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ABSTRACT This work deals with the statistical analysis of additive noise impact on the space-vector
ellipse parameters used to detect and classify three-phase voltage sags. In fact, since voltage waveforms are
always corrupted by additive noise and harmonics, the space vector is pre-processed through the Discrete
Fourier Transform to extract the power frequency components. Thus, harmonics can be readily discarded, but
additive noise can still have significant impact on the elliptical trajectory of the space vector on the complex
plane. Therefore, by modeling the ellipse parameters (i.e., the shape index and the inclination angle) as
random variables, the related statistical characterization is derived in the paper. In particular, the main results
and the novelty of the paper are given by the analytical derivation in closed-form of the probability density
function, cumulative distribution function, mean value, and variance of the ellipse parameters as functions
of the additive noise variance. Since the ellipse shape index and inclination angle are commonly used to
detect and classify voltage sags, the results derived in the paper are useful for both uncertainty propagation
analysis, and assessment of detection capability in case of voltage dips close to the minimum value defined
in the IEEE Standard 1159. Analytical results are validated through numerical simulation of noisy voltage
sags.

INDEX TERMS Additive noise effects, discrete Fourier transform, frequency-domain analysis, power
quality, space vector ellipse, statistical analysis, voltage sags.

I. INTRODUCTION
A. MOTIVATION
Among all the power quality issues regarding three-phase
power systems, voltage sags, also called voltage dips,
represent a major concern together with supply interrup-
tions [1], [2]. Indeed, according to the IEEE Standard
1159, a voltage sag is a decrease in the RMS voltage of
10-90% of the nominal value for durations from 0.5 cycles
to 1 minute [3]. As the most frequent power quality dis-
turbance, voltage sags can have severe consequences span-
ning from malfunctioning of control system equipment, to
disconnection or loss of efficiency in electric machines. For
this reason, many researchers have focused on the analy-
sis, classification and characterization of voltage sags (e.g.,
[4]–[10]). Not much attention, however, has been devoted to
measurement uncertainty due to the presence of harmonics
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and additive noise. Nevertheless, this point is crucial since
harmonics and noise can affect proper classification and char-
acterization of voltage sags.

B. LITERATURE REVIEW
One of the most effective techniques for real-time detec-
tion and classification of voltage sags is the space vector
approach [11]–[20]. Indeed, starting from the pioneering
work [11], the space vector approach has become popular
for its straightforward geometrical properties. In fact, under
normal operation, the power-frequency component (i.e., the
50/60 Hz component) of the space vector corresponding to
balanced three-phase voltages describes a circular trajectory
on the complex plane. When an unbalanced voltage sag
occurs (i.e., when the voltage drop is not the same for all
the phases), however, the space vector trajectory becomes
elliptical [11]–[18]. In this case, the geometrical parameters
of the ellipse, i.e., the semi-major axis, the semi-minor axis,
and the inclination angle, allow a fast identification of the
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type of voltage sag. In particular, the ratio between the ellipse
axes (i.e., the so-called shape index) detects the onset of
an unbalanced voltage sag, whereas the ellipse inclination
angle identifies the dropped phases in both single-phase and
double-phase dips. An interesting generalization was pro-
posed in [19], [20] where a 3-D polarization ellipse was intro-
duced. The five parameters of the 3-D ellipse were exploited
for both classification and localization of fault voltage sags.

C. CONTRIBUTION AND PAPER ORGANIZATION
As pointed out in several papers, the main drawback of the
space vector approach is that the space vector is normally
corrupted by additive noise and harmonics [11], [14]. In fact,
the ellipse mentioned above is related to the power-frequency
component only. Thus, the space vector must be properly pre-
processed in order to extract relevant information at power
frequency. This can be readily accomplished through the
Discrete Fourier Transform (DFT) which allows efficient
evaluation of the space vector spectrum. Notice that other
interesting transforms could be used for extraction of rel-
evant information from noisy and distorted space vectors
(e.g., orthogonal polynomials in [21], [22]). However, the
derivations proposed in this paper are based on the DFT for
two main reasons. First, the DFT is a common and well-
known tool within the context of power system analysis.
Second, in Section II it will be shown that the statistical
effects of additive noise on DFT coefficients is already a well-
known issue in the relevant literature. Thus, while harmonics
can be effectively discarded through the DFT, the impact of
additive noise at power frequency can be still significant. This
is a crucial point since additive noise at power frequency
affects the estimates of the ellipse parameters for voltage sag
detection and classification. Despite this issue was pointed
out in several papers, a specific analytical investigation of
additive noise effects on ellipse parameters is still missing
in the relevant literature. Therefore, the statistical analysis of
additive noise effects on ellipse parameters for voltage sag
detection and classification is the main objective of this work.
Possible impact of multiplicative noise is not investigated in
this paper.

In particular, the main contribution of this paper is the ana-
lytical derivation of the probability density function, cumu-
lative distribution function, mean value, and variance of the
ellipse parameters as functions of the additive noise level. The
importance of the presented results is twofold. First, complete
uncertainty analysis of the ellipse parameters allows proper
classification of voltage sags by improving the decision-
making process. Second, the impact of additive noise on
detection of voltage sags is described in probabilistic terms.

The paper is organized as follows. In Section II the main
properties of the DFT of a noisy and distorted space vector are
described. In Section III the ellipse parameters for voltage sag
detection and classification are defined in terms of the power-
frequency DFT coefficients of the space vector. In Section IV
the statistical analysis of the additive noise impact on ellipse
parameters is presented. In particular, the statistical properties

of the ellipse shape index and inclination angle are derived in
closed form. In Section V the analytical results are validated
through numerical simulations of noisy space vectors with
elliptical trajectory, whereas in Section VI real data recorded
by DOE/EPRI are used for further validation. Finally, the
main results of the paper are summarized and discussed in
Section VII.

II. FOURIER ANALYSIS OF VOLTAGE SPACE VECTOR
Space vector definition is based on the time-domain Clarke
transformation of the phase variables in a three-phase circuit.
The Clarke transformation

[
vαvβv0

]T of the phase voltages
[vavbvc]T is given by [23]: vαvβ

v0

 = T

 vavb
vc


=

√
2
3

 1 −1/2 −1/2
0

√
3/2 −

√
3/2

1/
√
2 1/

√
2 1/

√
2

 vavb
vc

 (1)

where T is an orthogonal matrix, i.e., T−1 = T t .
The corresponding space vector is defined as the complex-

valued time-domain function given by [24], [25]:

v (t) = vα (t)+ jvβ (t) =

√
2
3

(
va + avb + a2vc

)
(2)

where a = ej2π/3.
Under sinusoidal steady-state conditions with angular fre-

quencyω0 it can be shown that the space vector can be written
as:

v (t) = Vpejω0t + V ∗n e
−jω0t (3)

where Vp and V ∗n are the positive-sequence and the negative-
sequence (complex conjugate) phasors, according to the well-
known symmetrical component transformation [26]:VpVn

V0

 = S

VaVb
Vc

 = 1
√
3

 1 a a2

1 a2 a
1 1 1

VaVb
Vc

 (4)

where S is a unitary matrix, i.e., S−1 = S∗t .
Notice that (3) can be advantageously interpreted as

a double decomposition of the space vector, i.e., the
positive/negative-sequence decomposition, and the frequency
decomposition in two spectral lines located in ±ω0. Thus,
Vp and V ∗n can be seen as the complex Fourier coefficients
corresponding to the sinusoidal steady-state, i.e., V1 = Vp
and V−1 = V ∗n . Contrary to the case of real-valued time-
domain functions, however, the two Fourier coefficients cor-
responding to ±ω0 are not related each other by complex
conjugation (i.e., V−1 6= V ∗1 ). In fact, since the space vector is
a complex-valued function the two Fourier coefficients V1 =
Vp and V−1 = V ∗n , corresponding to ±ω0, are independent
each other.
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According to the interpretation mentioned above, in the
more general case of distorted steady-state conditions the
space vector can be written in the complex series form [27]:

v (t) =
∑+∞

k=−∞
Vkejkω0t (5)

where Vk and V−k are the positive-sequence and negative-
sequence (complex conjugate) phasors at kω0, respectively.
It can be readily shown that the complex coefficients in (5)

are given by:

Vk =
1
T

∫ T

0
v(t)e−jkω0tdt (6)

where T = 2π/ω0 = 1/f0.
The complex coefficients (6) can be evaluated through the

well-known Discrete Fourier Transform (DFT) of the space
vector samples. By taking Ns samples in one period of v(t)
(i.e., NsTs = T where Ts = 1/fs is the sampling interval), the
complex coefficients (6) are given by:

Vk =
1
Ns
DFT {v (nTs)} =

1
Ns

∑Ns−1

n=0
v (nTs) e−j2πkn/Ns

(7)

Notice that, according to (5), the complex coefficients Vk
given by (7) must be evaluated for both positive and negative
k values, i.e., the bilateral frequency spectrum of v(t) must be
evaluated.

Let us consider now the impact of additive noise on the
evaluation of the coefficients Vk through the DFT (7). In case
the time-domain phase voltages va, vb, vc are corrupted by
additive zero-mean identically-distributed white noise:

van = va + na, vbn = vb + nb, vcn = vc + nc (8)

with variance σ 2
n , from (2) we obtain:

v (t) = vα + nα + j
(
vβ + nβ

)
(9)

where

nα =

√
2
3

(
na −

1
2
(nb + nc)

)
(10)

nβ =
1
√
2
(nb − nc) (11)

Thus, nα and nβ are zero-mean uncorrelated white noise
with variance [28]:

σ 2
α = σ

2
β = σ

2
n (12)

Therefore, the space vector is corrupted by additive noise
with the same characteristics as the additive noise corrupt-
ing the phase voltages. This point allows the use of well-
established results concerning the impact of additive noise
on the DFT coefficients provided by (7). Thus, a noisy space
vector corrupted by additive zero-mean white noise with
variance σ 2

n results in random DFT coefficients where, from
the Central Limit Theorem [28], the real and the imaginary

parts are Gaussian, uncorrelated, unbiased random variables
with equal variance given by [29], [30]:

σ 2
=

1
Ns
σ 2
n . (13)

This is the fundamental result that will be exploited in the
next Sections to derive the probability density functions of the
ellipse parameters generated by a noisy three-phase system.

III. ELLIPSE PARAMETERS FOR VOLTAGE SAG ANALYSIS
Voltage sags in three-phase systems can be effectively char-
acterized in terms of the parameters of the elliptical trajectory
described by the fundamental frequency component (i.e., the
component located at f0) of the voltage space vector. In fact,
under sinusoidal steady-state conditions the space vector (3)
describes an ellipse on the complex plane, characterized by
the following parameters [11]:

rm =
∣∣∣∣Vp∣∣− ∣∣V ∗n ∣∣∣∣ (14)

rM =
∣∣Vp∣∣+ ∣∣V ∗n ∣∣ (15)

ϕ =
1
2

(
arg

(
Vp
)
+ arg

(
V ∗n
))

(16)

where |·| denotes the magnitude, rm and rM are the semi-
minor and semi-major ellipse axes, respectively, and ϕ is the
ellipse inclination angle. Notice that in (16) the difference
between the two phasor arguments would be considered,
instead of the sum, if the negative-sequence phasor was not
conjugated.

Under ideal conditions, the negative-sequence phasor is
equal to zero, and the corresponding space-vector trajectory
is a circle with radius

∣∣Vp∣∣. A circle, with reduced radius with
respect to the nominal voltage, is obtained also in case of
balanced faults of the three phases.

In case of unbalanced faults, however (i.e., faults involv-
ing only one or two phases), the corresponding negative-
sequence component |Vn| > 0 yields an elliptical trajectory
of the space vector (see Fig. 1). A proper parameter able to
detect the elliptical shape of the trajectory is the so-called
Shape Index (SI) defined as [11]–[20]:

SI =
rm
rM
=

∣∣∣∣Vp∣∣− ∣∣V ∗n ∣∣∣∣∣∣Vp∣∣+ ∣∣V ∗n ∣∣ =
∣∣∣1− |V ∗n |

|Vp|

∣∣∣
1+ |V

∗
n |

|Vp|

(17)

By taking into account the types of possible voltage sags,
and by considering that a voltage sag is defined as a decrease
between 10% and 90% of the nominal voltage, in [11]–[20]
the threshold level SI = 0.933 was calculated. Thus, the
condition SI < 0.933 detects an unbalanced fault, and the
ellipse inclination angle ϕ provides the type of unbalanced
fault according to Fig. 2 where single-phase sags are denoted
with S, double-phase sags with D, and the subscripts denote
the dropped phases [11]. Inclination angles in Fig. 2 are
integer multiples of 30◦. Thus, each type of sag is character-
ized by one of the angles in Fig. 2 with uncertainty ±15◦.
For example, a single-phase voltage dip involving phase a
(i.e., Sa) is characterized by ϕ = 90◦ ± 15◦.
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FIGURE 1. Elliptical trajectory of the space vector on the complex plane
in case of unbalanced voltage sag. The ellipse parameters are also
reported in the figure.

FIGURE 2. Ellipse inclination angles for each type of unbalanced dip (i.e.,
S for single-phase and D for double-phase dips) [11]. The angles are
located at integer multiples of 30◦. Therefore, each type of dip is
characterized by an inclination angle within the range n30◦±15◦. For
example, single-phase dip on phase a (i.e., Sa) is characterized by
inclination angle within 90◦±15◦.

As far as noisy and distorted voltagewaveforms are consid-
ered, pre-processing is needed in order to extract the positive
and negative-sequence phasors at the fundamental frequency.
To this aim, the procedure outlined in Section II based on the
DFT can be effectively used to discard harmonic waveform
components, but additive noise has still impact on magnitude
and phase of Vp and V ∗n at ±f0. Of course, as a general
principle, noise impact is larger for spectral components with
smaller magnitude. In the present case, it is expected that
additive noise has large impact around the threshold condition
for SI where the negative-sequence phasor is much smaller
in magnitude with respect to the positive-sequence phasor.
In fact, at the threshold level SI = 0.933, from (17) we
have

∣∣V ∗n ∣∣ /∣∣Vp∣∣ ∼= 0.035. Thus, it is expected that additive
noise has significant impact in the detection of unbalanced
faults (i.e., the condition SI < 0.933), since a large impact is
expected on the small-magnitude negative-sequence phasor.
Moreover, once an unbalanced fault is detected, the incli-
nation angle (16) of the ellipse can be greatly affected by
additive noise since a significant impact is expected also
on the argument of the small-magnitude negative-sequence
phasor.

In the next Section the impact of additive noise on ellipse
shape index and inclination angle will be analyzed by deriv-
ing the probability density function (PDF) and the main
statistical moments of such parameters in terms of the noise
variance.

IV. STATISTICAL ANALYSIS OF ADDITIVE NOISE EFFECTS
The ellipse shape index SI (17) and inclination angle ϕ (16)
can be evaluated from the positive-sequence and the negative-
sequence phasors Vp and V ∗n through the DFT of the space
vector as shown in Section II. Since the space vector is
corrupted by additive zero-mean white noise with variance
σ 2
n (see (9)-(12)) the sequence phasors Vp and V ∗n can be

treated as complex unbiased random variables, whose real
and imaginary parts have Gaussian distribution with variance
(13). For the sake of simplicity, a more compact notation will
be used:

X = Vp = Xr + jXi (18)

Y = V ∗n = Yr + jYi (19)

where the subscripts denote the real and the imaginary parts.
In (17) the absolute values of (18)-(19) are required, i.e.:

x = |X | =
√
X2
r + X

2
i (20)

y = |Y | =
√
Y 2
r + Y

2
i (21)

Therefore, the objective of the statistical analysis can be
reformulated as the PDF of the two functions of random
variables:

SI =
1− y

x

1+ y
x

(22)

ϕ =
1
2

[
arctan

(
Xi
Xr

)
+ arctan

(
Yi
Yr

)]
(23)

As mentioned above, the largest noise impact is expected
for small values of y, i.e., for SI around its threshold limit
0.933 where y � x. Thus, a reasonable approximation is
treating only y as a random variable, while x is treated as

a noise-free variable x = x0 =
√
X2
0r + X

2
0i (where the

subscript 0 denotes the deterministic values corresponding to
zero additive noise). Therefore, (22)-(23) can be rewritten as:

SI ∼=
1− y

x0

1+ y
x0

(24)

ϕ ∼=
1
2

[
arctan

(
X0i
X0r

)
+ arctan

(
Yi
Yr

)]
(25)

The validity of the approximations in (24)-(25) will be
numerically assessed in Section V.

A. ELLIPSE SHAPE INDEX
1) PROBABILITY DENSITY FUNCTION
The PDF of the ellipse shape index given by (24) can be
obtained by resorting to the theorem on transformation of
random variables [28]. The starting point is the Gaussian dis-
tribution with variance (13) of the unbiased random variables
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Yr and Yi. From (21) we obtain that the magnitude y has a
Rice PDF [28]–[30]:

py (y) =
y
σ 2 exp

(
−
y20+y

2

2σ 2

)
I0
(y0y
σ 2

)
(26)

where y0 is the noise-free value of y, and I0 is the modified
Bessel function of the first kind.

In (24) the random variable y is divided by the constant x0.
Thus, the PDF of the new random variable u = y/x0 is given
by:

pu (u) = x0py (x0u) =
x20u

σ 2 exp

(
−
y20 + x

2
0u

2

2σ 2

)
I0
(y0x0u
σ 2

)
(27)

Therefore, the transformation (24) can be written as:

z(u) =
1− u
1+ u

(28)

where z denotes the random variable SI. To the aim of obtain-
ing the PDF of z, the first derivative and the inversion formula
of (28) are needed:

z′ (u) =
dz
du
=

−2

(1+ u)2
(29)

u(z) =
1− z
1+ z

(30)

Therefore, from the theorem on transformation of random
variables the PDF of the ellipse shape index can be obtained:

pSI (z) =
pu (u(z))
|z′ (u(z))|

=
2

(1+ z)2
pu

(
1− z
1+ z

)
(31)

The Cumulative Distribution Function (CDF) of the ellipse
shape index can be also obtained with a similar procedure.
Starting from the CDF of the Rice random variable y:

Py (y) = 1− Q1

(y0
σ
,
y
σ

)
(32)

where Q1 is the first-order Marcum Q-function, the CDF of
the scaled random variable u = y/x0 can be readily obtained:

Pu (u) = Py (x0u) = 1− Q1

(y0
σ
,
x0u
σ

)
(33)

By considering the transformation (28) we have that

1− u
1+ u

< z (34)

when

u >
1− z
1+ z

(35)

Therefore, the CDF of the ellipse shape index is given by:

PSI (z) = 1− Pu

(
1− z
1+ z

)
= Q1

(
y0
σ
,
x0
σ

1− z
1+ z

)
(36)

This result is crucial since, by definition, (36) provides the
probability that the ellipse shape index is smaller than a given

level z (e.g., the SI threshold level). By denoting as SI0 the
noise-free value of the shape index (24), i.e.:

SI0 =
1− y0

x0

1+ y0
x0

(37)

x0 in (36) can be expressed as:

x0 = y0
1+ SI0
1− SI0

(38)

Thus, by considering the threshold value zT = 0.933
for voltage sag detection, from (36) we obtain the detection
probability:

PD = Q1

(
SNR, SNR

1+ SI0
1− SI0

1− zT
1+ zT

)
(39)

where the signal-to-noise ratio (SNR) is defined as:

SNR =
y0
σ

(40)

Finally, for the sake of completeness, themore general case
where the assumption y � x is not met can be considered.
In this case, the random variable u = y/x is not a simple
scaled version of y, but it is the ratio between two random
variables with Rice distribution and equal variance. The PDF
of such ratio is given by [31]:

pu (u) =
2u(

1+ u2
)2 exp

(
−

y20 + x
2
0u

2

2σ 2
(
1+ u2

))

×

[(
1+

x20 + y
2
0u

2

2σ 2
(
1+ u2

)) I0 ( y0x0u

σ 2
(
1+ u2

))

+

(
y0x0u

σ 2
(
1+ u2

)) I1 ( y0x0u

σ 2
(
1+ u2

))] (41)

The numerical convergence of the PDF (41) is more critical
than (27) as the ratio x0y0/σ 2 increases.

The CDF of the random variable u = y/x is given by [31]:

Pu (u) = Q1 (A,B)−
(
σA
x0u

)2

exp
(
−
A2 + B2

2

)
I0 (AB)

(42)

where:

A =
x0u

σ
√
1+ u2

, B =
y0

σ
√
1+ u2

(43)

Equations (41) and (42) can be used in (31) and (36) to
obtain the general expressions for the PDF and CDF of the
shape index SI without the restriction y� x.

2) MEAN VALUE AND VARIANCE
Approximate expressions for the mean value and the variance
of the ellipse shape index can be obtained by resorting to
the Taylor expansion approach [28]. To this aim, the first
and second order derivatives of the transformation (28) are
needed. The first order derivative is given by (29), whereas
the second order derivative is given by:

z
′′

(u) =
4

(1+ u)3
(44)
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Thus, the approximate mean value of the ellipse shape
index is given by:

µSI ∼= z (µu)+
1
2
z
′′

(µu) σ
2
u

=
1− µu
1+ µu

+
2

(1+ µu)3
σ 2
u (45)

where µu and σ 2
u can be readily expressed in terms of µy and

σ 2
y (i.e., the well-known mean value and variance of a Rice

distribution) [32]:

µu =
1
x0
µy =

1
x0
σ

√
π

2
L1/2

(
−

y20
2σ 2

)
(46)

σ 2
u =

1

x20
σ 2
y =

1

x20

(
2σ 2
+y20−

πσ 2

2
L21/2

(
−
y20
2σ 2

))
(47)

where L is the Laguerre polynomial.
The approximate variance of the ellipse shape index is

given by [28]:

σ 2
SI
∼=
(
z′ (µu)

)2
σ 2
u =

4

(1+ µu)4
σ 2
u (48)

where µu and σ 2
u are given by (46)-(47).

B. ELLIPSE INCLINATION ANGLE
1) PROBABILITY DENSITY FUNCTION
From (25) the first step in order to obtain the PDF of the
inclination angle ϕ is the analysis of the random variable
w = Yi

/
Yr . The PDF of the ratio of two Gaussian random

variables with equal variance is given by [31]:

pw (w) =
1

π
(
1+ w2

)exp(− y20
2σ 2

)

+
Y0r + Y0iw

σ
√
2π
(
1+ w2

)3/2 exp
(
−
(Y0i − Y0rw)2

2σ 2
(
1+ w2

) )

×

1− erfc
Y0r + Y0i w√2
σ

√
1+ 1

2w
2

 (49)

where Y0r and Y0i are the noise-free values of Yr and Yi,
respectively, and erfc is the complementary error function.
According to (25) the following transformation of random

variable must be solved:

g(w) =
1
2

(
ϕX0 + arctan(w)

)
(50)

Similarly to the shape index case, the first derivative and
the inversion formula of (50) are needed:

g′ (w) =
dg
dw
=

1
2

1

1+ w2 (51)

w(g) = tan(2g− ϕX0 ) (52)

Thus, according to the theorem on the transformation of
random variables the PDF of the ellipse inclination angle is
given by:

pϕ (g) =
pw (w (g))
|g′ (w (g))|

= 2
(
1+tan2(2g−ϕX0 )

)
pw
(
tan(2g− ϕX0 )

)
(53)

Notice that (53) provides the PDF of the inclination angles
expressed in radians. The PDF for inclination angles in
degrees is given by:

pϕd (gd ) =
π

180
pϕ
( π

180
gd
)

(54)

where gd = g · 180/π .
The CDF of the inclination angle can be obtained by

numerical integration of the PDF (53)-(54).

2) MEAN VALUE AND VARIANCE
Approximate expressions for the mean value and the variance
of the ellipse inclination angle can be obtained by using the
Taylor expansion of (25) with respect to the two Gaussian
random variables Yr and Yi [28]. Thus, the mean value of ϕ
is given by:

µϕ ∼=
1
2

[
arctan

(
X0i
X0r

)
+ arctan

(
Y0i
Y0r

)]
= ϕ0 (55)

where the correction term related to the second-order partial
derivatives is not present since it is null. Therefore, the incli-
nation angle is a random variable with negligible bias.

The variance of the inclination angle can be estimated
through the first-order partial derivatives:

σ 2
ϕ
∼=

(
∂ϕ

∂Yr

)2

σ 2
+

(
∂ϕ

∂Yi

)2

σ 2
=

1

4y20
σ 2
=

1

4SNR2
(56)

Notice that since σ 2
ϕ is a function of the SNR only, it is not

dependent on the nominal shape index SI0.
Finally, it is worth noticing that by removing the assump-

tion y � x, i.e., by treating also Xi/Xr as a random vari-
able in (23), the inclination angle ϕ would be given by the
weighted sum of the two random variables arctan(Xi/Xr ) and
arctan(Yi/Yr ). Thus, the PDF of ϕ would be given by the
convolution of two PDFs [28]. A closed-form analytical result
is not available in the literature. Therefore, the analytical
results derived in this Subsection are limited to the assump-
tion y � x. Numerical simulations, however, will prove that
such assumption leads to reasonably accurate results.

V. NUMERICAL VALIDATION
The analytical results derived in Section IV were validated
by means of numerical simulations in Matlab. The simula-
tion process was implemented according to the following
steps. First, the noise-free values of the positive and negative-
sequence phasors Vp and Vn were selected in order to set
the noise-free value SI0 of the ellipse shape index (37), and
the noise-free value ϕ0 of the ellipse inclination angle (55).
Second, by inversion of the symmetrical component transfor-
mation (4) (with null zero-sequence component) the phasors
of the phase voltages Va, Vb, Vc were calculated. Then, the
corresponding time-domain voltages va(t), vb (t) , vc(t) were
obtained by assuming fundamental frequency f0 = 50Hz.
Each time-domain waveform was corrupted by additive zero-
mean Gaussian noise with variance σ 2

n . Such variance was
selected according to the desired value of the SNR (40), where
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σ is related to σn through (13). The three noisy waveforms
were sampled by taking Ns = 256 samples per period, i.e.,
with sampling frequency fs = Nsf0 = 12.8kHz. Then, accord-
ing to (2), the three waveforms where combined to define the
voltage space vector, and the time-to-frequency transforma-
tion of the space vector (i.e., the DFT (7)) was calculated
through the Fast Fourier Transform. The time window was
one period in length (i.e., the number of processed samples
was Ns). Therefore, the DFT frequency resolution was1f =
fs/Ns = 50Hz. Thus, according to (7), the obtained frequency
coefficients V1 and V−1 were the estimates of Vp and V ∗n ,
respectively. The ratio |V−1| / |V1|, and the arguments of V1
and V−1 were used to evaluate the shape index (17) and
the inclination angle (16). Such evaluations were repeated
N times (with N ≥ 104) by generating new sequences of
random noise added to the time-domain waveforms va(t),
vb (t) , vc(t). Thus, for each selection of the parameters SI0,
ϕ0, and SNR, a set of N realizations of the random variables
SI and ϕ were calculated. Therefore, the statistical properties
of SI and ϕ, i.e., PDF, CDF, mean value and variance, were
numerically evaluated and compared with the corresponding
analytical results obtained in Section IV.

FIGURE 3. Probability density function of the ellipse shape index for
different values of the noise-free shape index SI0. Numerical results (red
lines) are compared with analytical complete (black lines) and
approximate (blue lines) results.

Fig. 3 shows the PDF of the shape index SI with SNR = 3.
Four different values of the noise-free shape index SI0 were
selected, i.e., 0.5, 0.6, 0.7, and 0.8. Numerical results obtained
through the simulation procedure outlined above are repre-
sented by the red lines. The approximate analytical PDF given
by (27) substituted into (31) is represented by blue lines,
whereas the general analytical PDF given by (41) substituted
into (31) is represented by black lines. The objective of this
figure is showing that by increasing SI0 the approximate ana-
lytical PDF (blue lines) provides satisfactory results. Since
we are interested in the case of SI0 approaching the limiting
value 0.933, the approximate analytical PDF can be effec-
tively used. Thus, in the next figures, only the approximate
analytical PDF will be represented.

FIGURE 4. Probability density function of the ellipse shape index for
different values of the signal-to-noise ratio SNR. Numerical results (red
lines) are compared with analytical results (blue lines).

Fig. 4 shows the behavior of the PDF of the shape index
with SI0 = 0.933, and for three different SNR values, i.e.,
3, 6, and 9. By increasing the SNR (i.e., by decreasing the
noise level) the spread of the PDF decreases. Notice that even
for SNR = 9 the shape index can take values around 0.96,
i.e., well above the threshold value 0.933 used to detect a
voltage sag. For SNR = 3 the shape index can take values
even around 1, that is the case where the ellipse becomes a
circle. This is consistent with the fact that SNR = 3 means
y0 = 3σ . Thus, the noisy y can take values even close to
zero.

FIGURE 5. Cumulative distribution function of the ellipse shape index for
different values of the signal-to-noise ratio SNR. Numerical results (red
lines) are compared with analytical results (blue lines).

Fig. 5 shows the CDF of the shape index corresponding
to the PDF shown in Fig. 4. The blue lines represent the
analytical CDF given by (36). The slope of the central part of
the CDF increases with SNR. In fact, by decreasing the noise
level to zero the CDF approaches a discontinuous behavior at
0.933.

VOLUME 8, 2020 185509



D. Bellan: Probability Density Function of Three-Phase Ellipse Parameters for the Characterization of Noisy Voltage Sags

FIGURE 6. Detection probability of the ellipse shape index for different
values of the noise-free shape index SI0. Numerical results (red lines) are
compared with analytical results (blue lines).

Fig. 6 shows the detection probability (39) of a voltage
sag, i.e., the probability that the shape index is lower than the
threshold 0.933, for three different values of SI0, i.e., 0.933,
0.93, and 0.92. For SI0 = 0.933, by increasing the SNR the
PDF peak approaches the location 0.933 (see Fig. 4). Thus,
the detection probability approaches 0.50 for increasing SNR.
For SI0 = 0.93 and SI0 = 0.92, however, the location of the
PDF peak is lower than 0.933. Thus, by increasing SNR the
PDF shrinks and the detection probability approaches 1.

FIGURE 7. Mean value of the ellipse shape index for noise-free shape
index SI0. = 0.933 as a function of the signal-to-noise ratio SNR.
Numerical results (red lines) are compared with analytical results (blue
lines).

Fig. 7 shows the mean value (45) of the shape index, with
SI0 = 0.933, as a function of the SNR. The mean value
approaches SI0 as SNR increases. This behavior corresponds
to the shift of the PDF peak in Fig. 4 as SNR increases. Similar
curves can be obtained for different values of SI0.
Fig. 8 shows the behavior of the standard deviation of the

shape index (i.e., the square root of (48)) as a function of

FIGURE 8. Standard deviation of the ellipse shape index for noise-free
shape index SI0. = 0.933, 0.9, 0.8, as a function of the signal-to-noise
ratio SNR. Numerical results (red lines) are compared with analytical
results (blue lines).

FIGURE 9. Probability density function of the ellipse inclination angle for
different values of the signal-to-noise ratio SNR. Numerical results (red
lines) are compared with analytical results (blue lines).

SNR, for three different values of SI0, i.e., 0.933, 0.9, 0.8.
This figure can be compared with Fig. 3 where it is shown
that, for a given SNR value, the standard deviation increases
for decreasing SI0. This is because both y0 and σ increase to
keep SNR constant.

Fig. 9 shows the behavior of the PDF (54) of the ellipse
inclination angle with SI0 = 0.933 and for three different
values of SNR, i.e., 3, 6, and 9. The selected phases for Vp
and V ∗n were such that the noise-free inclination angle was
ϕ0 = 90◦. Notice that even for SNR = 9 the spread of the
PDF is about ±10◦. This is a crucial point since from Fig. 2
each type of voltage sag can be identified within an angular
range ±15◦ due to circuit parameters. Therefore, the impact
of noise could result in a wrong identification of the type of
voltage sag. Of course, this potential problem is emphasized
for smaller SNR values. For example, SNR = 6 corresponds
to an approximate PDF spread ±15◦, i.e., the same angular
range of each sector in Fig. 2.
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Finally, Fig. 10 shows the behavior of the standard devi-
ation of the inclination angle (i.e., the square root of (56)).
As already pointed out, σϕ is a function of the SNR only (in
the approximate result (56)). Thus, the behavior shown in
Fig. 10 is valid independently of SI0. Notice that, since the
PDF in Fig. 9 are approximately Gaussian, the PDF spread is
approximately ±3σϕ , where σϕ can be read in Fig. 10.

FIGURE 10. Standard deviation of the ellipse inclination angle as a
function of the signal-to-noise ratio SNR. Numerical results (red lines) are
compared with analytical results (blue lines).

VI. VALIDATION WITH REAL DATA
Real data recorded by DOE/EPRI [33] were used for further
validation of the analytical results derived in the paper. In par-
ticular, the event number 0243 was considered. According
to [33] the fault was due to a tree fallen on phase a.

FIGURE 11. Real data voltages and currents recorded by DOE/EPRI, event
number 0243 due to a tree fallen on phase a [33].

Fig. 11 shows the time-domain behavior of voltages and
currents within a time window consisting in five periods
(fundamental frequency f0 = 60Hz). A small decrease in
the magnitude of voltage a (red line) can be observed in the
central part of the time window. Waveforms were monitored
by taking Ns = 16 samples per period. A small number

FIGURE 12. Voltage waveforms in Fig. 11 (solid lines) corrupted by
additive zero-mean Gaussian noise with standard deviation σn = 320V
(dashed lines).

FIGURE 13. Histogram of ellipse shape index for the noisy voltages in
Fig. 12 (N = 105 repeated runs).

of samples per period can be advantageous since real-time
continuous monitoring is needed.

The procedure based on the DFT described in this paper
was used to evaluate the voltage ellipse shape index SI and
inclination angle ϕ in each period. The shape index takes
its minimum value 0.9364 at the third period, and the cor-
responding inclination angle is 77.5◦ (i.e., within the range
90◦ ± 15◦ characteristic of a grounded phase a). Notice
that, according to the choice of a threshold level equal to
0.933, the voltage sag would not be detected. Additive noise,
however, is always present in measured waveforms. Unfor-
tunately, estimate of additive noise level in Fig. 11 is a
hard task since the underlying signal is non-stationary. For
comparison purposes only, we can for example consider the
case of additive noise with SNR = 9, already considered
in Sections IV and V. From the DFT analysis of the third
period of the space vector, we obtain that |V−1| =

∣∣V ∗n ∣∣ ∼=
750V . Thus, from (40) the corresponding frequency-domain
standard deviation is given by σ ∼= 80V . From (13), for
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FIGURE 14. Histogram of ellipse inclination angle for the noisy voltages
in Fig. 12 (N = 105 repeated runs).

time-domain noise we obtain σn = σ
√
N s ∼= 320V . Notice

that a small number of samples per period results in low-
level time-domain noise. Actually, σn must be compared with
the RMS value of the phase voltages, i.e., Vrms ∼= 20

√
2
kV ∼=

14kV . Therefore, since the ratio Vrms/σn ∼= 44, the effect
of time-domain additive noise cannot be clearly observed on
the waveform amplitude. Fig. 12 shows an example of the
three voltage waveforms corrupted by additive zero-mean
Gaussian noise with σn = σ

√
N s (dashed lines). Thus, the

time-domain effect of such noise level seems negligible in
the time-domain. However, in Section IV and V it was shown
that such noise level can produce significant deviations of the
shape index and the inclination angle. To illustrate this point,
and for further validation of the analytical results, a repeated
run analysis (with N = 105) was performed by adding zero-
mean Gaussian noise with variance σ 2

n to the three voltage
waveforms in Fig. 11. The distribution of the shape index
and the inclination angle are represented by the histograms
in Figs. 13 and 14, respectively. The range of the histogram
in Fig. 13 (i.e., 0.91÷ 0.96) is approximately the same range
of the PDF with SNR = 9 in Fig. 4. Thus, noise effect can
result in either detection or no-detection of the voltage sag.
The range of the histogram in Fig. 14 (i.e., 1ϕ ∼= 20◦) is
approximately the same range of the PDF with SNR = 9 in
Fig. 9, with different mean value because this is a function
of circuit parameters. Notice that noise effect can result in
inclination angle outside the characteristic range 90◦ ± 15◦,
producing a wrong identification of the voltage sag type.

VII. CONCLUSION AND DISCUSSION
In this Section, the main achievements obtained in the paper
are summarized and discussed.

The parameters of the elliptical trajectory (i.e., shape index
and inclination angle) of a voltage space vector on the com-
plex plane at power frequency are widely used to detect
and classify three-phase voltage sags. In real applications,
however, the voltage space vector is corrupted by harmonics

and additive noise. Therefore, since the ellipse parameters
refer to the power frequency component only, pre-processing
of space vector is required.

Within the context of power system analysis, the most
common technique for harmonic analysis is the well-known
DFT. It is worth noticing that, for the present analysis, the
DFT was used only to measure the power frequency compo-
nents of the voltage space vector, i.e., the positive-sequence
and the negative-sequence components at power frequency.
Thus, since the ellipse parameters depend only on the power
frequency components, the DFT is used only to isolate the
power frequency components with respect to the harmonic
content. Moreover, in the paper it was assumed that sam-
pling was synchronized with voltage fundamental frequency.
In practice this condition can be achieved by using a closed-
loop measuring system. Indeed, in case of lack of synchro-
nization, windowing of voltage samples (e.g., Hann window)
is required to minimize spectral leakage. In this case the
analytical results derived in the paper hold provided that the
variance (13) is multiplied by the equivalent noise bandwidth
(ENBW) of the selected window (e.g., ENBW = 1.50 for the
Hann window) [29].

Once the power frequency components of the voltage
space vector are measured, the impact of additive noise on
the corresponding DFT coefficients must be evaluated since
such coefficients are used to calculate the ellipse parameters.
Under weak assumptions, regardless the specific distribution
of additive noise, the Central Limit Theorem guarantees that
the real and imaginary parts of DFT coefficients can be
approximated as uncorrelated and unbiased Gaussian random
variables. This is the fundamental starting point of the ana-
lytical derivations presented in the paper. In fact, from this
point, the statistical properties of the ellipse parameters were
derived in analytical form. In particular, the PDF, the CDF,
the mean value, and the variance of the ellipse shape index
and inclination angle were derived as functions of the additive
noise variance. These results allow a complete statistical char-
acterization of the ellipse parameters. To the Author’s knowl-
edge, such statistical characterization was still lacking in the
relevant literature, and therefore a straightforward compari-
son with similar results cannot be accomplished. In Section
V the analytical results were validated through numerical
simulation of the whole measurement process.

The obtained statistical characterization of the ellipse
parameters can be useful for two reasons. First, measured
ellipse parameters can be characterized in terms of uncer-
tainty. In fact, the analysis proposed in the paper can be
regarded as a study of uncertainty propagation. Since ellipse
parameters are used to distinguish and classify voltage sags,
the corresponding uncertainty levels provide the required
information for a proper identification of voltage sag types.
Second, voltage sag detection is conventionally characterized
by shape index SI < 0.933. In case of noisy measurements,
the comparison between the measured shape index and the
threshold level 0.933 can be evaluated in statistical terms,
i.e., in terms of detection probability. To this aim, it is worth
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noticing that, according to (17), the threshold SI = 0.933
corresponds to voltage unbalance

∣∣V ∗n ∣∣ /∣∣Vp∣∣ ∼= 0.035. There-
fore, if a system is working in unbalanced mode (e.g., a dis-
tribution system), then the whole methodology based on the
space vector can be still used provided that the voltage unbal-
ance is lower that 3.5% [34]. For higher voltage unbalance the
whole space-vector approach investigated in [11]–[20] and in
this paper requires further investigation.
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