carried	out	in	the	DA	framework	by	computing	the	expansion	flow	of	a	general	ODE	8	

to	arbitrary	order	with	respect	 to	 the	 initial	conditions.	Given	a	general	dynamical	9	

system	 	10	

/𝑿̇ = 𝑓(𝑿, 𝑡)
𝑿(𝑡4) = 𝑿4

	11	

with	state	 𝑿 = (𝑥6, 𝑥7, . . 𝑥9 … )	 and	(for	instance)	uncertain	variable	 𝑥9 ,	to	obtain	the	12	

high-order	 expansion	 of	 the	 phase	 flow,	 the	 first	 step	 is	 to	 initialize	 𝑥9 	 as	 a	 DA	13	

variable	14	

[𝑥9] = 𝑥9 + 𝛿𝑥9 	15	

where	 𝛿𝑥9 	 represents	 the	 displacement	 from	 the	 nominal	 value	 𝑥9 .	 Then	 the	16	

dynamics	 is	 expanded	 in	 Taylor	 series	 with respect to 𝑥9 	 in	 the	 DA	 framework.	17	

Therefore,	to	apply	ADS	to	this	pendulum	model,	the	two	variables	 𝜃	 and	 𝜉	 are	first	18	

initiated	as	DA	variables	as	 	19	

/
[𝜃] = 𝜃?@AB + 3𝜎 ∙ 𝛿𝜃
[𝜉] = 𝜉?@AB + 3𝜎 ∙ 𝛿𝜉

	20	

in	which	the	 3𝜎	 of	the	assumed	Gaussian	distribution	is	 3 × 10I7.	The	map	of	the	21	

first	split	time	on	the	 𝜃 − 𝜉	 plane	is	obtained	as	the	right	plot	of	Fig.2.	It	is	seen	that	22	

the	dark	red	region	and	the	bright	region	have	the	shortest	and	longest	first	split	time,	23	

respectively,	 indicating	the	relatively	high	and	low	nonlinearity	of	the	dynamics	 in	24	

these	regions.	In	addition,	they	also	correspond	to	the	separatrix	and	the	oscillation	25	

region,	respectively,	showing	that	the	dynamical	structure	of	the	phase	space	can	be	26	

detected.	Since	the	structure	of	the	map	of	the	first	split	time	from	ADS	coincides	with	27	

that	of	the	FTLE	plot	for	the	same	dynamical	model,	ADS	is	capable	of	capturing	the	28	
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dynamical	 structure	of	 the	 system	similarly	 to	FTLE.	 In	 the	 following	 sections,	we	1	

further	explore	this	possibility	by	studying	the	dynamics	of	motion	around	asteroids.	2	

	 	3	

Figure	2	left:	Numerical	FTLE	field	for	the	simple	pendulum	model	from	Ref	[19];	right:	4	

map	of	the	first	split	time	obtained	with	ADS	in	the	same	region.	5	

3. Dynamics with irregular gravity  6	

To	separate	the	analysis	of	the	effects	of	uncertain	gravity	and	uncertain	SRP	on	the	7	

orbital	 motion,	 in	 this	 section,	 we	 consider	 only	 the	 irregular	 gravity	 and	 its	8	

uncertainty	 in	 the	simulation.	The	effect	of	 the	SRP	perturbation	 is	 investigated	 in	9	

Section	4.	10	

3.1	Dynamical	Modeling	11	

The	 equation	 of	motion	 for	 an	 object	 located	 at	 𝑟 = (𝑥, 𝑦, 𝑧)	 in	 the	 vicinity	 of	 an	12	

asteroid	in	the	inertial	frame	is	given	as	[1]	13	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (1)	14	

where	 𝑈	 is	 the	gravitational	potential	of	 the	small	body	 in	 the	 inertial	 frame.	The	15	

gravitational	potential	is	represented	in	spherical	harmonics	as	[9]	16	

𝑈A =
𝐺𝑀
𝑟 !1 +QQ R

𝑅@
𝑟 T

BB

?U4

V

BW7

𝑃B?(𝑠𝑖𝑛𝜃)[𝐶B?𝑐𝑜𝑠(𝑚𝜆) + 𝑆B?𝑠𝑖𝑛(𝑚𝜆)]b	17	

where	 𝐺𝑀	 is	the	gravitational	constant	of	the	small	body;	 𝑅@ 	 is	the	reference	radius	18	

of	the	small	body	that	is	usually	defined	as	half	of	the	largest	dimension	of	the	whole	19	
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Figure 6: Numerical FTLE field for the simple
pendulum (8)-(9); T = 20.
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Figure 7: The ridges of high values in the
FTLE field correspond to the manifolds of
(�⇡, 0) seen in Fig. 3.

This example indicates that the structures we are interested in finding in more general, non-
autonomous systems - the analogs of stable and unstable manifolds in autonomous systems -
ought to be characterized by ridges of high values in the FTLE field. These ridges, referred to
as Lagrangian Coherent Structures, can be defined using the Hessian H of the FTLE field given by

H = H(x, t
0

, T ) =
d2�T

t0(x)
dx2

(25)

Now is a good time to introduce the formal definition of a Lagrangian Coherent Structure as given
by [3].

2.2 Formal Definition of a Lagrangian Coherent Structure in Two Dimensions

Definition: A Lagrangian Coherent Structure (LCS) of a dynamical system at time t
0

with in-
tegration time T is an injective curve c = c(s) ⇢ D ⇢ R2 parameterized by s 2 (a, b) ⇢ R such
that:

• c0(s) and r�T
t0 (c(s)) are parallel 8s 2 (a, b);

• n̂trHn̂ = min
kuk=1

utrHu < 0, where n̂ = n̂(s) is the unit normal vector to c(s) for all s.

This is a complicated looking definition, but does exactly what we previously described - identifies
the ridges of high FTLE values at time t

0

. The first condition identifies the direction of c for all
s, and the second ensures that the ridge is a peak (and not a trough) of the FTLE field. Before
continuing to look at some examples, there are several points worth noting:

• If f is a smooth function of x and t, the FTLE field is smooth and therefore so are any
associated LCSs.

• LCSs generally vary with time in non-autonomous systems. We will use the notation c(s) =
c(s, t) when it is desirable to emphasize this time-dependence.

• A FTLE field may have several LCSs (as in §2.1.2 where two LCSs exist).

7

!""r = ∂U
∂!r
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body;	 𝑟, 𝜃	 and	 𝜆	 are	spherical	coordinates	from	the	center	of	mass	to	a	given	point	1	

𝑃 	 in	 the	 body-fixed	 frame	 (i.e.,	 the	 radial	 distance	 |𝑟| ,	 latitude	 and	 longitude,	2	

respectively);	 𝑃B? 	 is	 the	 associated	 Legendre	 polynomial;	 𝐶B? 	 and	 𝑆B? 	 are	 the	3	

spherical	harmonic	coefficients	that	are	determined	by	the	mass	distribution	within	4	

the	body.	However,	 𝑈A	is	defined	in	the	body-fixed	frame	of	the	small	body,	and	it	is	5	

transformed	to	the	inertial	frame	(denoted	as	 𝑈)	for	the	integration	in	the	following	6	

simulations.	This	study	uses	gravity	field	truncated	at	the	4th	degree	and	order,	which	7	

captures	 the	main	characteristics	of	 the	whole	gravity	and	meanwhile	 reduces	 the	8	

computational	effort.	 	9	

	 	 As	 discussed	 in	 Section	 1,	 this	 study	 focuses	 on	 investigating	 the	 effect	 of	 the	10	

uncertain	C20	and	C22	 terms	on	the	state	propagation,	 i.e.,	parameter	uncertainties.	11	

Given	a	general	dynamical	system	 	12	

/𝑿̇ = 𝑓(𝑿, 𝒑, 𝑡)
𝑿(𝑡4) = 𝑿4

	13	

with	 the	 vector	 𝒑 = (𝑝6, 𝑝7, . . 𝑝B) 	 including	 all	 the	 uncertain	 parameters	 of	 the	14	

dynamical	model,	to	obtain	the	high-order	expansion	of	the	phase	flow,	the	first	step	15	

is	to	initialize	 𝒑	 as	a	DA	variable	as	 	16	

[𝒑] = 𝒑 + 𝛿𝒑	17	

The	vector	 𝒑 = (𝐶74, 𝐶77)	 can	be	initialized	as	a	vector	of	DA	variables	as	18	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 /
[𝐶74] = 𝐶74 + 𝛿𝐶74
[𝐶77] = 𝐶77 + 𝛿𝐶77

.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2)	19	

Readers	can	refer	to	Ref	[4]	for	more	details	about	modeling	the	uncertainty	of	the	20	

gravity	field.	21	

3.2	Uncertainties	of	the	C20	and	C22	terms	 	22	

Asteroid	Stein	 is	used	as	the	test	case.	Due	to	 its	size	and	mass,	 the	orbital	motion	23	

around	it	is	possible	[1].	Its	physical	parameters	are	given	as	[2,	8]	24	

𝐺𝑀 = 7.7 × 10Ig 𝑘𝑚i 𝑠7, 𝑅@ = 3.35𝑘𝑚, 𝑇l@m9no = 6.047ℎ		s 	25	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 𝐶74 = −9.78 × 10I7, 𝐶77 = 1.32 × 10I7	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (3)	 	26	

in	which	 𝐺𝑀,	 𝑅@ 	 and	 𝑇l@m9no 	 are	 the	gravitational	constant,	 reference	radius	and	27	

rotation	period	of	Stein,	respectively.	C20	and	C22	are	the	second	order	and	degree	of	28	
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the	irregular	gravity	of	Stein.	Its	gravity	harmonic	coefficients	up	to	the	4th	degree	and	1	

order	are	listed	in	the	Appendix	and	are	included	in	the	dynamics.	We	assume	both	2	

the	C20	and	C22	terms	have	a	Gaussian	distribution	with	their	mean	values	given	in	Eq.	3	

(3).	 From	 Rosetta’s	 flyby	 of	 Stein,	 the	 1𝜎 	 uncertainties	 of	 these	 two	 terms	 are	4	

estimated	 to	 be	 6.3´10-3	 [2].	 However,	 since	 the	 modeling	 of	 the	 gravity	 can	 be	5	

improved	significantly	during	the	approach	phase	of	the	mission,	a	reduced	value	of	6	

6.3´10-5	is	used	here	to	assess	the	effect	of	gravity	uncertainty	on	the	orbital	motion.	7	

In	addition,	we	assume	that	there	is	no	correlation	between	the	uncertainties	on	C20	8	

and	C22.	Moreover,	the	1𝜎	 uncertainty	of	Stein’s	central	gravity	 𝐺𝑀	 is	not	considered	9	

here	as	it	is	generally	three	orders	of	magnitude	smaller	than	that	of	the	second-order	10	

gravity	term.	In	the	following	simulations,	the	unit	gravitational	constant	and	the	unit	11	

length	are	defined	as	 𝐺𝑀	 and	 𝑅@ ,	respectively,	and	the	other	variables	are	scaled	or	12	

normalized	accordingly.	13	

3.3	Splitting	on	the	C20	-	C22	domain	with	ADS	14	

As	a	first	step,	the	relation	between	the	expansion	order	and	the	accuracy	of	the	Taylor	15	

polynomials,	 the	 relation	between	 the	 splitting	precision	 required	by	ADS	and	 the	16	

number	of	splits,	as	well	as	the	computation	time	are	investigated.	The	precision	 𝜀	 is	17	

defined	as	the	limit	when	a	split	is	triggered.	 	18	

First,	the	C20	and	C22	terms	are	initialized	as	DA	variables	with	their	 1𝜎	 uncertainty	19	

6.3´10-5	as	20	

/[𝐶74] = −9.78 × 10I7 + 3𝜎 ∙ 𝛿𝐶74
[𝐶77] = 1.32 × 10I7 + 3𝜎 ∙ 𝛿𝐶77

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4)	21	

	 	 Results	are	compared	for	different	precision	 𝜀	 (10-4,	10-7	and	10-10)	and	different	22	

Taylor	expansion	orders	(5th,	7th	and	10th).	The	domain	splitting	on	the	C20	-C22	plane	23	

is	given	in	Fig.3	for	the	circular	orbit	with	a=1.98	and	for	the	integration	time	of	10	24	

orbital	periods	(i.e.,	t=10P).	It	can	be	seen	that	the	lower	the	truncation	order	and	the	25	

higher	 the	 required	 precision	 (i.e.,	 the	 smaller	 the	 required	 truncation	 error),	 the	26	

more	 splits	 occur	 in	 the	 initial	 domain,	 due	 to	 the	 fact	 that	 low	 order	 Taylor	27	

expansions	 fail	 to	 approximate	 the	 dynamics	 with	 sufficient	 accuracy	 over	 larger	28	
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domains.	Moreover,	since	all	the	splits	occur	along	the	direction	of	the	C22	term,	it	is	1	

concluded	that	the	motion	is	more	sensitive	to	the	variation	of	this	term.	 	2	

	3	

	4	

	5	
Figure	3	The	domain	split	on	the	C20	-C22	plane	for	a=1.98	and	t=10P	(i.e.	10	orbital	6	

periods)	at	the	truncation	order	5,	7	and	10	from	top	to	bottom	and	for	error	tolerance	7	

10-4,	10-7,	10-10	from	left	to	right.	8	

Fig.4	gives	 the	computational	 time	as	a	 function	of	 the	precision	 𝜀	 and	expansion	9	

order.	The	10th-order	requires	the	longest	computational	time	for	precisions	larger	10	

than	 10-6.	 However,	 the	 computational	 time	 required	 by	 a	 10th-order	 propagation	11	

reduces	 significantly	 for	 precisions	 smaller	 than	 10-8.	 This	 phenomenon	 can	 be	12	

explained	by	the	fact	that	higher-order	expansions	generally	require	more	time	than	13	

low-order	expansions	if	both	of	them	could	meet	the	accuracy	requirement.	To	better	14	

balance	 the	 computation	 time	 and	 accuracy,	 a	 precision	 of	 10-10	 and	 10th-order	15	
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propagations	are	applied	in	the	following	simulations.	 	1	

	2	

Figure	4	The	relation	between	the	expansion	order	and	time	consumption	for	3	

different	precisions	4	

3.4	Numerical	simulations	and	analysis	5	

Due	to	constant	distance	from	the	small	body,	a circular	orbit	is	generally	preferred	6	

for	mission	operations	[20].	This	is	the	case	studied	in	this	research.	For	a	given	orbit	7	

inclination,	 the	 ascending	 node	 𝛺 	 and	 𝑢 = 𝜔 + 𝑓 	 (i.e.,	 the	 argument	 of	 latitude)	8	

fully	describe	the	orientation	and	the	position	of	the	initial	point	on	this	circular	orbit,	9	

respectively.	For	a	circular	orbit,	 𝑢	 actually	coincides	with	 the	 true	anomaly	 𝑓,	 as	10	

there	 is	 no	 specific	 definition	 of	 𝜔 .	 The	 effect	 of	 the	 uncertain	 gravity	 field	 on	11	

different	orbital	geometries	is	analyzed.	 	12	

3.4.1	Map	of	the	first	split	time	on	the	a-i	plane	13	

	 First,	 the	effects	of	orbital	elements	a	 and	 i	 are	 investigated	by	dividing	 the	a-i	14	

plane	(a	 ∈ [1, 3],	 i	 ∈ [0, 180°])	 into	a	100×100	grid.	Given	 𝛺 = 𝑢 = 0	 and	 for	 the	15	

integration	duration	t=1000,	the	first	split	time	of	each	orbit	is	recorded	on	the	a-i	16	

plane,	as	shown	in	Fig.5,	which	displays	complicated	dynamical	structures.	The	deep	17	

blue	region	shows	that	 the	split	occurs	shortly	after	 the	 integration	starts,	and	the	18	

yellow	region	shows	that	the	integration	is	performed	without	any	split.	For	ADS,	the	19	

sooner	the	first	split	occurs,	the	stronger	the	nonlinearity	of	the	dynamics.	Therefore,	20	

Fig.5	indicates	that	the	motions	close	to	the	asteroid	show	stronger	nonlinearity	than	21	

those	far	away	from	the	asteroid,	due	to	the	stronger	perturbations	of	the	irregular	22	
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gravity	field	in	its	vicinity.	The	indications	of	this	map	on	the	stability	and	robustness	1	

of	 orbital	 motion	 will	 be	 investigated	 by	 numerical	 integrations	 and	 uncertainty	2	

propagation	in	the	following	sections.	3	

	4	

Figure	5	The	first	split	time	on	the	a-i	plane	with	1𝜎	 uncertainty	of	6.3´10-5	of	both	5	

the	C20	and	C22	terms.	6	

3.4.2	The	effect	of	 𝒖	 on	the	first	split	time	7	

In	this	section,	we	investigate	the	effect	of	 𝑢 = 𝑓	 on	the	first	split	time.	To	focus	on	8	

the	influence	on	the	highly	nonlinear	region	in	Fig.5,	the	simulation	is	performed	only	9	

in	the	range	 𝑎 ∈ [1, 2.5].	To	clearly	illustrate	the	4-dimensional	matrix	that	includes	10	

a,	i,	u	and	the	first	split	time,	several	slices	are	selected	and	shown	in	Fig.6.	In	Fig.6A,	11	

the	five	slices	represent	the	a-i	plane	at	 𝑢	 =	0°,	45°,	90°,	135°	and	180°,	respectively.	12	

It	is	seen	that	on	both	planes	of	 𝑢	 =	0°	and	180°	(i.e.	with	the	motion	starting	from	13	

the	 equatorial	 plane)	 there	 are	 larger	 blue	 regions	 than	 that	 on	other	planes.	 The	14	

largest	yellow	region	appears	on	the	plane	of	 𝑢	 =	135°	as	indicated	by	the	red	dash-15	

dot	circles.	As	a	comparison,	the	same	regions	are	marked	by	the	dark	dash-dot	circles	16	

on	 other	 planes	 but	 they	 are	 not	 yellow	 anymore.	 However,	 in	 spite	 of	 these	17	

differences,	the	general	structure	stays	nearly	the	same	for	different	values	of	 𝑢.	This	18	

is	understandable	as	we	generally	study	similar	orbits	when	keeping	i,	 𝛺	 fixed	and	19	

varying	 𝑢	 in	[0°,	180°].	20	
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	 	 In	Fig.6B,	the	slices	represent	the	i-u	plane	at	 𝑎	 =	1,	1.5,	2,	2.5.	Though	significant	1	

variations	appear	on	 the	slices	with	 the	variations	of	 𝑎	 and	 𝑖,	 there	 is	very	small	2	

difference	along	the	direction	of	u	for	almost	all	these	planes.	This	indicates	that	the	3	

influence	of	u	is	negligible.	In	Fig.6C,	the	slices	represent	the	a-u	plane	at	 𝑖	 =	0°,	60°,	4	

120°,	180°.	For	 𝑖	 =	0°	and	180°	the	dynamics	is	slightly	sensitive	to	the	initial	 𝑢,	due	5	

to	the	effect	of	the	C22	term	that	represents	the	non-uniform	mass	distributions	in	the	6	

longitude	direction.	This	phenomenon	is	consistent	with	the	results	of	our	previous	7	

study	about	the	effect	of	 𝛺	 [4].	Therefore,	we	can	conclude	that	the	motion	under	8	

gravity	uncertainty	is	more	sensitive	to	the	orbital	elements	 𝑎	 and	 𝑖.	 	9	

	 	 	10	

	11	

Figure	6	The	slices	of	the	first	split	time	in	the	a-i-u	phase	space. 12	

3.4.3	Numerical	integrations	13	

To	get	a	straightforward	insight	on	the	dynamical	structure	revealed	by	Fig.5,	sample	14	

orbits	 are	 selected	 from	 the	 blue	 and	 yellow	 regions,	 respectively,	 for	 numerical	15	
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integrations.	The	initial	conditions	of	these	orbits	are	summarized	in	Table	1.	 	1	

Table	1	Initial	conditions	of	sample	orbits	with	e=𝜔=𝛺=𝑓=0	2	

orbits	 A	 B	 C	 D	 E	 F	 G	 H	

a	 1.38	 2.10	 2.18	 3	 1.38	 1.95	 2.43	 3	

i	 101°	 101°	 101°	 101°	 50°	 50°	 50°	 50°	

	 	 For	all	these	circular	sample	orbits,	the	two-body	initial	conditions	are	used	for	the	3	

integrations.	The	propagation	duration	is	set	to	400,	rather	than	1000	as	the	orbits	in	4	

the	non-yellow	region	diverge	significantly	in	a	short	period	of	time.	The	evolutions	5	

of	their	orbital	elements	a,	e,	i,	are	illustrated	in	Figs.7	and	8.	 	6	

	 	 It	 can	 be	 seen	 that	 orbits	 A	 and	 E	 from	 the	 deep	 blue	 region	 have	 the	 largest	7	

variations	of	e	and	i,	respectively,	compared	with	the	simulated	orbits	with	the	same	8	

inclinations.	This	indicates	their	strong	instabilities,	due	to	the	fact	that	both	A	and	E	9	

are	extremely	close	to	the	asteroid	and	are	strongly	perturbed	by	the	irregular	gravity	10	

field.	For	orbits	B,	C,	D,	G	and	H,	 the	evolutions	of	 their	orbital	elements	are	much	11	

better	bounded,	demonstrating	that	they	are	more	stable	than	A	and	E.	In	addition,	it	12	

is	apparent	that	the	retrograde	motion	(orbit	A,	B,	C,	D)	is	generally	more	stable	than	13	

the	prograde	one	(orbit	E,	F,	G,	H),	in	terms	of	the	magnitude	of	the	variations	of	a,	e,	14	

i.	For	instance,	by	comparing	orbit	A	with	orbit	E,	the	latter	demonstrates	stronger	15	

instability	as	a	and	e	vary	significantly	up	to	5.6	and	0.8,	respectively,	which	would	16	

lead	 to	 an	 impact	with	 the	 asteroid.	 In	 addition,	 their	 inclination	 oscillates	 by	 20	17	

degrees.	 The	 same	 orbital	 parameters	 for	 orbit	 A	 are	 better	 bounded.	 These	18	

phenomena	are	in	agreement	with	the	conclusion	in	[1]	and	are	also	visible	from	the	19	

difference	 of	 the	 top	 and	 bottom	 regions	 of	 Fig.5.	 These	 numerical	 integrations	20	

validate	the	dynamical	structure	of	Fig.5	and	show	that	the	first	split	map	is	capable	21	

of	indicating	stability.	22	
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	1	

Figure	7	The	evolutions	of	a,	e,	i	for	orbits	A,	B,	C	and	D	with	the	same	inclination	of	2	

101°	3	

	4	

Figure	8	The	evolutions	of	a,	e,	i	for	orbits	E,	F,	G	and	H	with	the	same	inclination	of	5	

50°	6	

3.4.4	Uncertainty	Propagation	7	
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This	section	investigates	the	robustness	of	the	motion	by	studying	the	evolution	of	1	

the	bounds	of	the	spacecraft	distance	from	the	asteroid.	The	distance	of	the	nominal	2	

trajectory	from	the	asteroid	is	denoted	the	reference	distance.	3	

	 	 For	all	the	same	sample	orbits,	two	simulations	are	performed.	One	is	by	applying	4	

the	MC	method	to	propagate	the	gravity	uncertainties	with	100	samples.	The	other	is	5	

by	computing	the	bounds	of	the	uncertainty	set	through	the	Taylor	expansion	of	ADS.	6	

For	 the	 latter,	 once	 the	 high-order	 Taylor	 expansion	 with	 respect	 to	 the	 initial	7	

uncertainties	is	obtained,	the	outer	bound	of	the	range	of	the	expansion	at	different	8	

times	is	then	estimated	by	applying	interval	arithmetic	[21].	However,	the	computed	9	

bounds	might	overestimate	the	true	range	of	the	Taylor	polynomial.	In	addition,	to	10	

ensure	 the	 accuracy	 of	 the	 estimated	 bounds,	 the	 Taylor	 expansion	 needs	 to	 be	11	

accurate	in	the	whole	uncertainty	domain.	12	

	 	 For	low-altitude	orbits	with	a=1.38,	the	integrations	already	diverge	significantly	13	

before	reaching	t=400.	Therefore,	their	MC	simulations	(black	lines)	are	truncated	at	14	

t=300	for	orbit	A	with	i	=101°	and	at	t=76	for	orbit	E	with	i	=50°,	which	are	displayed	15	

in	the	first	two	subplots	of	Fig.9.	The	evident	divergences	from	the	reference	distance	16	

(red	lines)	occur	from	about	t=	240	for	the	retrograde	orbit	and	t=60	for	the	prograde	17	

one.	This	result	indicates	that	the	retrograde	motion	is	more	robust	than	the	prograde	18	

motion	for	the	low-altitude	orbit.	In	addition,	the	estimated	lower	and	upper	bounds	19	

of	the	Taylor	expansion	of	the	two	orbits	are	also	displayed	in	the	lower	two	subplots	20	

of	Fig.9,	truncated	at	t=140	for	orbit	A	and	at	t=45	for	orbit	E.	The	green	and	pink	21	

lines	represent	the	upper	and	lower	bounds,	respectively.	The	bounds	are	found	to	22	

agree	 with	 the	MC	 simulations	 very	 well	 until	 the	 single	 Taylor	 expansion	 is	 not	23	

accurate	enough	over	the	whole	uncertainty	domain	of	the	C20	and	C22	terms	and	the	24	

split	of	the	domain	is	required.	Improved	bounds	based	on	the	Taylor	expansions	of	25	

these	split	trajectories	can	be	well	estimated;	these	are	not	displayed	here	as	the	main	26	

purpose	of	the	current	study	is	investigating	the	feasibility	of	the	ADS	as	a	dynamical	27	

indicator.	 Nevertheless,	 in	 spite	 of	 the	 overestimation,	 the	 size	 and	 the	 evolution	28	

tendency	of	the	uncertainty	domain	are	well	estimated.	In	addition,	the	uncertainty	29	

set	evolves	in	a	highly	nonlinear	way	due	to	the	nonlinear	dynamics.	The	obtained	30	
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evolution	of	bounds	provides	a	quantitative	information	to	select	trajectories	that	are	1	

sufficiently	robust	to	uncertainties.	2	

	3	

	4	
Figure	 9	 The	 distance	 from	 Stein	 of	 the	 center	 trajectory	 (red	 solid	 line),	 the	MC	5	

simulations	(black	solid	lines)	and	the	estimated	bounds	(green	and	pink	dash	lines)	6	

for	orbits	A	and	E.	7	

	8	

In	Fig.10,	the	estimated	bounds	and	the	MC	simulations	of	the	other	sample	orbits	are	9	

illustrated.	All	 the	retrograde	orbits	with	 i	=101°	show	good	robustness	as	the	MC	10	

simulations	stay	extremely	close	to	the	reference	distance.	In	addition,	the	estimated	11	

bounds	agree	very	well	with	the	MC	results.	For	prograde	orbits	with	i	=50°,	the	one	12	

with	 the	 smallest	 semi-major	 axis	 (orbit	 F)	 shows	 the	highest	 sensitivity,	which	 is	13	

evident	from	the	larger	deviations	of	the	MC	simulations	from	the	reference	distance	14	

profile.	The	other	two	orbits	G	and	H	(further	away	from	the	asteroid)	also	show	good	15	

robustness.	In	summary,	orbits	A,	E	and	F	located	in	the	deep	blue	region	in	Fig.5	are	16	

demonstrated	to	be	more	sensitive	to	perturbations	than	orbits	B,	C,	D,	G	and	H	that	17	
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are	taken	from	the	light	blue	and	yellow	regions.	In	addition,	though	orbits	A,	B,	C	and	1	

D	 have	 the	 same	 inclination,	 orbit	 A	 is	 more	 sensitive	 to	 uncertainties	 due	 to	 its	2	

closeness	to	the	asteroid.	This	result	proves	that	the	first	split	map	can	be	used	as	an	3	

indicator	of	robustness	that	is	closely	related	to	the	inclination	and	distance	to	the	4	

asteroid.	The	DA-based	ADS	can	provide	a	 fast	estimation	of	the	uncertainty	set	as	5	

long	as	the	Taylor	expansion	meets	the	required	accuracy.	6	

	7	

	8	

Figure	10	Uncertainty	propagations	of	sample	orbits	B,	C,	D,	F,	G	and	H	with	an	9	
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integration	time	of	t=400.	1	

3.4.5	The	split	history	of	the	state	flow	2	

To	 get	 an	 insight	 on	 the	 splits	 of	 the	 trajectory,	 a	 sample	 orbit	 with	 the	 initial	3	

condition	a0=1.98,	i0=	e0=Ω0=ω0=f0=0°	is	used.	The	split	history	of	its	orbital	elements	4	

a	and	e	are	given	in	Fig.11.	The	black	lines	represent	the	evolutions	of	a	and	e	of	the	5	

splitting	 trajectories,	 and	 the	 red	 lines	 represent	 the	 reference	 value	 without	6	

considering	uncertainty.	It	is	seen	that	the	first	split	epoch	is	at	about	t=47,	followed	7	

by	more	and	more	splits	along	time,	e.g.	for	 𝑡 ∈ [80, 100].	There	are	84	splits	in	total	8	

that	corresponds	to	168	splitting	trajectories.	At	the	bottom-right	corner	in	Fig.11,	i.e.	9	

when	the	split	trajectories	are	closer	to	the	asteroid,	it	is	seen	that	many	more	splits	10	

are	triggered,	as	the	effect	of	nonlinearity	is	intensified	with	time	when	the	motion	11	

comes	closer	to	the	asteroid.	Therefore,	the	splitting	history	also	indicates	the	extent	12	

of	the	nonlinearity	of	the	dynamics.	13	

 14	

 15	
Figure	11	The	evolutions	of	a	and	e	of	the	orbit	integrated	with	ADS	(black)	and	16	

numerical	simulation	(red)	with	the	propagation	time	of	t=100.	17	

 18	

4. Effect of the SRP perturbation 19	

This	section	first	introduces	the	modeling	of	the	SRP	perturbation	and	then	generates	20	
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the	 map	 of	 the	 first	 split	 time	 considering	 the	 SRP.	 Numerical	 integrations	 and	1	

uncertainty	propagations	are	performed	to	validate	the	dynamical	structures.	2	

4.1	Modelling	of	the	SRP	perturbation	3	

With	the	cannonball	model,	 the	SRP	acceleration	on	the	spacecraft	 in	the	asteroid-4	

centered	inertial	frame	is	given	as	 	5	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		𝒓̈ = 𝑭���
?

= −(1 + 𝜂) ⋅ 𝜌4𝛥47 ⋅
�
?
⋅ � 𝜟

��
�	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (5)	6	

in	 which	 𝜂 	 is	 the	 reflection	 coefficient	 of	 the	 spacecraft	 and	 𝜂 = 1 	 is	 for	 full	7	

reflection,	 𝑠/𝑚	 is	the	area	to	mass	ratio	of	the	spacecraft,	 𝜌4	 is	the	solar	radiation	8	

flux	 at	 the	 reference	distance	 𝛥4 	 (e.g.	 𝜌4 = 4.56 × 10Ig 	 at	 distance	 of	 1AU).	And	9	

𝜟 = 𝒓⨀ − 𝒓	 is	the	relative	position	vector	of	the	Sun	to	the	spacecraft,	as	indicated	in	10	

Fig.12.	For	the	following	simulations,	the	 𝑠/𝑚	 of	a	general	spacecraft	is	set	at	0.01.	11	

The	distance	of	the	asteroid	Stein	to	the	Sun	is	Dasteroid=1.32AU	and	 𝛥 = |𝜟| ≈	 Dasteroid.	 	12	

	13	
Figure	12	 Illustration	of	 the	 geometry	of	 the	 s/c	 and	Sun	 in	 the	 asteroid-centered	14	

inertial	frame.	15	

4.2	Splitting	on	the	C22-asrp	domain	 	16	

The	acceleration	due	to	the	SRP	is	initialized	as	a	third	DA	variable	as	17	

�
[𝐶74] = −9.78 × 10I7 + 3𝜎 ⋅ 𝛿𝐶74
[𝐶77] = 1.32 × 10I7 + 3𝜎 ⋅ 𝛿𝐶77

�𝑎�ml� = −3 × 10Ig + 3 × 10Ig ⋅ 𝛿𝑎�ml
	18	

where	asrp	 is	 set	 at	 the	mean	value	of	 3 × 10Ig 	 and	varies	between	 its	 lower	 and	19	

upper	bounds,	i.e.	between	-6 × 10Ig	 and	0,	representing	an	uncertain	perturbation	20	

force	on	the	spacecraft.	Since	this	study	focuses	on	the	simulation	in	a	short	period	of	21	

time,	the	direction	of	the	SRP	perturbation	is	assumed	to	be	fixed	along	the	x-direction	22	
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and	the	orientation	of	the	spacecraft	with	respect	to	Sun	is	also	assumed	to	be	fixed.	1	

Similarly,	 the	 domain	 splitting	 on	 the	 C22-asrp	 plane	 is	 given	 in	 Fig.13	 for	 the	2	

integration	 time	of	5	orbital	periods	 (i.e.	 t=5P).	For	circular	orbit	with	a=1.98,	asrp	3	

=3 × 10Ig	 in	the	left	plot	of	Fig.13,	splits	only	occur	in	the	C22	direction,	indicating	4	

the	gravity	uncertainty	dominates	over	that	of	the	SRP.	When	the	mean	value	of	the	5	

asrp	increases	to	 3 × 10I�	 and	it	is	initiated	as	6	

�𝑎�ml� = −3 × 10I� + 3 × 10I� ⋅ 𝛿𝑎�ml	7	

more	splits	occur	in	the	C22	direction	and	the	domain	splits	once	in	the	SRP	direction	8	

as	 shown	 in	 the	middle	 plot	 of	 Fig.13,	 indicating	 the	 stronger	 nonlinearity	 of	 the	9	

dynamics	for	the	same	orbit	by	considering	larger	SRP.	However,	since	the	splits	in	the	10	

C22	 direction	 are	more	 than	 those	 in	 the	 SRP	 direction,	 the	 uncertain	 gravity	 still	11	

dominates	the	dynamics	for	the	low-altitude	orbit	with	a=1.98.	With	a	larger	SRP	and	12	

increasing	the	orbit	altitude	to	a=2.2,	more	splits	appear	in	the	SRP	direction	and	only	13	

one	split	appears	in	the	C22	direction	in	the	right	plot	of	Fig.13,	which	shows	that	the	14	

SRP	perturbation	becomes	dominant.	These	splitting	phenomena	are	consistent	with	15	

the	analysis	in	[1].	16	

	17	
Figure	13	The	domain	split	on	the	C22-asrp	plane	at	the	truncation	order	10	and	the	18	

error	tolerance	at	10-10,	 for	asrp	=3 × 10Ig	 (left)	and	 3 × 10I�	 (middle)	at	a=1.98,	19	

and	asrp	=3 × 10I�	 at	a=2.2	(right),	respectively,	for	t=5P.	20	

4.3	Map	of	the	first	split	time	considering	SRP	21	

Similarly	to	Section	3,	given	 𝛺 = 𝑢 =0°,	and	for	the	100×100	grids	on	the	a-i	plane	22	

(a	 ∈ [1, 3] ,	 i	 ∈ [0, 180°] ),	 the	 map	 of	 the	 first	 split	 time	 obtained	 with	 ADS	23	

considering	the	SRP	at	asrp	=3 × 10Ig	 is	given	in	Fig.14.	 	 	24	
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	1	

Figure	14	 	 The	first	split	time	on	the	a-i	plane	with	1𝜎	 gravity	uncertainty	of	2	

6.3´10-5	and	the	SRP	at	 3 × 10Ig.	3	

	4	

Comparing	Fig.14	with	Fig.5,	it	can	be	seen	that	they	are	very	similar,	indicating	that	5	

the	small	SRP	perturbation	does	not	affect	much	the	dynamics	of	orbital	motion	close	6	

to	 the	 asteroid.	 However,	 the	 light	 blue	 region	 extends	 to	 the	 areas	 around	 a	 ∈7	

[2.2, 2.4],	i	 ∈ [0, 30°]	 and	a=2.5,	i	 ∈ [0, 110°],	indicating	that	the	SRP	destabilizes	the	8	

motion	 in	 these	 regions.	 This	 is	 consistent	 with	 the	 fact	 that	 there	 are	 stronger	9	

interactions	between	the	SRP	perturbation	and	the	gravity	perturbation	in	the	middle	10	

altitude	 region	 [1],	 since	 the	 former	 and	 latter	 ones	 dominate	 the	 high	 and	 low	11	

altitudes	region,	respectively.	 	12	

	 	 For	objects	with	 large	area	and	small	mass,	e.g.	spacecraft	with	 large	solar	sails,	13	

small	particles	and	dusts,	their	area	to	mass	ratio	is	generally	large.	To	investigate	the	14	

effect	of	a	large	SRP	perturbation,	its	mean	value	 𝑎�ml	 is	increased	to	 3 × 10I�	 and	15	

again	the	SRP	acceleration	is	initiated	as	16	

�𝑎�ml� = −3 × 10I� + 3 × 10I� ⋅ 𝛿𝑎�ml	17	

The	corresponding	map	of	the	first	split	time	is	given	in	Fig.15.	It	is	evident	that	the	18	

large	yellow	region	disappears,	and	it	is	replaced	by	the	light	blue	region,	meaning	19	

that	 the	 corresponding	motion	 is	 destabilized	 by	 the	 dominant	 SRP	 perturbation.	20	



25	
	

However,	 the	 structure	 of	 the	 original	 deep	 blue	 region	 seems	 unchanged,	 as	 the	1	

dynamics	is	still	dominated	by	the	irregular	gravity.	2	

	3	

Figure	15	The	first	split	time	on	the	a-i	plane	with	1𝜎	 gravity	uncertainty	of	6.3´10-4	
5	and	the	SRP	at	 3 × 10I�.	5	

4.4	Numerical	integrations	and	uncertainty	propagation	6	

To	validate	the	dynamical	structure	of	both	Fig.14	and	Fig.15,	the	same	sample	orbits	7	

from	Fig.5	are	propagated	numerically.	Their	initial	conditions	can	be	found	in	Table	8	

1.	As	shown	in	Fig.16,	for	orbits	A	and	E,	the	SRP	significantly	perturbs	their	orbital	9	

evolutions	 from	 the	 profiles	 obtained	 considering	 only	 the	 irregular	 gravity.	 For	10	

retrograde	 orbit	 A,	 the	 large	 SRP	 stabilizes	 the	 unstable	motion	 perturbed	 by	 the	11	

irregular	 gravity	 field	 in	 the	 close	 vicinity	 of	 the	 asteroid,	 by	 resisting	 the	 large	12	

variations	of	e	and	i	and	bounding	their	variation	amplitudes.	For	the	prograde	orbit	13	

E,	the	large	SRP	brings	about	large	variations	to	e	and	i,	though	the	variation	of	a	is	14	

the	smallest.	In	addition,	the	obvious	deviations	of	the	evolution	with	SRP	from	those	15	

without	SRP	happen	approximately	at	t=200	for	orbit	A	and	at	about	t=60	for	orbit	E.	16	

All	 these	 phenomena	 indicate	 that	 the	 low-altitude	 retrograde	 motion	 is	 less	17	

influenced	by	the	SRP	and	is	relatively	more	stable	to	the	SRP	perturbation	than	the	18	

prograde	motion.	 	19	
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	1	

	2	
Figure	16	Evolutions	of	elements	a,	e,	i	for	orbits	A	and	E	from	the	deep	blue	region	of	3	

Fig.14.	 The	 red,	 blue	 and	 green	 lines	 represent	 the	 dynamics	 considering	 only	4	

irregular	gravity,	small	SRP	and	large	SRP,	respectively.	5	
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	1	

	2	
Figure	 17	 The	 distance	 to	 Stein	 of	 the	 center	 trajectory	 (red	 solid	 line),	 the	 MC	3	

simulations	(black	solid	lines)	and	the	estimated	bounds	(green	and	pink	dash	lines)	4	

for	orbits	A	and	E	including	the	SRP	perturbation.	5	

The	robustness	of	the	sample	orbits	is	also	investigated.	In	the	first	two	subplots	of	6	

Fig.17	the	evolutions	of	the	distances	to	Stein	of	orbits	A	and	E	are	obtained	with	the	7	

MC	 simulation	 using	 100	 samples	 generated	 from	 the	 given	 uncertainties	 of	 the	8	

irregular	gravity	and	the	SRP.	From	the	scope	of	the	black	lines,	it	is	obvious	that	the	9	

retrograde	orbit	E	is	more	robustness	than	the	prograde	orbit	A,	especially	for	longer	10	

time.	 In	 particular,	 at	 t=60,	 the	 bounds	 of	 the	 distance	 of	 the	 prograde	 orbit	 are	11	

between	0.5	 and	3.5,	whereas	 those	of	 the	 retrograde	orbit	 are	 extremely	narrow.	12	

Moreover,	in	the	last	two	subplots	of	Fig.17	the	lower	bound	(pink	line)	and	the	upper	13	

bound	(green	 line)	estimated	from	the	Taylor	expansion	are	also	given	for	the	two	14	

orbits	before	significant	overestimations	occur.	It	is	seen	that	they	coincide	well	with	15	

the	bounds	of	the	corresponding	MC	simulations	for	both	orbits,	and	therefore	can	16	
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provide	 a	 fast	 and	efficient	 estimation	of	 the	uncertainty	 set	 as	 long	as	 the	Taylor	1	

expansion	meets	the	required	accuracy.	2	

	3	

	4	

Figure	18	The	evolutions	of	orbital	eccentricity	of	sample	orbits	B,	C,	D	F,	G,	H	and	I.	5	

The	 red,	 blue	 and	 green	 lines	 represent	 the	 dynamics	 considering	 only	 irregular	6	

gravity,	small	SRP	and	large	SRP,	respectively.	7	
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For	 the	 other	 sample	 orbits	 in	 Fig.15,	 the	 evolutions	 of	a	 and	 i	 are	 relatively	 less	1	

affected	by	 the	SRP	 than	 the	evolution	of	e.	Therefore,	only	 the	evolutions	of	e	 are	2	

given	in	Fig.18.	For	both	the	retrograde	and	prograde	orbits,	the	blue	and	red	lines	are	3	

very	close	to	each	other	especially	 for	 low-altitude	orbits,	 indicating	again	that	the	4	

small	SRP	has	very	limited	effects	on	the	motion.	Generally,	the	deviations	of	the	green	5	

lines	become	larger	with	the	increase	of	the	semi-major	axis.	In	other	words,	the	large	6	

SRP	has	significant	impact	on	the	high-altitude	orbits,	which	explains	the	appearance	7	

of	new	blue	regions	in	Fig.15	when	compared	with	Fig.5.	In	addition,	it	is	seen	that	8	

the	closer	the	orbital	motion	to	the	asteroid	is,	the	larger	the	variation	of	e	becomes.	9	

In	 particular,	 for	 orbits	 B	 and	 F,	 the	 mean	 value	 of	 their	 oscillating	 eccentricities	10	

increases	with	time	and	approach	almost	0.12	as	a	result	of	the	highly	nonlinear	and	11	

perturbative	dynamics.	For	orbits	C	and	G	with	relatively	 larger	a,	 their	oscillating	12	

eccentricities	are	bounded	within	0.08.	For	orbits	D	and	H	with	the	largest	a	among	13	

all	the	sample	orbits,	their	eccentricities	are	bounded	to	be	less	than	0.05	at	the	end	14	

of	the	integration.	15	

	 	 Specifically,	by	comparing	the	retrograde	orbit	B	with	orbit	C,	orbit	C	has	a	larger	a	16	

and	 its	 eccentricity	 reaches	 0.08	 at	 about	 t=175	when	 the	 eccentricity	 of	 orbit	 B	17	

reaches	0.06.	There	is	a	larger	eccentricity	deviation	on	orbit	C	for	large	SRP.	All	the	18	

above	results	show	that	orbit	B	has	slightly	better	stability	than	orbit	C	though	their	19	

semi-major	axes	are	close	to	each	other	in	Fig.5.	In	fact,	this	is	the	transition	region	20	

where	the	SRP	begins	to	dominate	over	the	irregular	gravity,	which	is	also	indicated	21	

by	the	more	splits	in	the	SRP	direction	than	those	in	the	C22	direction	of	the	orbit	with	22	

a=2.2	in	Fig.	13.	In	addition,	for	both	orbits	D	and	E	with	the	same	a=3,	the	large	SRP	23	

does	have	obvious	effects	on	both	the	retrograde	and	the	prograde	motions,	though	24	

the	 deviation	 is	 slightly	 larger	 for	 the	 prograde	 ones.	 This	 is	 probably	 due	 to	 the	25	

relatively	better	stability	of	the	retrograde	orbit	to	perturbations.	This	coincides	with	26	

the	conclusion	that	the	stability	of	the	middle-	and	high-altitude	retrograde	motion	27	

cannot	 be	 retained	 given	 the	 large	 SRP	 perturbation	 [22].	 For	 orbit	 I	 from	 the	28	

yellow/stable	region	in	Fig.15,	although	its	eccentricity	varies	up	to	about	0.18,	it	is	29	

very	robust	to	the	SRP	perturbation	as	there	is	almost	no	deviations	among	the	green,	30	
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blue	 and	 red	 lines.	 Its	 eccentricity	 just	 oscillates	 due	 to	 the	 effect	 of	 the	 irregular	1	

gravity,	without	the	tendency	of	secular	increase.	2	

	 	 In	summary,	the	stability	of	high-altitude	orbits	is	affected	by	the	SRP	in	the	sense	3	

that	 the	 stable	 region	 in	 the	 a-i	 plane	 shrinks	 with	 the	 increasing	 SRP	 strength,	4	

especially	 in	 regions	 with	 large	 values	 of	 a.	 The	 variation	 of	 eccentricity	 of	 the	5	

unstable	orbit	is	increased	by	the	SRP	perturbation	for	high-altitude	unstable	orbits.	6	

On	the	other	hand,	for	the	simulated	unstable	orbits	extremely	close	to	the	asteroid,	7	

the	SRP	perturbation	is	capable	of	preventing	the	eccentricity	from	increasing	to	large	8	

value.	 	9	

	10	
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	1	

Figure	 19	 The	 distance	 to	 Stein	 of	 the	 center	 trajectory	 (red	 solid	 line),	 the	 MC	2	

simulations	(black	solid	lines)	and	the	estimated	bounds	(green	and	pink	dash	lines)	3	

with	an	integration	time	of	t=400	including	the	SRP	perturbation,	4	

The	 bounds	 of	 the	 distances	 to	 Stein	 of	 these	 sample	 orbits	 together	 with	 the	5	

corresponding	MC	simulations	are	given	in	Fig.19.	By	comparing	with	the	same	orbit	6	

in	 Fig.18,	 it	 is	 found	 that	 the	 extent	 of	 the	 bounds	 or	 the	 robustness	 of	 the	 orbit	7	

coincides	with	the	evolution	of	its	orbital	element	e.	Specifically,	if	the	evolution	of	e	8	

with	a	large	SRP	deviates	more	from	that	without	the	SRP,	e.g.	orbits	D	and	H,	their	9	

bounds	in	Fig.19	show	larger	ranges	than	the	other	orbits.	For	orbit	C,	the	deviation	10	

of	its	e	for	large	SRP	becomes	large	after	about	t=200	in	Fig.18,	from	when	the	bounds	11	

of	orbit	C	also	shows	similar	tendency	and	expands	significantly	with	time	in	Fig.19.	12	

For	 the	most	 stable	 orbit	 I,	 its	 bounds	 remain	 extremely	 narrow	 along	with	 time,	13	

indicating	its	strong	robustness.	 	14	

	 	 The	studies	above	 indicate	 that	 the	 first	split	 time	of	 the	ADS	can	be	used	as	an	15	

indicator	to	detect	dynamical	structures	of	the	nonlinear	dynamics,	which	are	directly	16	

related	 to	 the	 stability,	 robustness	 and	 boundedness.	 In	 addition,	 these	 dynamical	17	

structures	are	obtained	by	the	process	of	uncertainty	propagation,	which	is	different	18	
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from	other	dynamical	indicators.	In	particular,	for	small	body	missions,	the	stability	1	

and	 robustness	 of	 the	motion	 is	 required	 if	 the	 duration	 of	 free	motion	 arcs	 (i.e.	2	

without	 maneuvers)	 can	 meet	 the	 requirements	 (e.g.	 the	 bounds	 of	 the	 state)	 of	3	

scientific	observations	or	the	accuracy	requirements	for	radio	or	laser	tracking	and	4	

navigation	[20].	The	ADS	can	serve	as	a	useful	tool	to	identify	this	kind	of	motion	even	5	

if	the	uncertainties	that	are	unavoidable	in	real	missions	are	considered.	 	 	 	6	

4.5	The	split	history	of	the	state	flow	with	SRP	 	7	

Fixing	the	SRP	perturbation	at	the	value	of	 3 × 10Ig,	and	for	the	same	initial	orbit	8	

and	the	same	propagation	time	as	those	in	Section	3.4.5,	the	evolutions	of	a	and	e	of	9	

the	whole	set	of	split	trajectories	are	given	in	Fig.20.	It	can	be	seen	that	the	first	split	10	

time	is	nearly	the	same	as	that	of	Fig.11,	as	the	perturbation	of	the	irregular	gravity	11	

still	dominates	the	region	close	to	the	asteroid.	Similarly,	intensive	splits	occur	at	the	12	

bottom-right	corner,	 i.e.	when	the	motion	 is	close	to	the	body	and	the	effect	of	 the	13	

highly	 nonlinear	 dynamics	 is	 intensified	 along	with	 time.	 However,	 there	 are	 297	14	

splits	in	total,	which	are	much	more	than	those	of	Fig.11	especially	for	t	>	85.	This	15	

indicates	 that	 the	 SRP	 still	 plays	 a	 long-term	 role.	 It	 is	 also	 found	 that	 this	16	

phenomenon	is	enhanced	with	the	increase	of	the	magnitude	of	the	SRP	perturbation.	 	17	

18	
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	1	

Figure	20	The	evolutions	of	a	and	e	for	the	orbit	integrated	with	the	ADS	(black)	and	2	

numerical	integrations	(red)	with	 𝑎�ml =	 3 × 10Ig.	3	

5. Conclusions	4	

This	work	 contributes	 to	 exploring	 the	 idea	 of	 using	ADS	 to	 detect	 the	 dynamical	5	

structure	of	a	nonlinear	dynamical	system	by	considering	model	uncertainties.	First,	6	

ADS	is	demonstrated	to	be	capable	of	detecting	the	dynamical	structure	of	a	simple	7	

pendulum	model.	 Taking	 the	 asteroid	 Stein	 as	 an	 example,	 ADS	 is	 applied	 to	 the	8	

orbital	 motion	 around	 a	 small	 body,	 considering	 the	 uncertainties	 from	 both	 the	9	

asteroid’s	gravity	and	the	SRP.		10	

	 	 The	dynamics	are	 found	to	be	more	sensitive	 to	 the	uncertainty	of	 the	C22	 term	11	

when	compared	with	the	C20	term.	From	the	map	of	the	first	split	time	on	the	a-i	plane,	12	

it	 is	found	that	the	motion	is	very	sensitive	to	the	uncertainties	of	the	gravity	field	13	

when	it	is	close	to	the	asteroid.	Generally,	the	retrograde	motion	is	relatively	more	14	

stable	than	the	prograde	one,	especially	for	low-	and	middle-	altitude	orbits	when	the	15	

irregular	 gravity	 dominates	 the	 dynamics.	 For	 high-altitude	 motion,	 both	 the	16	

retrograde	 and	 prograde	 motions	 are	 highly	 perturbed	 by	 the	 SRP	 and	 are	17	

significantly	affected	by	its	uncertainty.	These	conclusions	are	validated	by	the	global	18	

contour	 maps	 of	 the	 first	 split	 time	 of	 ADS	 on	 the	a-i	plane	 and	 several	 specific	19	

examples.	Also,	the	bounds	estimated	from	the	Taylor	expansion	coincide	well	with	20	

the	MC	simulations	as	long	as	the	expansion	meets	the	accuracy	requirement.	This	21	

fast	estimation	of	bounds	provides	valuable	information	to	select	trajectories	that	are	22	

sufficiently	robust	to	uncertainties.  23	
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For	future	work,	the	methodology	presented	in	this	paper	can	be	extended	to	other	1	

potential	uncertainties	of	the	model	parameters	and	the	uncertainties	of	the	initial	2	

state	and	the	maneuvers.		3	

	4	

Appendix 5	

The	normalized	and	non-zero	coefficients	of	the	4th	order	gravity	field	of	Stein	[2]	6	

Stein	

C20	 -9.78×10-2	 C33	 -3.55×10-4	 C42	 -8.55×10-4	

C22	 1.32×10-2	 S31	 1.23×10-3	 C43	 -1.79×10-5	

C30	 1.37×10-2	 S32	 -1.08×10-4	 S41	 -2.03×10-4	

C31	 1.99×10-3	 S33	 -1.04×10-3	 S42	 -1.27×10-4	

C32	 7.18×10-4	 C40	 2.52×10-2	 S43	 -7.64×10-6	

-	 -	 C41	 -2.96×10-4	 S44	 -1.36×10-5	

	7	
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