
 

DIPARTIMENTO DI MECCANICA  POLITECNICO DI MILANO 
via G. La Masa, 1  20156 Milano  EMAIL (PEC): pecmecc@cert.polimi.it  
http://www.mecc.polimi.it 
Rev. 0 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Numerical simulation of particles flow in Laser Metal 
Deposition technology comparing Eulerian-Eulerian and 
Lagrangian-Eulerian approaches  
 
Murer, M.; Furlan, V.; Formica, G.; Morganti, S.; Previtali, B.; 
Auricchio, F.  
 
This is a post-peer-review, pre-copyedit version of an article published in JOURNAL OF 
MANUFACTURING PROCESSES. The final authenticated version is available online at: 
http://dx.doi.org/10.1016/j.jmapro.2021.05.027 
 
This content is provided under CC BY-NC-ND 4.0 license 
 

  
 
 



Numerical simulation of particles flow in Laser Metal
Deposition technology comparing Eulerian-Eulerian and

Lagrangian-Eulerian approaches

Mauro Murera,∗, Valentina Furland, Giovanni Formicab, Simone Morgantic, Barbara
Previtalid, Ferdinando Auricchioa

aDipartimento di Ingegneria Civile e Architettura, Università di Pavia, Pavia, Italy
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Abstract

The present work deals with the numerical prediction of the particle flow within a

three-way nozzle in Laser Metal Deposition (LMD) technology adopted during addi-

tive manufacturing processes. In particular, the paper focuses on CFD (Computational

Fluid Dynamics) simulations of the particle flow problem, regarding the coupling be-

tween a fluid phase, i.e., the carrier gas, and a solid phase, i.e., a metallic material

powder that is delivered through the nozzle of the LMD machine.

Two different numerical approaches are investigated, both implemented in a in-

house code using OpenFOAM open source C++ toolbox. The former is based on a

mixed formulation, combining an Eulerian description of the carrier gas flow with a

Lagrangian description of the particle flow. The latter on a pure Eulerian formulation

of both carrier gas and particles.

In agreement with the experimental evidences, the present work compares the two

approaches in terms of capability of simulating some key physical features of the LMD

process, i.e., the geometrical properties of the powder cone formed out from the nozzle.
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method, laser metal deposition

1. Introduction

Additive Manufacturing (AM) refers to an engineering process in which objects

are built up and then fabricated by means of adding, melting, and solidifying mate-

rial (typically powder or wire) layer by layer, opposed to the subtractive technologies

[1]. Such a process is particularly appropriate to produce complex and near-net shape

geometries due to its high flexibility especially in terms of design. Among several cat-

egories of AM processes, Direct Energy Deposition (DED) is suitable for producing

metal parts via a local (direct) layer by layer deposition of molten metal materials, with

a simultaneous delivery of beam and raw material. More in general, DED processes are

based on the heating and melting of a substrate due to a direct energy source, as well

as the simultaneous melting of raw material (powder or wire) that is deposited on the

substrate. In contrast with techniques of powder bed fusion which melt a material that

is prelaid in a powder bed, DED processes melt materials as they are being deposited

in the so-called melt pool [2]. Depending on the thermal energy source, DED can be

distinguished in Electron Beam Metal Deposition (EBMD), Plasma Metal Deposition

(PMD), and Laser Metal Deposition (LMD). The present work focuses on this latter.

LMD emerged in the modern industry (e.g., aeronautics, automotive, biomedics)

as one of the most important manufacturing technology, due its capability of produc-

ing complex geometries and light-weight components, repairing damaged components,

creating coatings and depositing multi-material and functionally-graded compositions

[3, 4]. Taking into account economical aspects, the LMD technology is attractive es-

pecially in terms of design flexibility and capability in reducing component weight, as

well as in saving time and energy throughout the fabrication process. Material waste

and its recycle may be also considered from a sustainability viewpoint [5].

Due to its nature, LMD is inherently a multi-physics process involving particle

transportation, multiple flow interaction, particles-gas interaction with energy source

and material phase-change (from solid powder to liquid phase and then a solidification

again). The LMD process can be conveniently simplified in three different physical
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phenomena: (i) particles flow inside and outside the nozzle; (ii) interaction between

laser beam and moving powders; (iii) particle deposition, fusion and solidification in-

side the melt pool, partially composed by molten substrate/layer material. The present

work focuses only on the first one, and numerical issues regarding the prediction of the

particles flow and the design optimization of the coaxial nozzle are tackled. The inves-

tigation of the particle flow inside and outside the three-way nozzle is propaedeutic for

the correct prediction of the phenomenon, since the powder delivery at the exit of the

nozzle strongly affects the entire process. The powder flow rate is directly connected

to different factors, which are able to change the geometrical shape of the cone and its

main properties like the waist diameter of the powder and its position. Powder cone

alterations are able to produce a different behavior in terms of material processability.

In this perspective, the simulation of powder delivery up to the nozzle is mandatory to

control the process.

Concerning the numerical methods able to predict the particle flow, the Lagrangian

approach is one of the most commonly used in the literature, due to its ability to work

as particle-tracking method. One of the early work was done by Pan and Liou [6]

who developed a stochastic model that accounts for particle shape effects, in particular

non-spherical collisions through stochastic parameters, and that is able to quickly sim-

ulate realistic powder flow. Once validated with experiments, such a model allows the

authors to evaluate various nozzle geometrical configurations, showing the dispersion

of metallic powder due to the deviation from the sphere-shape in particle morphology.

Such a dispersion evolution plays a key role in the focusability of the powder stream

and powder spatial concentration, and it turns out that width and outer diameter of the

powder outlet passage are important dimensions in the determination of the powder

stream structure. The same authors improved the stochastic model in a subsequent

work [7], where effects of outer shielding gas directions and inner/outer shielding gas

flow rate had been also considered in the model. Zhang et al. [8] conducted a compre-

hensive numerical study that investigates the effect of pressure and nozzle dimension

on particle distribution and velocity in laser cladding systems. They developed three-

dimensional CFD models in ANSYS-FLUENT, solved using a Discrete Phase Mod-

eling (DPM) approach to compute particles acceleration while Navier-Stokes equa-
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tions have been considered to model the inert gas. In particular the authors found out

that during laser cladding processes higher particle velocity and more compact pow-

der flow can be obtained by Helium vacuum environment than using Argon. Along

the same research perspective, similar approaches aiming at optimizing nozzle design

and validating particle flow experimental measurements can be previously found in

[9, 10]. Also [11, 12, 13] have developed numerical strategies based on CFD coupled

with particle-tracking methods to explore how nozzle geometry, powder properties, and

feeding parameters can improve LMD process efficiency.

The last mentioned methods can be framed in a so called Lagrangian-Eulerian for-

mulation – sometimes indicated as CFD-DEM (Computational Fluid Dynamics - Dis-

crete Element Method) – where a Lagrangian approach for the particles solution is

effectively combined with an Eulerian one that is used for the flow solution. An al-

ternative formulation consists of a pure Eulerian framework, namely Eulerian-Eulerian

model, where both particles and flow are treated as Eulerian fluids. While the former

approach has been extensively adopted, the latter has never been considered for simu-

lating LMD processes. Computational advantages/disadvantage of both the approaches

have been explored only in different application fields. To cite a few, we mention tur-

bulent dispersion and coalescence of droplets within a spray [14], particle-laden flows

subject to radiative heating [15], and fluidized bed systems [16].

In [14] both Lagrangian and Eulerian approaches proved to be able to simulate

droplet turbulent dispersion and coalescence for a wide range of droplet and gas flows,

and for sprays from nozzles that produce different droplet-size distributions. Also

the computational time was found to be of similar orders of magnitude, regardless of

which formulation, Eulerian or Lagrangian, is adopted. Yet, in the Eulerian formula-

tion droplet-size class is represented as a continuum with a single velocity at any point

in space, thus limiting wider range of solutions in terms of droplet-size distribution

that Langrangian simulations offer. Similar results were observed in [15], where an

Eulerian moment method was developed as alternative to Lagrangian particle tracking

for solving the disperse phase statistics in thermally two-way coupled system. The Eu-

lerian method, although reproducing accurately equivalent gas phase obtained through

Langrangian simulations, cannot capture more than one velocity per position, and then

4



proves to be not valid when particle trajectory crossing occurs. Finally, in [16] both

the Lagrangian and Eulerian approaches were shown able to predict similar fluidiza-

tion behaviors and bubbling phenomena in the context of solids mixing in gas fluidized

beds. Slight discrepancies was however found in the solid volume fraction distribution,

and severe bed expansions in the initial phases of the process were predicted only by

Lagrangian simulations.

The present paper aims at investigating the LMD printing process through both

Eulerian-Eulerian (EE) and Lagrangian-Eulerian (LE) approaches, and compare them

in terms of computational efficiency, implementation, and physical applicability. To

the authors’ knowledge there are no publications on this topic in the literature. In

particular, performance and accuracy are studied in order to reproduce the shape of

the powder cone outside the deposition head, such as its minimum diameter and its

positioning, which are the key factors commonly evaluated in the experiments. Ther-

mal properties and heat exchange phenomena of the process are not considered in the

present simulations. This is in line with the experimental campaign, our numerical

testing refers to, where no laser sources are employed.

Both the EE and LE approaches are implemented in a in-house code using Open-

FOAM, a C++ toolbox whose language follows an object-oriented paradigm, allow-

ing to develop customized numerical solvers for the solution of continuum mechanics

problems, including CFD [17]. All the numerical outcomes refer to three-dimensional

problems.

The paper is organized as follows: in Section 2 the modeling and numerical fea-

tures for the OpenFOAM implementation are presented and discussed; in Section 3

numerical test are detailed with data concerning the conducted simulation campaign

and, eventually, in Section 4 the numerical results are reported and discussed.
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2. Problem formulation and implementation

As previously mentioned, different CFD approaches can be adopted to model the

physical problem of powder and gas mixture flow during LMD process. From a compu-

tational viewpoint, the crucial issue in terms of efficiency and accuracy is the simulation

of the particles dynamics [18].

Two approaches can be followed to this purpose, both based on an Eulerian for-

mulation. The former is a pure Eulerian approach, namely the Eulerian-Eulerian (EE)

method, where powder and gas are both treated as continuous fluids, and coupled each

other with the Navier-Stokes system of equations. The latter is a mixed approach,

namely a Lagrangian-Eulerian (LE) method, working with a Lagrangian description

of powders as particles that are tracked inside the problem domain, where gas dynam-

ics is simultaneously described as an Eulerian incompressible flow, described by the

Navier-Stokes equations. In particular, in the LE approach, the powder diffusion is

simulated with a Discrete Parcel Method (DPM) [19], that, instead of solving each

individual particle as in the Discrete Element Method (DEM) [20, 21], identifies and

tracks a parcel of particles which moves through the flow field. In other words, the par-

cel is a representative elementary volume of particles, so as to homogenize in a unique

macro-particle all powder properties of such a volume (size, velocity, rotational rate,

etc.).

2.1. Eulerian-Eulerian (EE) approach

In the Eulerian-Eulerian (EE) approach, the powder-particle phase is treated as

an additional continuous phase that interacts with the primary gas-fluid continuous

phase. From now on, we indicate with u and g the velocity and gravity vector-fields,

respectively, and with p the pressure scalar-field. Introducing an index i to indicate

the general phase and assuming i = φ and i = σ for the continuous fluid phase and

the particle solid phase, respectively, the governing equations for the Eulerian-Eulerian

model are the continuity equations for mass conservation (1a), and the momentum
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balances for both continuous phases (1b), i.e.:

∂εi

∂t
+ ∇ · (εi ui) = 0 (1a)

ρi
∂(εi ui)
∂t

+ ρi∇ · (εi uiui) − ∇ · εiτi = −∇(εi pi) + ρiεi g − Fi, j (1b)

where εi describes the volumetric fraction of each phase:

0 ≤ εi ≤ 1 , with εφ + εσ = 1 ; (2)

the phase densities are indicated with ρi, while τi is the stress tensor field of each phase:

τi = νi

(
∇ui + (∇ui)T

)
+

(
λi −

2
3
νi

)
(∇ · ui) δ (3)

νi = µi/ρi being the i-th phase kinematic viscosity, while µi is the corresponding dy-

namic viscosity, and λi is the bulk viscosity, with λi = λσ if i = σ and λi = 0 if i = φ;

δ is the second-order identity tensor.

The term Fi, j is the momentum transfer term between the phases i and j; in par-

ticular, Fφ,σ represents the forces acting on the gas-fluid phase caused by the particle-

phase, and conversely, Fσ,φ represents the forces acting on the particle-solid phase due

to the gas-fluid phase. These forces of momentum transfer are related each other ac-

cording to the Newton third law:

Fφ,σ + Fσ,φ = 0 (4)

Referring to [22], such forces represent just the drag forces contributions, which are

usually considered as the most meaningful ones (see also [23]). We then assume:

Fφ,σ = β
(
uφ − uσ

)
(5)

Fσ,φ = β
(
uσ − uφ

)
(6)

where β is a momentum exchange coefficient. Several expressions are proposed in the

literature to tune such a coefficient. We adopt the drag correlation coefficient proposed
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by Gidaspow [24], where the estimated values that Ergun found out for gas volume

fractions lower than 0.8, and the ones found out by Wen and Yu for gas volume frac-

tions greater than 0.8, are combined each other (see again [22] for more details). The

momentum exchange coefficient turns out to obey to the following expressions:

β =


150

ε2
σµφ

εφd2
σ

+ 1.75εσ
ρφ

dσ
|uφ − uσ|, εφ < 0.8

3
4

CD
εφεσ

dσ
ρφ|uφ − uσ|ε−2.65

φ , εφ ≥ 0.8
(7)

where CD is the drag coefficient

CD =


24

Reσ
(1.0 + 0.15 Re0.687

σ ), Reσ ≤ 1000

0.44, Reσ > 1000
, (8)

depending on the particle Reynolds number Reσ for the solid phase, which is averaged

on the cell, and expressed in terms of the average particle diameter dσ, i.e.,

Reσ =
εφ dσ |uφ − uσ| ρφ

µφ
. (9)

2.2. Lagrangian-Eulerian (LE) approach

In the Lagrangian-Eulerian (LE) approach, the particle-solid phase is treated through

a Lagrangian representation that models and computes the particle evolution. The re-

sulting Lagrangian description is then coupled with the gas-fluid phase, described ex-

actly as in the above mentioned Eulerian model.

The particle evolution is determined on the basis of a particle distribution function

f (xσ,uσ, ρσ,Vσ, t), varying on time t and depending on position xσ, velocity uσ, parti-

cle density ρσ and volume of the particle Vσ, respectively. From now on, we will adopt

the term parcel, as the computational entity consisting of Nσ particles – kept constant

in time – together with an homogenized set of value (xσ,uσ, ρσ,Vσ).

The distribution function f obeys a phase continuity conditions and, in particular,
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satisfies the following transport equation in the phase space:

∂ f
∂t

+ ∇ · ( f uσ) + ∇v · ( f aσ) = 0 (10)

where ∇v is the divergence operator respect with to the velocity field, while aσ is the

parcel acceleration expressed as:

aσ = β
(
uφ − uσ

)
−

1
ρσ
∇p + g −

1
εσρσ

∇τσ (11)

β being the momentum exchange coefficient already defined in (7), and τσ the parcel

normal stress. According to Harris and Crighton model [25], τσ is obtained on the

basis of experimental evidences, and its expression turns out to be:

τσ =
Pσ ε

α
σ

max(εσ − εσ, γ(1 − εσ))
(12)

where Pσ is a constant value of pressure (namely, 100 Pa), α is a dimensionless empir-

ical constant (ranging between 2 and 5), γ is an empirical small number of the order to

10−7, while εσ is a limit value of parcel volume fraction, meaning the maximum value

of particles in cubic close-packing mode [25]. The solid volume fraction εσ is defined

by integrating the parcels distribution function as:

εσ =

∫∫∫
f Vσ dVσ dρσ duσ (13)

Once the distribution function f is solved by time-integration of (10), the parcels

velocity and position are updated in the n-th time step as:

un+1
σ = un

σ + ∆t an
σ

xn+1
σ = xn

σ + ∆t un+1
σ

(14)

Note that the collision between the parcels and the wall is taken into consideration for
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assuming the following conditions

un+1
σ,n = −e un

σ,n

un+1
σ,t = (1 − fr)un

σ,t

(15)

where uσ,n and uσ,t are the normal and tangential velocities, respectively, and e the

coefficient of restitution, whereas fr the coefficient of kinetic friction. Such coefficients

are evaluated on the basis of the specific test to solve, and they will be specified later

in the conducted numerical campaign.

Note finally that the momentum transfer term Fσ,φ can be obtained from the ex-

pression of the parcel acceleration (11), and in line with (13) it can be written as:

Fσ,φ =

∫∫∫
f Vσ ρσ

[
β
(
uφ − uσ

)
−

1
ρσ
∇p

]
dVσ dρσ duσ (16)

2.3. OpenFOAM implementation details

In the Eulerian-Eulerian model, two separate continuous problems for each phase

are solved, whence they interact each with other through the interphase transfer equa-

tions (4) computing the interphase terms Fi, j. In the Eulerian-Lagrangian model, the

domain of solution is solved only for continuous phase. The parcel path is recovered

according to eqs. (10)-(16) within a Lagrangian framework. The Lagrangian simula-

tions are carried out by a particular DPM (Discrete Parcel Method) solver of Open-

FOAM, MPPICFoam (MultiPhase Particle-In-Cell method [26, 27, 28, 29, 30, 31, 32,

33]), that implements a Lagrangian approach for dense flows. On the other hand, the

twoPhaseEulerFoam [33] solver is set up to solve the problem with the Eulerian-

Eulerian approach. These approaches are described in the OpenFOAM documentation

[34].

In this section some numerical details will be provided for the Eulerian computations,

while the interested reader can find all the details for the Lagrangian ones in several

here mentioned papers, e.g., in [29, 35, 33].

Note that in the Lagrangian-Eulerian approach several quantities computed in La-

grangian form have to be evaluated in Eulerian form. This point is solved by coarse
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averaging procedures, that interpolates the Lagrangian properties (i.e., particle volume

fraction, particle velocity, and fluid-particle interaction force) from their discrete val-

ues to the corresponding Eulerian properties defined on the Eulerian grid. For more

details, see [36].

Discretization of the Navier-Stokes equations. Within the Navier-Stokes equations for

incompressible flows as adopted in (1), the convection term ∇ · (εi uiui) represent the

nonlinear contribution to the problem. Several nonlinear solvers can be implemented

to handle such a term in the equations but these are in general quite expensive and im-

practical [37, 38, 39, 40]. Therefore, we linearize the convection term: for a control

cell-volume Vσ, with faces f centered around a cell-point P, and all variables defined

at the cell center, we use the discretized version of the Gauss theorem to express the

discretized version of the convection term as a linear combination of the velocity vari-

ables: ∫
Vσ
∇ · (εi ui ui)dV =

∑
f

Φ u f ≈ ap up +
∑

n

an un (17)

All the coefficients an and ap collect the known fluxes Φ = S · (εi ui) f across the f -th

face of the control volume, and the velocity values at the f -th face are interpolated from

the control volume and neighboring volumes by means of the operator S, so that up

represents the velocity for the control cell-volume, un the one of neighboring volumes.

Note that within this procedure we implicitly assume the phase fraction εi to be known

when computing up. Moreover, the continuity equation (1a) can be written as:

∂εi

∂t
+

∑
f

S · (εi ui) f = 0 (18)

when considering some explicit discretization in time.
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Derivation of the pressure equation. Once the convection term is linearized, at a given

time-step the entire equation (1b) in its discrete form can be represented as follows:

(
a′p −

fp

ρi

)
up = −

∑
n

an un + a0 u0 + g +
Fi, j

ρi
− ∇p

ap up = H(ui) − ∇p

up =
H(ui)

ap
−
∇p
ap

(19)

where all quantities having subscript “0” refer to the known solution at the previous

time-step. In the above equation all the diagonal coefficients of the linearized discrete

problem are assembled in one coefficient ap, while H(ui) collects all off-diagonal con-

tributions of the same linear system, including source terms.

As concerning continuity conditions (1a) and then (18), the velocity of the f -th cell

face can be computed as follows:

u f =

(
H(ui)

ap

)
f
−

(
∇p
ap

)
f

(20)

intending here all quantities interpolated at the f -th face itself. By combining equation

(18) with (20) we obtain the pressure equation:

∑
f

S · ε f

(
∇p
ap

)
f

=
∂εi

∂t
+

∑
f

S · ε f

(
H(ui))

ap

)
f

(21)

so that the flux Φ appearing in (17) can be computed as:

Φ = S · (εiui) f = S · ε f

( H(ui))
ap

)
f
−

(
∇p
ap

)
f

 (22)

PIMPLE solver. The solution procedures adopted for both Eulerian and Lagrangian

approaches rely on the PIMPLE algorithm [41], that merges the PISO [42] algorithm,

addressed to recover a pressure correction for the problem, and the SIMPLE [43] algo-

rithm, working as relaxation step of the problem variables. The PIMPLE algorithm, that

provides at each time-step the velocity vectors ui, proved to have faster convergence

than algorithms using such numerical schemes separately (see [41] for more details).
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The following steps are iteratively performed in PIMPLE:

1. assemble the discretized equation for ui on the grid without any source terms: a

coefficient matrix is set up according to (19)1, source terms not included;

2. relax the equation;

3. solve the equation (19) with a trial value of the pressure field, namely p0, that

corresponds to the pressure field in the previous time-step: such a solution allows

us to obtain the momentum predictor u? at the cell centers;

4. using the predictor u?, assemble the operator H(u?) and interpolate both ap and

H(u?) to the cell faces;

5. solve the pressure equation (21) at the cell faces;

6. update by (22) the flux field at the cell faces;

7. relax the pressure;

8. update by (19) the velocity at the cell centres;

9. update the boundary conditions for consistency.

3. Numerical campaign targeted to experimental investigation

In this Section we provide several settings of the numerical campaign, addressed

also to have a preliminary comparison between numerical simulations and experimen-

tal evidences. In particular, we refer to the pilot experimental study conducted by

PoliMi [44], where the Additube LMD system (BLM Group), using a triaxial nozzle

has been employed (see Figure 1). In the same Figure a schematic view of the LMD

process is shown, and the reader can refer to [2] for more details.

Geometry and physical settings. The tested geometry of the LMD printer consists of a

nozzle with an height of 42 mm, the powder channels inclined by 21o, with a diameter

of 2.5 mm, and the laser channel with diameter of 6 mm (see Figure 2).

Since we are dealing with a metallic powder, we describe it with the following

assumptions: i) the particles are considered to be spherical; ii) all the particles have the

same radius, i.e., the mean radius of a normal distribution; iii) the size of the particles

does not change in time. The density of the particles is larger that the gas density
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Figure 1: Laser Metal Deposition machine built by Politecnico di Milano on the left; a sketch of the process
on the right.

(ρσ >> ρφ) and we assume the gas density ρφ to be equal to 1.145 kg/m3, and the metal

powder density ρσ to be equal to 8000 kg/m3. This allows to consider the drag force

as the main cause of the particle motion. Moreover, the nitrogen kinematic viscosity

νφ is set equal to 15 · 10−6 m2/s, whereas, since in the Eulerian-Eulerian approach

we describe metal powder as an equivalent fluid, we compute the kinematic viscosity

associated to the solid phase, νσ, using the kinetic theory of granular flow implemented

in OpenFOAM [45].

Velocities inlets of both gas and particles are directly taken from the experiments

and are used as boundary conditions of the problem. In the experiments (see Sec. 4.4)

particle velocities proved to be strongly affected by nitrogen flow rate inserted in the

system, specifically set to the values {5, 7.5, 10} l/min. Hence, we impose inlet ve-

locities equal to {1.4, 1.6, 1.8}m/s, for both particles and gas phases, disregarding to

accurately reproduce the flow developing along the nozzle channels.

The values of powder and gas flow rate allowed us to identify the number of par-

ticles and the particle volume fraction to impose at the inlet boundaries. In particular

the fluid-particle regime is a collision-dominated dense flow, with volume fractions

ranging between 0.001 and 0.1 (see [19] for more details).
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The Reynolds number is estimated under the hypothesis of a fluid velocity equiva-

lent to the maximum value imposed at the inlet, that is 1.8 m/s. The resulting Reynolds

number, about 300, is consistent with the assumption of a flow modeled in laminar

regime. Moreover, the particle size ensures that fluid-solid interaction does not cause

turbulence phenomena, as showed by Kussin and Sommerfeld in [46], where the tur-

bulence intensity decreases significantly for particles with diameter ranging between

60 µm and 190 µm.

For the gas phase, no-slip conditions are considered along the nozzle head channel

walls; for the particle phase, in the Eulerian formulation slip condition at the walls are

assumed, whereas, in the Lagrangian framework the non-dimensional coefficients of

restitution and kinetic friction are set equal to e = 0.97 and fr = 0.09, respectively, to

model the particle collision with the walls as expressed in eq. (15). Such coefficients are

determined by considering spherical steel particles which exhibit a low loss of kinetic

energy when impacting with walls [47].

As concerning the boundary conditions imposed for the Navier-Stokes problem, the

pressure at the outlet is imposed to be to equal to the atmospheric pressure, while at the

inlet the velocity is fixed to the values described above. For more details regarding how

OpenFOAM numerically handles such a type of Navier-Stokes boundary conditions see

[34].

Discretization and numerical settings. The computational domain consists of a cylin-

der in which the nozzle is included, thus defining the whole computational domain as

depicted in Figure 2.

The deposition head is formed by three channels, in which gas and particles pass

through, and an additional channel, bigger than others and positioned at the center of

the nozzle, accounted for laser beam irradiation. The domain is discretized using tetra-

hedral elements. The mesh has to be fine enough to reach small Courant number and

make the simulation stable, but a severe limitation of the solver occurs in the case of

the Eulerian-Lagrangian approach. In fact, the size of the particles must be sufficiently

small in comparison with the computational grid so as to allow the coarse averaging

procedures (see Sec. 2.3) to provide accurate interpolations of the Lagrangian proper-
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Figure 2: Computational domain used for both Eulerian-Eulerian and Lagrangian-Eulerian approaches

ties, i.e., particle volume fraction, particle velocity, and fluid-particle interaction force

[36].

The smallness of the Courant number influences also the time-step size which is

set to 1 · 10−5 s in our computations. The time discretization methods of explicit Euler

scheme and Runge-Kutta scheme are employed for solving in time the Navier-Stokes

momentum equation (1b) and the transport equation (10), respectively. As concerns

the spatial discretization, we adopted a standard finite volume approach using Gaus-

sian integration with linear interpolation (central difference method), so as to compute

gradient, laplacian, and divergence operators. See [34] for more details.

4. Numerical results

In order compare the Eulerian-Eulerian (EE) and the Lagrangian-Eulerian (LE) ap-

proaches, we first performed a preliminary investigation at the inlet to have the two

models to be comparable from a physical viewpoint. Then, volume fraction and veloc-

ity fields are carefully compared in terms of both gas and solid phases.

The numerical campaign is also driven in order to determine the properties of the

powder cone, specifically: (i) the minimum diameter of powder cone [mm]; (ii) the
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distance of the minimum diameter from the exit of the nozzle [mm]; (iii) the particle

velocity [m/s]. Such properties defining the powder shape cone outside the deposition

head are conceived as testbeds for future works of identification and validation with

experiments. A preliminary, qualitative, comparison is introduced at the end of the

present Section, to show the capability of the developed numerical schemes on predict-

ing experimented trends.

4.1. On the comparability of the two approaches

The goal of the first test is to compare the amount of solid fraction, i.e., the mass,

entering in the domain for both the approaches. For the Eulerian-Eulerian approach

the solid volume fraction is directly imposed, whereas, for the Eulerian-Lagrangian

approach, the number of particles has to be assigned at the boundary inlets. These two

different input data, that represent the same mass, must return the same conditions at

the inlet.

Within the EL approach, the number of particles to impose at the inlet of a single

channel is estimated as follows. Let be Vφ the known volume of a single particle and

ρφ its relative density. Then, the mass of a particle, mφ can be simply calculated as the

product between Vφ and ρφ. Known the mass mφ, the number of particles per second to

be introduced in each single channel can be evaluated as:

nφ =
Qφ

mφ

Tsim

nch
(23)

where Qφ is the total powder flow rate, nch the number of nozzle channels and Tsim the

simulation time.

Regarding the EE approach, the mass relative to the particles to introduce in the

system, as boundary condition at the inlet, has to be computed in terms of solid volume

fraction, which is defined as:

αp =

∑
i Vφ,i

Vtot
(24)

where Vtot =
∑

i Vφ,i + Vσ is the total volume introduced in the system, defined as

the sum of the particles volume plus the carrier gas volume. The volume occupied by

the particles
∑

i Vφ,i is directly derived from eq. (23) as the product between the volume

17



of a sigle particle Vφ and the number of particles introduced at the inlet nφ. On the other

hand, the volume occupied by the gas phase is evaluated assuming a uniform velocity

field of the gas phase uσ at the inlet. Then the carrier gas volume injected through the

channels is obtained as:

Vσ = uσ
∑

i

Ach,i Tsim (25)

where
∑

i Ach,i is the sum of all channels area. This procedure is expected to ensure the

same boundary conditions for both simulations.

Figure 3 depicts a color map of the volume fraction distributions at the inlet of the

nozzle channels, for both the approaches. Such a figure proves that the inlet amount

of density of the solid fraction entering in the domain is definitely equal for both the

approaches, except for a small difference due to the speckled behaviour of the EL

approach. Such a behaviour is due to the non-uniformity of the particle distribution in

the computational domain, that is characterized by a random positioning at the inlet,

and governed by a flow rate according with boundary conditions.

Figure 3: Color maps representing volume fraction distribution at the inlet. Eulerian-Eulerian approach
(on the left) and Eulerian-Lagrangian approach (on the right). In the Lagrangian-Eulerian case, the volume
fraction representation in non uniform due to the presence of solid particles.

The comparability of the two approaches is finally validated by considering the

mass distribution at regime. As specified in the conservation equations, the mass is

expected to be preserved. In Figure 4 we then report the flow of the volume fraction,

for both the solid and the gas phases, either inside and outside the nozzle, where the de-

position process occurs. Note that the volume fraction flow is obtained by numerically
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integrating the pointwise values of the volume fraction. Such values are given for each

cell of the computational domain (see Figure 2): then, fixing a certain value of z, for all

the cells in the range [z − ε, z + ε], with ε = 1 mm, we integrate through the midpoint

rule the discrete volume fraction distribution to evaluate its flow value associated with

z.

Figure 4: Comparison between Eulerian-Eulerian simulation (blue lines) and Lagrangian-Eulerian’s (red
lines). Figure a) reports the outline of the nozzle and the powder cone shape. Figures b) and c) show the
solid and fluid volume fraction (VF) flow rate along the z-direction, respectively. The total volume fraction
flow rate, that is the sum of the two previous quantities, is depicted in Figure d).

Figure 4(a) represents the powder outline formed below the nozzle. As explained

in Section 1, such a result emphasizes the main difference between the two approaches.

With the Eulerian-Lagrangian approach, the powder ejected from the nozzle forms ah

hourglass-like shape, whereas the powder outline obtained with the Eulerian-Eulerian

approach remains constant after convergence of the powder streams. This behavior is

due to the fact that Eulerian-Eulerian methods do not represent more than one velocity

value for each phase in one computational cell, and then it can not capture crossing

trajectories. This point will be further investigated later. As expected, the total mass

is preserved and there are no appreciable differences between the approaches (Fig-

ure 4(d)). Figure 4(b-c) prove that the volume fraction distributions obtained with the

two different approaches are very similar, for both solid and gas phases. The two sim-

ulations slightly differ in the upper zones inside the nozzle, where the flows of volume

fraction of both phases grow up as densities increase in the channels.
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4.2. Velocity and mass fields

In this Section a comparison between the two approaches in terms of velocity and

mass flows fields, measured in different ways, is reported. Figures 5 and 6 depict the

velocity-magnitude 3D fields associated with the two phases respectively. For the solid

phase (see Figures 5), the velocity fields of the two approaches appear quite similar in

terms of magnitude. However, as mentioned in the previous section, the approaches

significantly differ: the EE approach cannot reproduce the crossing trajectories pre-

dicted by the EL approach, which directly represents the velocity of each particle.

Figure 5: Magnitude of particles velocity field. Eulerian-Eulerian approach (on the left) and Lagrangian-
Eulerian approach (on the right).

On the other hand, for the gas phase, the magnitude of the velocity field estimated

by the EE approach differs from the one predicted by the LE approach (see Figures 6).

Such a result is furthermore emphasized by Figure 7, where the mass flow rates

are reported along the z-direction (flow quantities are computed as done for Figure 4).

Figure 7(b-c) confirm the results obtained in Figures 5 and 6: except for the part inside

the nozzle, the solid mass flow rate calculated with the EL approach is slightly higher

than the same quantity computed by the EE (Figure 7(b)), while the EE approach over-

estimates the mass flow rate associated with the gas phase (Figure 7(c)).

As concerning the solid phase, although small, the gap of mass flow rates between the

two approaches is due to the different way of computing velocities: in the EE approach
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Figure 6: Magnitude of gas velocity field. Eulerian-Eulerian approach (on the left) and Lagrangian-Eulerian
approach (on the right).

Figure 7: Mass flow rates along the z-direction. Comparison between Eulerian-Eulerian (blue) and
Lagrangian-Eulerian (red) approach.

the velocity of the particles represents an average value calculated in each computa-

tional cell (see Figure 7(b)) and this can lead to an underestimation of the actual veloc-

ity of each particle, which on the contrary are explicitly computed in the LE approach

as pointwise value, in the spirit of the Lagrangian description.

The evaluation of the mass flow rate associated with the gas phase shows an opposite

trend (see Figure 7(c)). Such a rate computed by the EL approach is lower than that

predicted in the EE approach. This result can be seen as a consequence of the momen-

tum balance (see eq. (1b)), that is numerically confirmed by Figure 7(d) showing how

the total amount of mass flow rate is predicted very similarly in both the approaches.

Note that all such comments are valid only for the behavior outside the deposition head,
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whereas inside the nozzle channels discrepancies between the two approaches are evi-

dent. Especially in the evaluation of the solid phase, and in agreement with the results

depicted in Figure 4, a relevant increase of the mass flow rate is predicted by the EL

approach in contrast with the EE approach. In fact, inside the nozzle channels the solid

mass is greater than the fluid mass (see again Figure 4(b-c)): while the solid volume

fraction reaches inside the channels a maximum value which is about 8 times the value

outside the channels, the values of the gas volume fraction vary less than 1%.

The results regarding the velocity and mass field obtained with the two approaches

are finally summarized in terms of mass flow ratio, mass ratio, and velocity ratio, re-

spectively (see Figures 8). All such quantities are computed for a given time at each

cross section. The mass flow ratio is computed as the ratio between the mass flow rate

Figure 8: Mass flow ratio, mass ratio, and velocity ratio along the z-direction. Comparison between Eulerian-
Eulerian (blue) and Lagrangian-Eulerian (red) approach.

of the fluid phase and the total mass flow rate; the mass ratio is computed as the ratio

between the fluid volume fraction and the total volume fraction; the velocity ratio is

computed as the ratio between z-direction velocity component of the fluid phase and

the one of the solid phase.

The different predictions of the two approaches discussed above are here emphasized

by the fact that both mass flow and velocity ratios are overestimated by the EE ap-

proach with respect to the EL approach, although the estimations of the mass ratio are

very close in the two approaches.
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4.3. Powder shape cone

In this Section, we report the predictions offered by the two approaches for what

concerns the most significant quantities from an engineering viewpoint, i.e., the powder

stream structure formed by the triaxial nozzle and its cone shape. More specifically,

such quantities allow us to estimate the minimum diameter size below the nozzle, as

we will present in the next Section.

Figure 9 shows the powder flux simulated by the EE approach in terms of vol-

ume fraction distribution. On the left a 3D representation of the ejection process is

depicted, with a color scale mapping the values of particles volume fraction (red color

corresponding to high values). On the right, the volume fraction distributions are rep-

resented on a X-Z plane cutting the central axis of the domain, that is where maximum

particles concentration is reached. This figure shows that, as expected, the highest

amount of volume fraction rise at the focal point, i.e. where fluxes cross each other.

Figure 9: Eulerian 3D Simulation via Eulerian-Eulerian approach: screenshot of the simulation (on the left),
particle volume fraction (on the right).

The EL simulations are reported in Figure 10, where the same representations as

above are depicted. In this approach, in contrast with the EE approach, the volume

fraction of the solid phase is post-processed by using the information regarding the

volume fraction of the fluid phase, which is computed in the Eulerian mesh: in each

cell of the mesh, we then compute the particles volume fraction as εσ = 1 − εφ.

Figure 11 reports a comparison between the Eulerian-Eulerian and the Lagrangian-

Eulerian simulations in terms of powder cone shape. In particular, these trends are
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Figure 10: Lagrangian 3D Simulation via Lagrangian-Eulerian approach: screenshot of the simulation (on
the left), particle volume fraction (on the right).

determined using a 3rd-order polynomial function that interpolates the most external

particles, starting from the central axis, in order to capture the shape of the power flux.

As already mentioned, Figure 11 shows the key difference between the two ap-

proaches: the Eulerian-Eulerian method (blue line on the left) can not capture crossing

trajectories and the three powder fluxes exiting from the nozzle merge each other in a

single stream. Such a result is a consequence of the different formulations employed

for the numerical approaches. In the Eulerian formulation the kinematics of the solid

phase is represented only in terms of nodal values in the Finite Element mesh, while

in the Lagrangian formulation the solid phase consist of particle-points that can move

independently in the domain. When the flows of the three solid phases cross each other

at a certain point of the domain (the focal point), the resulting velocity in the nodes is

averaged in the Eulerian approach (see again Figure 6), thus configuring a single flow

of increased density (see again Figure 9). On the contrary, the Lagrangian-Eulerian

method (red line on the right of the same Figure) can reproduce the experimented be-

havior, that is the enlargement of total flux after particles have crossed each other in

the focal point (see again Figure 10).

Finally, the two approaches are compared in terms of CPU times. All tests are

conducted on an off-the-shelf desktop computer with eight-cores Intel Core i7-6700

running at 3.40 GHz, with 24 GB of RAM, on 64-bit Ubuntu Linux 18.04.4 LTS. Note

that the computational time of the Eulerian-Eulerian approach is independent from the
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Figure 11: Comparison between Eulerian-Eulerian (on the left) and Lagrangian-Eulerian (on the right) sim-
ulations in terms of volume fraction and powder cone shape.

mass flow rate considered at the inlet, whereas the Lagrangian-Eulerian one increases

as the number of particles introduced in the process grows. In particular, as depicted

in Figure 12, the LE approach has better performances than the EE approach when the

number of particles is less than 105. For values greater than 105, the former tends to

become more and more slow than the latter, costing up to six times more in the case of

106 particles.

Figure 12: Comparison between Eulerian-Eulerian approach and Lagrangian-Eulerian approach in terms of
CPU times nondimensionalized with respect to the maximum value 5540 secs. of CPU time required by LE
running with 106 particles.

25



4.4. Towards experimental validation

We present here a preliminary comparison with the outcomes of an experimental

campaign conducted by PoliMi. In the employed LMD machine the powder is deliv-

ered throughout a powder feeder (GTV Twin PF 2/2-MF) used to manage the powder

flow rate. The powder is stored in a hopper and it is gradually spread on a disc able to

rotate. The powder flows are directed in the three-way nozzle by means of a powder

splitter, which splits the carrier gas in three equal flows. The three-way nozzle is also

connected to a laser head (KUKA REIS MWO-I), mounted on a 6-axis anthropomor-

phic robot (ABB IRB 4600-45), and equipped with a 200 mm focal lens and a 129 mm

collimation lens with variable position. The experimental campaign is performed only

on the factors affecting the powder cone without laser beam interaction.

By varying the amount of powder, as well as the carrier and shielding gas flow rate,

several configurations of particle cone shape and particle velocity can occur. Side-

view images of the powder flow shape formed outside the working nozzle are carried

out for these purposes. Pictures are captured with a high speed camera converted into

binary format and then post-processed by means of the MATLAB Image Processing

Toolbox. For each 2D picture, such a toolbox stores the first white pixel on every row

of pixels, starting from left and right sides at the same time. This procedure provides an

outline of the cone shape. On the other hand, the measurement of the powder velocity

is performed tracking the particles distribution exiting from the nozzle. Thanks to

a binarization image process, the maximum pixel distance of a particle trace can be

obtained, to calculate the local particle velocities. An example of a binarizated picture

used to compute the LMD flow features is shown in Figure 13.

The results of experimental data produced by PoliMi are then compared with Eulerian-

Lagrangian numerical simulations. Figure 14 shows that simulations are able to cap-

ture the trend of the minimum diameter, changing the carrier gas flow rate, but not the

absolute values of minimum diameter. This aspect is mainly due to the uncertainty re-

garding the geometric dimensions of the nozzle that significantly affects the results of

the ejection process. In fact, the inclination and the dimensions of the channels, where

both powder and carrier gas stream out, are not known a priori and they can only be

estimated with appropriate measurements, not provided by the manufacturer.
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Figure 13: Images displaying the binarization process. The image on the left is the original frame withdrawn
from the imaging experiment. The one on the right shows the binary image after post-processing

Figure 14: Comparison between our simulations (on the left) and PoliMi experimental data (on the right), in
terms of both dimensional (on the top) and nondimensional diameter (on the bottom).

5. Concluding remarks

The present paper proposed a numerical investigation of the LMD printing pro-

cess by comparing two different approaches, namely an Eulerian-Eulerian (EE) and a

Lagrangian-Eulerian (LE). The ensuing strategies were developed and implemented in

a in-house code customizing OpenFOAM libraries and tools.

27



The numerical campaign, all referred to a three-dimensional problem, was ad-

dressed to highlight performance of the two approaches, measuring the geometrical

key features of the powder shape cone, outside the deposition head. Among the ob-

tained results, the EE method proved to be not able to capture crossing trajectories,

carrying out a merged powder flux exiting from the nozzle as a single high-density

stream. On the contrary, the LE method was able to predict the experimented behavior,

where the total flux divaricates in three streams after particles cross each other in the

focal point. However, the EE approach, as well as LE’s, reproduced the solid volume

fraction amount around the focal point, which is definitely one of the key information

in the set up of the LMD printing process.

Additionally, the efficiency of the two approaches was investigated in terms of CPU

times, showing that the LE simulation turns out to be more expensive than EE’s, as the

number of simulated particles increases.

Finally, a preliminary validation with some experiments conducted by PoliMi was

reported. Note that in such experiments no laser sources are employed, and as con-

sequence no thermal effects were considered in our work. Although in a qualitative

sense, the developed numerical schemes was definitely capable to predict measured

decreasing trends of the cone diameter for increasing injected gas velocities.
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