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Abstract
The objectives of the study are to develop a new way to assess stability and discrimination capacity of radiomic features without
the need of test-retest or multiple delineations and to use information obtained to perform a preliminary feature selection.
Apparent diffusion coefficient (ADC) maps were computed from diffusion-weighted magnetic resonance images (DW-MRI)
of two groups of patients: 18 with soft tissue sarcomas (STS) and 18 with oropharyngeal cancers (OPC). Sixty-nine radiomic
features were computed, using three different histogram discretizations (16, 32, and 64 bins). Geometrical transformations
(translations) of increasing entity were applied to the regions of interest (ROIs), and the intra-class correlation coefficient
(ICC) was used to compare the features computed on the original and modified ROIs. The distribution of ICC values for minimal
and maximal entity translations (ICC10 and ICC100, respectively) was used to adjust thresholds of ICC (ICCmin and ICCmax) used
to discriminate between good, unstable (ICC10 < ICCmin), and non-discriminative features (ICC100 > ICCmax). Fifty-four and 59
radiomic features passed the stability-based selection for all the three histogram discretizations for the OPC and STS datasets,
respectively. The excluded features were similar across the different histogram discretizations (Jaccard’s index 0.77 ± 0.13 and
0.9 ± 0.1 for OPC and STS, respectively) but different between datasets (Jaccard’s index 0.19 ± 0.02). The results suggest that the
observed radiomic features are mainly stable and discriminative, but the stability depends on the region of the body under
observation. The method provides a way to assess stability without the need of test-retest or multiple delineations.
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Introduction

Radiomics is an emerging field in quantitative imaging that
uses image features to objectively and quantitatively de-
scribe tumor phenotypes [1]. The underlying hypothesis

of radiomics is that such features could capture information
not currently available using simple radiological analysis
[2]. Radiomic features are non-invasively obtained on im-
ages that are part of the process of tumor evaluation and
treatment, such as computed tomography (CT), magnetic
resonance imaging (MRI), and positron emission tomogra-
phy (PET). Thus, radiomic analysis could be performed
without the need of further specific exams. Moreover, tra-
ditional histological analysis based on tissue samples, ob-
tained through biopsies, cannot capture the heterogeneity
of the whole tumor. On the other hand, radiomics, analyz-
ing the entire tumor, can provide a complete and quantita-
tive description of tumor heterogeneity, which may have
profound implications for drug therapy in cancer [3]. All of
the previous advantages make radiomics a technique of
interest for tumor characterization. As a matter of fact,
radiomics has already found a wide range of possible ap-
plications [4–14] such as prediction of clinical outcomes
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and response to treatment, tumor staging, discrimination of
different types of tumor tissues, and assessment of cancer
genetics.

The number of features used in radiomic studies may
range from just a few [15] to several hundred [6].
However, not all the hundreds of extracted features bring
information: some may be irrelevant or unreliable for the
clinical question of interest. A process of feature selection
is therefore necessary.

Stability analysis, assessing the robustness of the fea-
tures, is a preliminary step in the process of feature selec-
tion [6, 12, 16]. Radiomic features stability can be investi-
gated in several ways: (1) test-retest [6, 12, 16–23]; (2)
multiple delineations of the region of interest (ROI)
representing the tumor [6, 18, 21]; (3) change in image
reconstruction and automatic segmentation parameters in
PET or CT studies [20–22, 24, 25]; (4) change in image
acquisition techniques [20, 24]; (5) inter-machine repro-
ducibility [20, 26]. The most common techniques that are
used for preliminary feature selection are typically the first
two [6, 12, 16]. However, there are several problems
concerning the different types of stability analysis.
Different acquisitions are required to perform a proper
test-retest analysis and the same thing can be said for ana-
lyzing stability to acquisition parameters and inter-machine
reproducibility. Such requirements make the implementa-
tion of those types of analyses in the clinical routine. The
analysis of stability to multiple delineations does not need
multiple image acquisition, but drawing multiple ROIs on
the same set of images can be very time-consuming. To
solve the latter problem, alternative approaches may be
considered. For example, in [12], stability is assessed
through small geometrical transformations of the ROIs,
which are used to mimic multiple manual delineations. In
[27], the stability analysis is performed by comparing
radiomic features computed on the entire ROI, and on a
Bdigital biopsy,^ i.e., a small portion of the ROI that is large
enough to capture the heterogeneity of the tumor. Last,
comparison of radiomic features obtained with multiple
initialization of a semi-automatic segmentation algorithm
or with different segmentation algorithms (like in [28])
could potentially be used for stability assessment.
Although these approaches strongly reduce the amount of
manual work necessary for a stability analysis of the
radiomic features, they cannot be used to evaluate the dis-
criminative power.

In the current study, we perform an analysis similar to the
one presented in [12], so that stability of radiomic features
could be evaluated starting with just one acquisition and one
ROI. In addition to ROI transformations that are small and
thus can mimic errors due to manual delineation, we apply
also large geometrical transformations to evaluate features
discrimination capacity. Our hypothesis is that features that

do not change their values for large transformations are irrel-
evant and should therefore be excluded.

In this study, diffusion-weighted MRI (DW-MRI) of two
different tumor types (oropharyngeal cancers and soft tis-
sue sarcomas) are analyzed. DW-MRI have been chosen
because they can be used to compute maps of apparent
diffusion coefficient (ADC), which have been shown to
be very useful for tumor detection and characterization
[11, 29, 30], evaluation of treatment response [5, 31], and
tumor staging [8, 32]. Also, unlike other types of MRI,
ADC maps have been shown to be useful to assess tumor
cellularity, even across different scanners [33], provided
that the same range of b values and the same field strength
are used [34, 35].

The aim of the present study is to provide a method to
perform a preliminary feature selection based on features sta-
bility. An innovative characteristic of the method is that it does
not require either multiple acquisitions or multiple manual
delineations.

Material and Methods

Study Population

In this study, two different datasets were retrospectively
analyzed: the first one contains DW-MRI images of soft
tissue sarcomas (STS); the second one contains DW-MRI
images of oropharyngeal cancer (OPC). The two datasets
are provided by the Fondazione IRCCS Istituto Nazionale
dei Tumori (Milan, Italy).

Both datasets consisted of 18 patients who underwent an
MRI acquisition before starting the treatment. Both studies
were approved by the ethical committee of Fondazione
IRCCS Istituto Nazionale dei Tumori (Milan, Italy) and con-
ducted in accordance with the Helsinki Declaration; all pa-
tients gave their written informed consent. All patients’ data
were anonymized prior to the analysis.

Image Acquisition

STS Dataset

DW-MRI images were acquired using Achieva 1.5 T system
(Philips Medical system, Eindhoven, Netherlands)—5 pa-
tients—or a Magnetom Avanto 1.5 T system (Siemens
Medical Solutions, Erlangen, Germany)—13 patients—both
with a body-matrix coil and spine array coil for signal recep-
tion. The data were acquired axially by means of echo planar
imaging. The sequences’ parameters (for both equipment) are
reported in Table 1. Diffusion-weighted images (DWI) were
acquired using four b values (50, 400, 800, and 1000 s/mm2).
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OPC Dataset

DWI were acquired using Magnetom Avanto 1.5 T system
(Siemens Medical Solutions, Erlangen, Germany). The se-
quence parameters are reported in Table 1. DWI images were
acquired using ten b values 0, 10, 20, 50, 70, 100, 150, 200,
500, and 1000 (s/mm2).

Image Processing

For both the datasets, ADCmaps were computed. The ADC
was defined as the slope of the linear regression of the
logarithm of the DWI exponential signal decay on the b
values [36]. The calculation was performed pixel-wise
using ITK 4.8 [3].

For the both datasets, the segmentation of the gross tumor
volume (GTV) was performed by an expert radiologist on the
DW-MRI computed with the lowest b value, where the tumor
is the most visible. The preprocessing steps were performed
using 3D Slicer [37].

Radiomic Feature Extraction

In this study, 69 radiomic features were computed, pertaining
to two main categories: (1) intensity-based and (2) texture-
based. The complete list is reported in Table 2.

Features belonging to the intensity-based group (first-
order statistics or FOS) included statistical information
about the signal intensity and histogram distribution of
the pixels in the ROI. The histogram was evaluated be-
tween 0 and 4000 *10−6 mm2/s using N bins. In this study,
three values of N were tested (16, 32, and 64 bins) to
evaluate whether the bin number affects the stability of
the features.

Texture-based features were computed on the gray-level
co-occurrence matrix (GLCM) [38] and the gray-level run
length matrix (GLRLM) [39]. For a given direction α, the
GLCM is a NxN matrix, whose (i, j) element is the counting

of pixels of gray intensity level i which are adjacent (within
a distance ρ) to pixels of the gray intensity level j. The
GLRLM is an NxN matrix whose (i, j) element counts the
number of runs of pixels of gray level i (run step 1) and run
length j in a given direction. The same bin numbers (16, 32,
and 64) used for FOS analysis were used for textural fea-
tures computation. Range of ADC values for histogram
creation was also the same (0–4000 *10−6 mm2/s). A dis-
tance ρ = 1 was used to create the GLCMs and GLRLMs.

For each patient, GLCMs and GLRLMs were created on
13 different directions. Textural features of Table 2 were
computed on each matrix and the results averaged across
all angles, thus obtaining two sets of features, one for the
GLCM and one for the GLRLM. This average of the 13
different value is already been used in literature (see sup-
plementary material of [6]) and it allows to deal with a
lower dimensional features space (only one feature is con-
sidered instead of 13). All the algorithms were implemented
in ITK 4.8 [3, 40].

Globally, 37 FOS, 21 GLCM-based, and 11 GLRLM-
based features (69 in total) were considered for this anal-
ysis. Fifty-seven features out of 69 were bin-dependent
and thus were computed three times, one for each histo-
gram discretization.

Stability and Discrimination Capacity Analysis

We developed a framework to assess features stability and
discrimination capacity that is based on geometrical transfor-
mations (translations in particular) of the ROIs representing
the GTV. The entire workflow was implemented inMATLAB
2016b (Mathworks, Natick, MA, USA).

First, small entity translations were applied to the ROIs,
along both the x (medial-lateral) and y (antero-posterior) di-
rections. By small entity, we mean translations of ± 10% of the
length of the bounding box surrounding the ROI in the direc-
tion of interest (Fig. 1a). We will also refer to this type of
translation as minimal entity translation. We assume the

Table 1 MRI sequence
parameters by MRI scanners Sequence parameter STS database OPC database

Siemens Avanto
(n = 13)

Philips Achieva
(n = 5)

Siemens Avanto
(n = 18)

Sequence name ep2d dwi_ssh ep2d

Matrix (pixels) 192 × 192 255 × 255 132 × 132

Resolution (voxel/mm) 1.98 × 198 1.37 × 1.37 1.89 × 1.89

Field of view (mm) 380 × 380 350 × 350 250 × 250

Repetition time (msec) 5400 7410 3300

Echo time (msec) 78 63 64

Slice thickness (mm) 4 (no gap) 5 (no gap) 3 (gap 0.9)

Number of excitations 4 3 3
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variability due to such transformations to be comparable to the
ones that could appear in a multiple delineations test. In total,
for each ROI, four minimal entity translations were applied
(one positive and one negative for both the x and y directions)
and thus four transformed ROIs were obtained. The radiomic
features were computed on the four transformed ROIs and
compared to the ones obtained with the original one (the one
segmented by the radiologist). Radiomic features were then
compared using two similarity indexes: (1) percentage varia-
tion and (2) intra-class correlation coefficient (ICC).

For each comparison, the absolute percentage variation
with respect to the reference was computed as follows:

Diff% ¼ jFTransf−FOriginalj
FOriginal

�
�

�
�

� 100 ð1Þ

being FTransf and FOriginal the features computed on the
transformed and original ROIs, respectively.

The ICC was computed as in [41, 42]: it measures the bivar-
iate relation of variables representing different measurement
classes and can be used to assess the agreement between data.
The maximum value of ICC is 1, which indicates perfect agree-
ment. The lower the ICC, the lower the similarity among the
elements of the groups. In this study, a two-way mixed effect
model was used (since the effect of the transformations is fixed
and the variability for the different ROIs is random) [42].

For each feature, it is possible to compute 72 percentage
variations (18 ROIs with 4 translations each) and 4 ICCs (one
for each translation) and to compute the mean and standard
deviation for both the distributions. Let us call the mean
values obtained with such procedure ICCmean and Diff%mean.

We repeat the above-described steps for increasing transla-
tion entities ranging from 10% (minimal entity translations) to
100% (maximal entity translations) with a step of 10%, and
we computed the ICCmean and Diff%mean of the features for
each translation, to evaluate how the similarity varies with the

Table 2 Radiomic features
analyzed in this study, divided by
category

First-order statistics (FOS)

-Signal energy

-Signal kurtosis

-Signal mean absolute deviation
(MAD)

-Signal maximum

-Signal mean

-Signal median

-Signal minimum

-Signal quantile 0.01

-Signal quantile 0.1

-Signal quantile 0.2

-Signal quantile 0.3

-Signal quantile 0.4

-Signal quantile 0.5

-Signal quantile 0.6

-Signal quantile 0.7

-Signal quantile 0.8

-Signal quantile 0.9

-Signal quantile 0.99

-Signal range

-Signal root mean square (RMS)

-Signal skewness

-Signal standard deviation (SD)

-Signal variance

-Histogram entropy

-Histogram kurtosis

-Histogram mean absolute deviation
(MAD)

-Histogram maximum

-Histogram mean

-Histogram median

-Histogram minimum

-Histogram range

-Histogram root mean square
(RMS)

-Histogram skewness

-Histogram standard deviation
(SD)

-Histogram variance

-Histogram uniformity

-Histogram total frequency

Gray-level co-occurrence matrix (GLCM)

-Autocorrelation

-Cluster prominence

-Cluster shade

-Cluster tendency

-Contrast

-Correlation

-Difference entropy

-Dissimilarity

-Energy

-Entropy

-Homogeneity

-Homogeneity 2

-Information measure of correlation 1
(IMOC1)

-Information measure of correlation 2
(IMOC2)

-Inverse difference moment

-Inverse difference moment 2

-Inertia

-Inverse variance

-Max probability

-Sum average

-Sum entropy

Gray-level run length matrix (GLRLM)

-Gray-level non-uniformity

-High gray-level emphasis

-Long run emphasis

-Long run high gray-level em-
phasis

-Long run low gray-level emphasis

-Low gray-level emphasis

-Run length non-uniformity

-Run percentage

-Short run emphasis

-Short run high gray-level em-
phasis

-Short run low gray-level em-
phasis
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entity of the translations. In Fig. 1b, an example of maximal
entity (± 100%) translation is represented. As it can be seen,
this situation is far from the error range obtainable with mul-
tiple delineations. This type of transformation was used to
evaluate discrimination capacity because, as previously stated,
the underlying hypothesis is that if a feature remains constant
independently on the entity of the translation, that feature is
not going to be a good clinical descriptor.

ICCmean was used to select the features with properties of
stability and discrimination capacity. For this purpose, two
ICC thresholds were used: a lower threshold for the ICC for
the minimal entity translations (ICCmin) and an upper ICC
threshold for the maximal entity translations (ICCmax). A fea-
ture is considered stable if the ICCmean for the minimal entity

translations (ICC10) is larger than ICCmin (ICC10 ≥ ICCmin),
and it is considered discriminative if the mean ICCmean for the
maximal entity translations (ICC100) is lower than ICCmax

(ICC100 ≤ ICCmax).
The two thresholds were set using information about the

distributions of ICC10 and ICC100. The values of ICC100 for
both the datasets and for all the bin discretizations are put
together in the same histogram and, from this histogram, a
continuous probability distribution is obtained (see Fig. 2). In
particular, the probability distribution is a non-parametric ker-
nel distribution fitted using MATLAB function fitdist (normal
kernel, bandwidth 0.05). The value 0.05 was chosen as a good
tradeoff to guarantee both smoothness of the curve and quality
of the fitting (p > 0.05 for a χ2 test). ICCmax was defined as the

Fig. 2 Continuous distribution fitted on the values of ICC100 (a) and ICC10 (b). In both cases, the reference quantile is marked with a line that divides the
plot in two sections (discriminative/non-discriminative and stable/unstable respectively in a and b)

Fig. 1 Example of translations
applied to the regions of interest
(ROIs). a Example of small entity
translation in the y direction. b
Example of maximal entity
translation in the x direction.
Continuous lines represent the
contours of the original ROIs,
while the dashed lines represent
the contours of the modified ones
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quantile 0.9 of the continuous distribution previously defined.
A similar procedure was used to define the ICCmin threshold
starting from the histogram of all the ICC10, with the difference
that the quantile used as a reference was 0.1.

The stability and discrimination capacity analysis is repeat-
ed 3 times, using 3 different bin numbers (16, 32, and 64 bins),
to assess the effect of histogram discretization on the features.
Jaccard’s index [43] was used to evaluate the similarity be-
tween the sets of excluded features for the different histogram
discretizations, but also to compare excluded features in the
two datasets.

Results

The identified thresholds for ICCmin and ICCmax that were
identified with the method explained in the previous section
were 0.78 and 0.46, respectively.

The heat maps in Figs. 3, 4, 5, 6, 7, and 8 show how the
level of ICCmean varies with the entity of the translations in the
two datasets. Figures 3, 4, and 5 show the ICCmean maps
related to the OPC dataset using the three different histogram
subdivisions, while Figs. 6, 7, and 8 show the ICCmean maps
for the STS dataset. In Fig. 9a, examples of Diff%mean plot

Fig. 3 Heat map of the mean ICCmean displayed according to features
(rows) and entity of the translations (columns). The heat map refers to the
oropharyngeal cancers (OPC) dataset and to the radiomic features

computed with the 16-bin discretization. The features removed by the
ICC-based feature selection technique are marked with an asterisk in
the first column
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(with 95% confidence interval) for an unstable feature (signal
quantile 0.1), a non-discriminative feature (short run empha-
sis), and a feature that is selected by the algorithm (signal
mean) in the STS dataset can be seen. In Fig. 9b, the plot of
ICCmean (with 95% confidence interval) for the same features
can be seen. Since it is not possible to represent all the values
of percentage variations and ICC, we refer to Tables 1–20 in
the online resources, containing all the values of ICC10 and

ICC100, together with the corresponding percentage
variations.

Table 3 lists the features removed with our ICC-based fea-
ture selection method. The six boxes show the results in the
two datasets with each of the three histogram discretizations.
The ICC-based feature selection method removes 8–15 fea-
tures. If we consider the features that are stable for all the three
histogram discretizations, the method selects 54 features out

Fig. 4 Heat map of the mean ICCmean displayed according to features
(rows) and entity of the translations (columns). The heat map refers to the
oropharyngeal cancers (OPC) dataset and to the radiomic features

computed with the 32-bin discretization. The features removed by the
ICC-based feature selection technique are marked with an asterisk in
the first column
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of 69 for the OPC dataset and 59 features out of 69 for the STS
dataset. Such features, divided by groups, are shown in the
Euler-Venn diagrams in Fig. 10. If we take into account the
three subsets of the excluded features for the three histogram
subdivisions and we compute the Jaccard’s similarity index
for the three possible combinations, we obtain a value of 0.77
± 0.13 for the OPC dataset and 0.9 ± 0.1 for the STS dataset. If
we compare the set of excluded features for the OPC and STS

dataset for each of the three histogram discretizations, we get a
Jaccard’s index of 0.17 ± 0.03.

Discussion

The assessment of features stability is an important preliminary
step in any radiomic analysis. In this study, we developed a

Fig. 5 Heat map of the mean ICCmean displayed according to features
(rows) and entity of the translations (columns). The heat map refers to the
oropharyngeal cancers (OPC) dataset and to the radiomic features

computed with the 64-bin discretization. The features removed by the
ICC-based feature selection technique are marked with an asterisk in
the first column
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new method to assess the stability and the discrimination ca-
pacity of radiomic features computed from medical images (in
this case DW-MRI images). In particular, we proposed a fast
way to assess features stability and discrimination capacity
without the need of multiple acquisitions or multiple delinea-
tions, thus performing a preliminary step of feature selection.

Both in STS and OPC datasets, features can be divided in
three groups: (I) features whose ICC decreases gradually but
constantly; (II) features whose ICC sharply decreases; (III)

features that remain similar for all translations. These three
groups can be approximately considered as (I) the stable and
discriminative features, (II) unstable features, and (III) stable
and non-discriminative features, respectively.

In the STS dataset, the ICC-based feature selection
removes the features in group II (unstable features) and many
of the ones of group III (non-discriminative features).
However, there are some features for which ICC100 is slightly
under the threshold that are therefore not considered as non-

Fig. 6 Heat map of the mean ICCmean displayed according to features
(rows) and entity of the translations (columns). The heat map refers to the
soft tissue sarcoma (STS) dataset and to the radiomic features computed

with the 16-bin discretization. The features removed by the ICC-based
feature selection technique are marked with an asterisk in the first column
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discriminant (histogram total frequency and some GLRLM-
based features matrix). Some of these features are removed for
some of the histogram discretizations (e.g., short and long run
emphasis).

Something similar can be said for the features in the OPC
dataset in Figs. 3, 4, and 5. There are features, like signal
energy, gray-level non-uniformity, and run length non-unifor-
mity, that are removed because they remain very similar inside

and outside the tumor. There are also features, like signal
minimum, that are too unstable and drastically change even
for small translations. Some features, like the information
measures of correlation, present an ICC that is very close to
the threshold and therefore they are excluded just for some
histogram discretizations. Two features (entropy and energy)
strongly change their behavior according to histogram
discretization. It can be seen that for 16-bin discretization,

Fig. 7 Heat map of the mean ICCmean displayed according to features
(rows) and entity of the translations (columns). The heat map refers to the
soft tissue sarcoma (STS) dataset and to the radiomic features computed

with the 32-bin discretization. The features removed by the ICC-based
feature selection technique are marked with an asterisk in the first column
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the ICC level for those features decreases quite gradually, and
the features are accepted according to our method. Using the
64-bin discretization, their values of ICC remain almost con-
stant and the features are considered non-discriminative. The
increase in entropy with the number of bins is predictable:
more bins means more gray levels and more disorder.
However, the fact that the change in the measured ICC is so
high, it is worth noting. The fact that both energy and entropy
have high dependency on the histogram discretization is also

reported in [44]. Max probability also changes its stability
behavior for the 64-bin discretization, similarly to what hap-
pens for entropy. Last, ICC10 for inverse difference moment is
close to the threshold of stability and the feature is labeled as
unstable when the 64-bin discretization is used.

Although the behavior of some features, like energy and
entropy, is highly dependent on the number of bins used, in
general, the results of the ICC-based feature selection do not
depend on histogram discretization. The type of tumor,

Fig. 8 Heat map of the mean ICCmean displayed according to features
(rows) and entity of the translations (columns). The heat map refers to the
soft tissue sarcoma (STS) dataset and to the radiomic features computed

with the 64-bin discretization. The features removed by the ICC-based
feature selection technique are marked with an asterisk in the first column
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instead, strongly affects the excluded features. There are only
three common features between the datasets. Signal minimum
is unstable as it can be expected since it is an extreme value of
a distribution. Histogram mean is always constant throughout
all the translation because it only depends on the number of
bins. Histogram minimum is 0 when there is at least one emp-
ty bin in the histogram, which is very common; therefore, the
feature is non-discriminative. This is true at least for the his-
togram subdivisions that were used in this study.

To our knowledge, this is the first time that both small and
large translations of the ROI are used to evaluate fatures sta-
bility and discriminative power respectively. It is also the first
time in which the thresholds of ICC used to distinguish the
type of feature (stable, unstable, or non-discriminative) are not
empirically set.

The values of ICC for small transformations computed
for the radiomic features analyzed in this study are around
0.9 (median 0.94, quartiles 0.89 and 0.97). In [12], similar
values of ICC are found for the stable features (median
0.97, quartiles 0.92 and 0.99). The Mann-Whitney test re-
veals no significant difference between the ICC values of
the stable features identified in the current study and in [12]
(p = 0.92). However, a smaller number of features is actu-
ally stable (18 out of 79). This could depend from the fact
that in the present study and [12], the features set used is not
the same.

Compared to a study in which features stability is assessed
through multiple manual delineation, like [18], the values of

ICC found for small translations are higher than the ones
found for multiple delineations (median 0.94 vs median
0.89,Mann-Whitney test p < 0.01). The initial assumption that
the low entity translations are equivalent to multiple delinea-
tions in terms of evaluating stability seems to be rejected, even
though the differences in the ICC values could also depend on
the different imaging technique (MRI vs PET) and in the dif-
ferent region of the body analyzed (lung vs limbs and head
and neck). According to such findings, our method is poten-
tially less restrictive for the assessment of stability, but for this
reason, we can be sure that the features that we identify as
unstable are indeed unstable. Moreover, if a more restrictive
method is required, the translation considered for stability
analysis could be increased to 15–20% of the bounding box.

In this paper, as opposed to [12], we presented only trans-
lations of the ROIs and we did not show the effect of rotation,
dilatation, and shrinking. Those types of transformations were
also applied in our investigation but their use did not influence
the results of the ICC-based feature selection method, and
therefore they were not reported (for further details, refer to
the Tables 21–60 of the online resources).

The method presented in this study has some advantages
over other methods of literature. Compared to [27], it does
not need a digital biopsy, which requires a further segmen-
tation step, although a digital biopsy takes less time to be
segmented than a normal ROI. Compared to a method based
on [28], it requires no segmentation algorithm, which can be
difficult to design for oropharyngeal tumors. Last, the presented

Fig. 9 Plot representing the variation with respect to entity of translation
for 3 different radiomic features measured on the soft tissue sarcoma
(STS) dataset, with 16-bin discretization. aAbsolute percentage variation
plot. b ICC variation. One representative of each group of feature is

represented: signal mean (squared markers) is both stable and discrimi-
native; signal quantile 0.1 (circular markers) is unstable; short run em-
phasis (asterisks) is non-discriminative. Both mean values and 95% con-
fidence interval are shown
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method allows to evaluate not only stability, but also the dis-
criminative power of the features, which is something that, to
the knowledge of the authors, was never considered before.

This study highlights the difference in stability of the
radiomic features for tumors in different regions of the body,
which is not typically done. As a matter of fact, the majority of
the studies on stability of radiomic features focuses on tumors
in a specific region of the body: esophagus [17], liver [19],
brain [12], lung [22], or kidney [23]. A study analyzing mul-
tiple body regions exists [24], but even though the data come
from multiple sources, they are analyzed all together and dif-
ferentiation in the stability behavior for the different body
regions is not explored. In this paper, we observed that
radiomic features from tumors in the head and neck region
(OPC dataset) present in general lower stability to small trans-
lations than tumors in the limbs (STS dataset). In fact, the
values of ICCs for small translations are significantly higher
in the STS dataset (Wilcoxon signed rank test p < 0.01; see
also online resources, Tables 1–20). This result could come

from the fact that sarcomas have larger volume and small
translations have less effect on features that are computed on
the entire ROI. The opposite happens when we consider the
ICCs for large transformations (Wilcoxon signed rank test
p < 0.01; see also online resources, Tables 1–20). This
could depend from the fact that the contrast between tumor-
al and healthy tissue in ADC images is different for the two
types of cancer. As a matter of fact, sarcomas have higher
contrast and are much easier to distinguish, rather than head
and neck tumors.

We think that the presented study could provide a better
understanding of radiomic features stability for DW-MRI. It is
worth underlining that this methodology should be used just
as a preliminary feature selection. In fact, of the 69 radiomic
features that were analyzed, only 8–15 are excluded by our
algorithm, which is about 10–20% of the total number fea-
tures. In order to further reduce the number of selected fea-
tures, a possible approach could be to add a correlation-based
(as shown in [16]) or a wrapper feature selection method after

Table 3 Features removed by the
ICC-based feature selection
algorithm

16 bins 32 bins 64 bins

OPC dataset

-Signal energy

-Signal minimum

-Signal range

-Histogram mean

-Histogram median

-Histogram minimum

-Histogram total frequency

-Information measure of
correlation 1 (IMOC1)

-Gray-level non-uniformity

-Run length non-uniformity

-Signal energy

-Signal minimum

-Signal range

-Histogram mean

-Histogram median

-Histogram minimum

-Histogram total frequency

-Information measure of
correlation 1 (IMOC1)

-Information measure of
correlation 2 (IMOC2)

-Gray-level non-uniformity

-Run length non-uniformity

-Signal energy

-Signal minimum

-Signal range

-Histogram mean

-Histogram median

-Histogram minimum

-Histogram total frequency

-Energy

-Entropy

-Information measure of
correlation 1 (IMOC1)

-Information measure of
correlation 2 (IMOC2)

-Inverse difference moment

-Max probability

-Gray-level non-uniformity

-Run length non-uniformity

STS dataset

-Signal minimum

-Signal quantile 0.01

-Signal quantile 0.1

-Histogram mean

-Histogram minimum

-Short run emphasis

-Low gray-level run emphasis

-Short run low gray-level emphasis

-Long run low gray-level emphasis

-Signal minimum

-Signal quantile 0.01

-Signal quantile 0.1

-Histogram mean

-Histogram minimum

-Low gray-level run emphasis

-Short run low gray-level emphasis

-Long run low gray-level emphasis

-Signal minimum

-Signal quantile 0.01

-Signal quantile 0.1

-Histogram mean

-Histogram minimum

-Short run emphasis

-Long run emphasis

-Low gray-level run emphasis

-Short run low gray-level emphasis

-Long run low gray-level emphasis
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the ICC-based analysis. A limitation of this approach is that it
cannot be used for geometrical features like shape and size or
location (which are also used in [16]) since the shape and size
of each ROI are kept constant throughout all the experiment,
while the ROI location is changed. A possible solution to this
could be to apply random combination of geometrical trans-
formations to mimic the effects of random multiple delinea-
tions or ROI registration, and we plan to investigate this in
further studies.

Conclusion

In this study, a method to assess the stability and the discrim-
ination capacity of the radiomic features has been developed,
using small and large translations of the ROI. The method was
applied to two independent datasets containing DW-MRI im-
ages of different tumors (oropharyngeal tumors and sarco-
mas). The proposed method excluded 10–20% of the original
features set.

We think that the presented study could provide a better
understanding of radiomic features stability and discrimina-
tion capacity for DW-MRI, providing a way to assess features
stability without the need of multiple acquisitions or
delineations.
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