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Manufacturing systems are subject to continuous changing conditions, which are due both to external reasons (e.g. changing demand) and to the natural 
system evolution, (e.g. machine degradation, operators’ upskilling). At tactical level, production engineers are challenged to continuously improve the 
system performance. At strategical level, the manufacturing company must monitor the system status and proactively identify reconfiguration actions  
to ensure system fitness to the evolving competitive scenario. A novel Digital Twin based on an analytical model for performance evaluation of 
manufacturing system embedding evaluation of joint parameter variations is introduced. In particular this work concentrates on how tactical decision 
makers can benefit from an integrated system model. The method is proved in a real industrial case in the railway sector.  

Manufacturing systems; Digital Twin; Evolution planning. 

1. Introduction

Manufacturing systems are continuously changing objects 
which resemble living entities [1]. Their overall performance 
depend on the combined effects of the system design and 
operation. The system configuration, which includes the choice of 
resources (machines, buffers, workforce, etc.), represents a 
strategic decision for manufacturing companies. The system 
operation includes tactical and operational decisions, as the 
workforce allocation, the machines availability, the production 
planning strategy [2].  

Changing the system configuration is less frequent, while 
tactical decisions belonging to different production areas are 
continuously taken and optimized according to evolving 
operating conditions [2]. For instance, maintenance operators 
may gain experience in the job after some time, and therefore the 
repair time decreases. This results in higher system availability, 
which should be properly exploited by the production planning 
strategy. In other cases, a machine may degrade, i.e. stoppages 
occur more frequently, which requires either to change process 
parameters such as the production speed (if possible), or to 
increase the system availability by reducing non-productive times 
as set-ups, in order to keep the same system productivity, or even 
increase it [3]. The joint effect of decisions belonging to various 
production areas which are traditionally considered in isolation, 
as logistics, maintenance and quality, is difficult to predict. More 
in general, manufacturing companies are continuously facing the 
challenge of operating their manufacturing processes and 
systems in order to deliver the required production rates of high 
quality products, while minimizing the use of resources [4] and 
keeping it sustainable [5]. 

When tactical decisions are not sufficient to cope with the 
situation in an effective way, strategical decisions should be 
considered, e.g. new machines should replace the obsolete ones, 
or buffer capacities should be acquired, or new operators should 
be hired and trained. Tactical and strategical decisions depend 
also on the corporate culture [6], as well as on the context of the 
market sector the manufacturing company operates in, which is 
hard to capture in models for decision support [7]. Tactical and 
strategical decisions also depend on the ability and expertise of 
decision-makers, as production managers, manufacturing system 
engineers, continuous improvement managers, which makes the 

decisional structure more hierarchical than those decisional 
structures which can be encountered at operational level [8]. 
At operational level, Digital Twins (DT) have been proven to be 
useful in supporting the evaluation and control of manufacturing 
entities. According to  [9], ‘a DT is the digital representation of a 
unique asset […] that compromises its properties, condition and 
behaviour by means of models, information and data’. DT can be 
used to digitally represent products [10], single-stage machines 
or processes [11], or, less often, multi-stage manufacturing 
systems [12]. When DT are used to model single or multi-stage 
systems, the design elements of DT [13] is fundamental and 
includes the definition of suitable data architectures capable of 
following the DT during its life-cycle [14]. This is particularly 
relevant when DT is integrated into in-process control loops, as 
presented in [16] for process quality improvement. Using DT for 
decision support, together with predictive engineering [15], leads 
to the capability of proactively address changes by exploring 
possible future scenarios and choosing the best available option 
that optimizes target objectives. 

This work explores the use of a novel model-based DT in a 
decision support framework to address tactical decisions for the 
responsiveness and continuous improvement of manufacturing 
systems throughout the system life-cycle. At the same time the 
model supports the identification of situations in which the 
strategic decisions become necessary. Indeed the advantage of 
having a unique and comprehensive model for the performance 
evaluation and joint parameter variation of the manufacturing 
system, based on data gathered from the real operating system, is 
shown in particular when tactical, but also strategical decisions 
are to be considered.  

The paper is organised as follows: the proposed methodology 
is presented in Section 2; in Section 3 a real case is introduced 
and discussed with respect to the problem formulation; 
conclusion and future research are discussed in Section 4.  

2. Methods 

2.1. Outline of the methods 

The proposed method is depicted in Figure 1 and can be 
applied to any manufacturing system where the System Digital 
Twin (SysDT) is based on the Markovian representation of the 



system resources and their interactions. The resulting parametric 
analytical model is based on continuous updated information 
from the shop-floor, i.e. log of alarms and repairs coming from 
different sensors of the machines to update the estimate of failure 
times (f) and  repair rates (r), as well as product tracking time-stamps 
to estimate the processing rates (m) of the various resources. In this 
way, the digital counterpart SysDT is continuously aligned with the real 
system. 
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Figure 1. Outline of the method 

From MES and ERP systems additional information about the 
operation and management of the line are gathered, as illustrated 
in the software architecture presented in [17]. On the basis of the 
data and on the basis of the analytical formulation, the SysDT can 
predict not only the performance of the current configuration, but 
embeds an extremely fast comprehensive evaluation of the 
change of performance deriving by any modification affecting the 
operating conditions of the system. This evaluation  is obtained 
by means of a map of performance hyperplanes obtained from 
the first-order analytical derivatives of the performance, which 
guide the optimization method in promising search areas. In 
these areas, new hyperplanes are then calculated to refine the 
performance estimate and lead to a precise selection of the new 
optimal conditions: 
 At tactical level, the user, e.g. the production engineer who 

manages the continuous improvement, can evaluate the effect 
of improvement actions on the current system performance, by 
exploiting the SysDT. Optimization problems based on linear 
programming can be solved within the framework thanks to 
the performance hyperplanes which are added as constraints 
to the problems. Also the DSS signals to the manager when a 
system reconfiguration would be more cost effective than 
insisting on local improvements. 

 At strategical level, the SysDT thanks to the updated map of 
hyperplanes spanning the whole combined parameter domain, 
allows to evaluate the effect of specific system reconfigurations 
and therefore to identify focused and effective reconfiguration 
actions not changing the overall system architecture (if the 
system architecture is changed, however, a new parametric 
model must be created). 

This work focuses in particular on the tactical level. Indeed, the 
tactical user must cope with the day-by-day system operations, 
and take decisions to keep the system running in the most 

efficient way, by dynamically adjusting the actions to the 
changing system conditions and by reacting to disruptive events. 

2.2. The novel SysDT for the performance evaluation and analysis 

The parametric model of the SysDT is based on a stochastic 
analytical model for performance evaluation of manufacturing 
systems, where for each buffer k of the system a representation of 
the whole system centred on that buffer is given. In each 
representation, the buffer level is represented by the continuous 
variable xk and the possible combinations of system states, as 
seen by the considered buffer k, are represented by the vector Sk. 
The transition rates among the various states are contained in the 
matrix Qk. On the basis of this information, the method described 
in [18] allows to calculate the vector of probability density 
functions f(xk,Sk), which can be expressed as 

(1) 

Where: 
 Ak and Γk are the eigenvectors and eigenvalues of the matrix Qk; 
 Ck is a vector of constants depending on the system dynamics. 
Basing on the various functions f(xk,Sk) it is possible to evaluate 
the steady-state probabilities of the whole system, and to derive 
the performance measures as the throughput th and the average 
buffer levels. The advantage of using an analytical model is that 
the explicit relation between input parameters and output 
performance can be obtained. Equation (1) can be differentiated 
with respect to the generic system parameter d 

(2) 

From Equation (2), the vector of partial derivatives of the 
throughput with respect to the set of parameters can be obtained 

(3) 

The partial derivatives are then used to write the first-order 
approximation of the throughput (hyperplane) with respect to the 
combined set of system parameters. The advantage of using the 
analytical derivatives is that each hyperplane is obtained with a 
single evaluation. In this way, it is possible to avoid the calculation 
of the derivatives by means of finite differences; indeed, this 
normally results in a reduction of computational time of more than 
one order of magnitude, especially when the number of parameters 
is very high as in real systems. 
Since performance measures such as system throughput do not 
depend linearly on the system parameters, linear approximations 
must be calculated in different points. The envelop of these 
different first order approximations represent a piecewise linear 
approximation of the performance.  

Notation 
k Production stage k=1,…,K   
th System throughput  
nk Capacity of buffer k  
mk Processing rate of stage k, m=1/CT 
rk Repair rate of stage k, r=1/MTTR where 

MTTR = Mean Time to Repair 
fk Mean Time to Failure of stage k 
δth/δnk Partial derivative of throughput with 

respect to capacity of buffer k  
δth/δmk Partial derivative of throughput with 

respect to production rate of stage k  
δth/δrk Partial derivative of throughput with 

respect to repair rate of stage k 
δth/δfk Partial derivative of throughput with 

respect to Mean Time to Failure of stage k 



To exemplify, the piecewise linear approximation of the 
throughput of a manufacturing line with respect to the capacity n 
of one of its buffers, is shown in Figure 2. 

Indeed, once the first order derivative of the throughput with 
respect to the buffer capacity is known in a certain point (th0,n0), 
the tangent line in that point can be written as: 
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(4)

Figure 2. Throughput as a function of buffer capacity with first-order 
linearization. 

As it can be seen, even few lines are able to capture very well 
the shape of the curve which in turn represents many system 
configurations. Since the analytical model allows to 
mathematically obtain  the partial derivatives of the throughput 
with respect to all the parameters characterizing the system, it is 
possible to write the first-order approximation of the throughput 
with respect to all the system parameters and calculate the 
tangent hyperplanes in the n-dimensional space of system 
parameters: 

(5) 

The key features of the resulting piecewise linear approximation 
of the performance are  
 it captures the performance of an extremely large set of

alternative systems 
 it can be used in linear optimization models [19]. 
Therefore, each time the MES and IIoT systems identify new system 
conditions, e.g. degraded machine, improved cycle time, change in 
the product flow, the DT adds the corresponding tangent 
hyperplane to the collection of hyperplanes already calculated. The 
set of hyperplanes are used by DSS tools at tactical level for the 
optimal selection of responsive actions and at strategical level for 
the proactive identification of improvement directions. 

3. Real case study: a railway company 

3.1. Description of the multi-stage manufacturing system 
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Figure 3. Multi-stage machining department. 

The proposed method has been applied to a manufacturing 
company producing axles for the railway sector. The axles are 
produced from carbon steel and low alloyed steel. The overall 
production is carried out in  different departments  [20]. In this 

work the focus is on the machining department, which is 
graphically represented in Figure 3. Numerical parameters are 
omitted and numerical results have been scaled for privacy.
 The operations performed in the machining department are rough 

turning, finish turning and stone grinding. There are two parallel 
lines, which are called line 1 (L1) and line 2 (L2). L1 is a new 
automatic production line with limited buffers between stations, in 
which the handling is performed by an automated gantry system, 
transferring the axles from one station to the next one and finally 
to the inspection station which is fully integrated in the line. L2 is 
older, but functionally it performs almost the same operations, 
while the loading and unloading are carried out by hoist cranes 
with manual intervention. Large buffers are allowed between 
stations in L2, with parts stored on the floor. Inspection 
operations, i.e. 100% ultrasonic testing (UT) and magnetic particle 
inspection (MPI) are carried out on the axles coming from L1, L2. 
Given the space in the automated  buffer between L1 and 
inspection (buffer capacity = 2), lines may occur in blocking. In the 
future the size of the automatic buffer will be increased but for the 
moment the policy is that operators create extra buffer space by 
unloading parts to avoid blocking of the lines and reloading them 
when the lines stop due to failures or setups. 

 A part tracking system, together with Industrial Internet of Things 
(IIoT) distributed sensor network allow the data gathering from 
multiple sources, i.e. machines cycle time, failures occurrence, 
repair times, as well as buffer levels and axles current location. 

 Operators with different skills and roles are allocated to the 
lines. Those supervising L1 are in charge of minor maintenance 
activities on the line, the set-up of the stations for product 
changes, and the manual unloading and reloading of the final 
buffer to manage the flow of parts. Operators in L2 are in 
charge of the machining operations, minor maintenance, and 
axles handling to the inspection station. 

 The machining department follows the production plans 
decided by the planning department. Production lots are 
assigned weekly to the two lines. The number of axles in each 
lot is quite variable, and the availability of the lines depends on 
the number of required set-ups. 

3.2. Challenges for the production manager 

The production manager of the machining department is 
responsible for the operations and continuous improvement of the 
lines. In the short-term, i.e. in the day-by-day routine, he has the 
goal of attaining the throughput required by the production plan. 
The operational flexibility which the production engineering 
manager can use includes a wide set of alternatives as the 
prioritization of axles from the two lines at the inspection station; 
the re-allocation of the operators to the tasks and to the lines, 
according to their skills; the prioritization decision among 
maintenance, set-ups, and unloading operations in L1; the decisions 
on rework or scrapping operations of axles which do not pass the 
inspections, the dynamic definition of the extra buffer space used to 
download the parts from the line. In the medium- and long-term, the 
production engineering manager should ensure the implementation 
of actions for the improvement of the system efficiency and 
productivity. These include the activation of training courses for the 
upskilling of operators, focused work-shops for the reduction of 
repair time, improvement of set-up operations, as well as 
technological actions to avoid machine degradation over time. The 
impact of both tactical and strategic actions on the overall system 
performance is not known a priori. Similarly the impact of 
continuously changing exogenous parameters is hard to predict  The 
manager has to continuously take decisions to cope with the evolving 
situation and the proposed approach provides an important support. 

System data
𝑚 = 𝑚 = 3 𝑝𝑎𝑟𝑡𝑠 𝑠⁄

𝑓 = 300 𝑠;  𝑟 = 0.25 𝑠
𝑓 = 1200 𝑠;  𝑟 = 0.1 𝑠



3.3. Exemplary results 

To exemplify the proposed approach, one of the many decisions to 
be taken by the manager is considered. As seen before, in reality, 
different potential decisions have to be considered together, but for the 
sake of simplicity, only one decision will be analysed in this example.  

Production plans vary from week to week, in terms of total 
planned production and lot sizes. When small lots are planned, 
setups reduce the availability of the machines and keep the 
operators busy, which results, on average, in longer reaction 
times to disruptive events like stoppages. Despite these weekly 
variations, the manager has to reach the target throughput 
required by the plan. He is free to take different actions as 
described before. One of the actions is to download parts from the 
final buffer of L1 to artificially increase its capacity to feed 
inspection which is the bottleneck machine. Figure 5a presents 
one of the results provided by the approach to support the 
production manager. The map shows the piecewise linear 
evaluation obtained by taking a specific section of the 
hyperplanes defined within the proposed SysDT. It shows the 
impact of the buffer capacity (starting from the physical buffer=2 
to larger values obtained by unloading and reloading axles) on 
the throughput of the line for various production plans decided 
by the production planning department. These are approximate 
values to lead further analysis in specific areas. 

Figure 4. Control-point policies and target throughput for the current 
system condition (a) and for future system condition (b). 

When the planned production is high and lots are small (blue 
case in Figure 4), a quite large buffer capacity is needed to satisfy 
the target throughput (n=29). When lot sizes are larger, the 
minimum buffer capacity reduces to n=15. Indeed, the buffer 
absorbs the variability caused by disruptions, which is smaller 
when operators are less busy with setups. At the same time the 
proposed method can be used by the manager to assess medium 
term decisions. For instance the impact of a 25% reduction of the 
repair time of the inspection station (which may require extra 
training and augmented reality tools) would change the day by day 
situation leading to the map of Figure 4b. In particular, small buffer 
capacities would be needed, because the reduction of repair times 

at the inspection station would have the double effect of increasing 
its availability and reducing its variability. This action seems to be a 
quite good step also in view of potential strategical decision of 
reconfiguration of the line in which the capacity of the automates 
buffer might be structurally increased to avoid the manual 
download and reload of axles. 

4. Conclusions and future work 

This paper presents a novel model-based methodology for 
tactical and strategical decisions in manufacturing systems. It is 
shown how complex decisions can be addressed by exploiting a 
unique Digital Twin, which provides both performance evaluation 
and analysis with respect to changing parameters. The proposed 
methodology opens new relevant research questions, as the 
relation among tactical and strategical decisions in evolving 
manufacturing systems, the hierarchical data architecture to 
incorporate advanced models for the single-process evaluation 
and analysis, as well as the integrated optimization of production 
engineering decisions usually treated independently, as 
maintenance, quality and logistics. 

Acknowledgements 

The authors thank Mr. Haritz Iztueta and the CAF company for 
the useful insights to the paper developments. 

References
[1] Monostori, L., & Váncza, J., 2020, Towards living manufacturing systems. 
Procedia CIRP, 93, 323-328. 
[2] Tolio, T. A., & Magnanini, M. C., 2019, The Paradigm of Pit-Stop Manufacturing, 
International Conference on the Industry 4.0 model for Advanced Manufacturing, 
Springer Cham, 35-47.  
[3] Li, X., Nassehi, A., & Epureanu, B. I., 2019, Degradation-aware decision making in 
reconfigurable manufacturing systems. CIRP Annals, 68(1), 431-434. 
[4] Colledani, M., Tolio, T., Fischer, A., Iung, B., Lanza, G., Schmitt, R., & Váncza, J., 2014, 
Design and management of manufacturing systems for production quality, CIRP 
Annals, 63(2), 773-796. 
[5] Váncza, J., Monostori, L., Lutters, D., Kumara, S. R., Tseng, M., Valckenaers, P., & 
Van Brussel, H., 2011, Cooperative and responsive manufacturing enterprises. CIRP 
Annals, 60(2), 797-820. 
[6] Koren, Y., Gu, X., & Freiheit, T., 2016, The impact of corporate culture on 
manufacturing system design. CIRP Annals, 65(1), 413-416. 
[7] Tolio, T., Ceglarek, D., ElMaraghy, H. A., Fischer, A., Hu, S. J., Laperrière, L., 
Newman, S.T. & Váncza, J., 2010, SPECIES—Co-evolution of products, processes and 
production systems. CIRP Annals, 59(2), 672-693. 
[8] Ma, A., Nassehi, A., & Snider, C., 2019, Anarchic manufacturing. International 
Journal of Production Research, 57(8), 2514-2530. 
[9] Stark, R., Kind, S., & Neumeyer, S., 2017, Innovations in digital modelling for next 
generation manufacturing system design. CIRP Annals, 66(1), 169-172. 
[10] Schleich, B., Anwer, N., Mathieu, L., & Wartzack, S., 2017, Shaping the digital twin 
for design and production engineering. CIRP Annals, 66(1), 141-144. 
[11] Wang, J., Ye, L., Gao, R. X., Li, C., & Zhang, L., 2019, Digital Twin for rotating 
machinery fault diagnosis in smart manufacturing. International Journal of 
Production Research, 57(12), 3920-3934. 
[12] Zhang, C., Wang, Z., Ding, K., Chan, F. & Ji, W., 2020, An energy-aware cyber 
physical system for energy Big data analysis and recessive production anomalies 
detection in discrete manufacturing workshops. International Journal of Production 
Research 58(23), 7059-7077. 
[13] Tomiyama, T., Lutters, E., Stark, R., & Abramovici, M., 2019, Development 
capabilities for smart products. CIRP Annals 68(2), 727-750. 
[14] Erkoyuncu, J.A., Fernández del Amo, I., Ariansyah, D., Bulka, D., & Roy, R., 2020, A 
design framework for adaptive digital twins. CIRP Annals, 69(1), 145-148. 
[15] Kusiak, A. (2018). Smart manufacturing. International Journal of Production 
Research, 56(1-2), 508-517. 
[16] Franciosa, P., Sokolov, M., Sinha, S., Sun, T., & Ceglarek, D., 2020, Deep learning 
enhanced digital twin for closed-loop in-process quality improvement. CIRP Annals, 
69(1), 369-372. 
[17] Magnanini, M. C., Colledani, M., & Caputo, D., 2020, Reference architecture for 
the industrial implementation of Zero-Defect Manufacturing strategies. Procedia 
CIRP, 93, 646-651. 
[18] Magnanini, M. C., & Tolio, T., 2020, Restart policies to maximize production quality in 
mixed continuous-discrete multi-stage systems. CIRP Annals 69(1), 361-364. 
[19] Magnanini, M. C., Terkaj, W., & Tolio, T., 2021, Robust optimization of 
manufacturing systems flexibility. Procedia CIRP, 96, 63-68. 
[20] Colledani, M., & Angius, A., 2020, Production quality performance of 
manufacturing systems with in-line product traceability and rework. CIRP Annals 
69(1), 365-368. 

Th
ro

ug
hp

ut

Buffer capacity
a)

2.52
Target throughput
Line throughput

PlannedProduction=200,AvgLotSize=10
PlannedProduction=200,AvgLotSize=60
PlannedProduction=160,AvgLotSize=10
PlannedProduction=160,AvgLotSize=60

Th
ro

ug
hp

ut

Buffer capacity
b)

2.52
Target throughput
Line throughput

PlannedProduction=200,AvgLotSize=10
PlannedProduction=200,AvgLotSize=60
PlannedProduction=160,AvgLotSize=10
PlannedProduction=160,AvgLotSize=60


	00
	MagnaniniTolio_CIRP GA 2021_v3_9_nofigure

