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AVERAGING OF EQUATIONS OF VISCOELASTICITY

WITH SINGULARLY OSCILLATING EXTERNAL FORCES

VLADIMIR V. CHEPYZHOV, MONICA CONTI AND VITTORINO PATA

Abstract. Given ρ ∈ [0, 1], we consider for ε ∈ (0, 1] the nonautonomous viscoelastic
equation with a singularly oscillating external force

∂ttu− κ(0)∆u−
∫

∞

0

κ′(s)∆u(t− s)ds+ f(u) = g0(t) + ε−ρg1(t/ε)

together with the averaged equation

∂ttu− κ(0)∆u−
∫

∞

0

κ′(s)∆u(t− s)ds+ f(u) = g0(t).

Under suitable assumptions on the nonlinearity and on the external force, the related
solution processes Sε(t, τ) acting on the natural weak energy spaceH are shown to possess
uniform attractors Aε. Within the further assumption ρ < 1, the family Aε turns out to
be bounded in H, uniformly with respect to ε ∈ [0, 1]. The convergence of the attractors
Aε to the attractor A0 of the averaged equation as ε→ 0 is also established.

1. Introduction

Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω, and let ρ ∈ [0, 1] be a fixed
parameter. For every ε ∈ [0, 1] and any given τ ∈ R, we consider for t > τ the hyperbolic
equation with memory, arising in the theory of isothermal viscoelasticity [18, 27], in the
unknown u = u(x, t) : Ω× R → R

(1.1) ∂ttu− κ(0)∆u−
∫ ∞

0

κ′(s)∆u(t− s)ds+ f(u) = gε(t),

where

gε(x, t) =

{
g0(x, t) + ε−ρg1(x, t/ε) if ε > 0,

g0(x, t) if ε = 0.

The equation is supplemented with the Dirichlet boundary condition

(1.2) u(x, t)|x∈∂Ω = 0.

The variable u, describing the displacement field relative to the reference configuration of
a viscoelastic body occupying the volume Ω at rest, is interpreted as an initial datum for
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t ≤ τ , namely,

(1.3)





u(τ) = uτ ,

∂tu(τ) = vτ ,

u(τ − s) = qτ (s), s > 0,

where uτ , vτ and the function qτ are assigned data. The function κ, usually called memory
kernel, is supposed to be convex, decreasing and such that

κ(0) > κ(∞) > 0.

Without loss of generality, we will assume hereafter κ(∞) = 1. Notably, in the present
model, the dissipation mechanism is entirely contained in the memory term, which pro-
vides a very weak form of damping, whereas no instantaneous friction is active. The
term f : R → R is a nonlinear function of the displacement having subcubic growth, and
complying with rather standard dissipativity conditions. Physically relevant examples of
functions in this class are

f(u) = a|u|p−1u, a > 0, p ∈ [1, 3),

appearing in the equation of relativistic quantum mechanics, and

f(u) = b sin u, b > 0,

yielding a sine-Gordon model describing a Josephson junction driven by a current source
(see e.g. [21, 28] and references therein). Finally, gε(t) represents a singularly (if ρ > 0)
oscillating external force.

The aim of the present paper is to study the asymptotic properties of (1.1)-(1.3) de-
pending on the parameter ε, which represents the (time) oscillation rate in the external
force, whose amplitude is of order ε−ρ. To this end, following a pioneering idea of C.M.
Dafermos [13], we first translate the initial-boundary value problem above in the so-called
past history framework. Accordingly, we introduce for t ≥ τ the past history variable

ηt(s) = u(t)− u(t− s), s > 0.

Defining the (positive and summable) kernel

µ(s) = −κ′(s),

where the prime stands for derivative with respect to s, equation (1.1) is rewritten as the
system of equations for t > τ

(1.4)




∂ttu−∆u−

∫ ∞

0

µ(s)∆η(s)ds+ f(u) = gε(t),

∂tη = −∂sη + ∂tu,

in the unknown variables u = u(t) and η = ηt(·), subject to the boundary conditions

(1.5) u(t)|∂Ω = 0 and ηt|∂Ω = 0,

with η complying with the further constraint

(1.6) ηt(0) = lim
s→0

ηt(s) = 0.



3

In turn, the initial conditions become

(1.7)





u(τ) = uτ ,

∂tu(τ) = vτ ,

ητ = ητ ,

having set
ητ (s) = uτ − qτ (s).

The advantage of the new formulation is that the nonautonomous problem (1.4)-(1.7)
generates, at any fixed ε, a dynamical process Sε(t, τ) acting on a suitable phase space
H. According to the well-established theory of nonautonomous dynamical systems [5,
22], the longterm dynamics can be conveniently described in terms of (uniform) global
attractors Aε of the corresponding processes. Indeed, our main purpose is to investigate
the properties of the familyAε, in dependence of the parameter ε ∈ [0, 1]. First, within the
restriction ρ < 1, and under suitable translation-compactness assumptions on the external
forces, we prove the uniform (with respect to ε) boundedness of the global attractors,
namely,

sup
ε∈[0,1]

‖Aε‖H < ∞.

This fact is not at all intuitive, since in principle the blow up of the oscillation amplitude
might overcome the averaging effect due to the scaling t/ε appearing in g1. Next, we
establish a convergence result for Aε in the limit ε → 0. More precisely, we show that

lim
ε→0

distH
(
Aε,A0

)
= 0,

where distH denotes the standard Hausdorff semidistance inH. This allows us to interpret
the averaged case ε = 0 as the formal limit of (1.1) as ε → 0.

The averaging of global attractors of nonautonomous evolution equations in presence
of nonsingular time oscillations (i.e. when ρ = 0) has been studied by several authors.
See e.g. [2, 5, 6, 11, 14, 15, 16, 17, 23, 29, 31]. The more challenging singular case ρ > 0
is treated in the more recent papers [7, 8, 9, 10, 30]. In particular, closely related to
our work, in [9, 30] the same kind of analysis is carried out for the weakly damped wave
equation

∂ttu−∆u+ ∂tu+ f(u) = gε(t),

corresponding to (1.1) with the instantaneous damping ∂tu in place of the memory term,
expressed by the convolution integral. Actually, the presence of the memory in the model
introduces essential difficulties from the very beginning of the asymptotic analysis, namely,
at the level of absorbing sets. Indeed, at any fixed ε, the existence of an absorbing set
for the process Sε(t, τ) generated by the nonautonomous equation of viscoelasticity has
not been established before, and requires the use of a novel Gronwall-type lemma with
parameters from [25]. A second difficulty is to obtain the uniform boundedness of the
attractors Aε. For the damped wave equation, the main idea of [9] was to decompose the
solution, by introducing a linear problem in order to isolate the oscillations in a suitable
way. The same ingredient is needed here, but it is not enough, and the desired conclusion
follows from a quite delicate recursion argument. Such a uniform boundedness is crucial
to prove the convergence Aε → A0.
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Remark 1.1. Setting κ̄(s) = κ(s)− 1, an integration by parts allows us to rewrite (1.1)
in the form

∂ttu−∆u−
∫ ∞

0

κ̄(s)∆ut(t− s)ds+ f(u) = gε(t).

Thus, in the limit case when κ̄ converges to the Dirac mass at 0+, we recover the so-called
strongly damped wave equation

∂ttu−∆u−∆ut + f(u) = gε(t),

for which the whole analysis of this work applies (although working directly with such an
equation is much easier).

Plan of the paper. In the next §2 and §3, we introduce the notation and the general
assumptions. The generation of an ε-family of processes Sε(t, τ), acting on a suitable
phase space H, is discussed in §4. In §5, we study the dissipativity properties of such a
family, proving the existence of bounded absorbing sets, while in §6 we show that Sε(t, τ)
possesses the uniform global attractor Aε, for every fixed ε ∈ [0, 1]. The subsequent §7 is
devoted to an auxiliary linear viscoelastic equation with oscillating external force. This
will be the crucial tool used in §8, where a uniform (with respect to ε) bound for the
attractors Aε is established. The main result on the convergence Aε → A0 as ε → 0 is
stated and proved in the final §9.

2. Notation

General agreement. Throughout the paper, the symbols c > 0 and Q(·) will stand for
a generic constant and a generic increasing positive function, both independent of ε and
τ , as well of g0, g1.

Introducing the Hilbert space of square summable functions on Ω

H = L2(Ω)

with inner product 〈·, ·〉 and norm ‖ · ‖, we consider the Laplace-Dirichlet operator on H

A = −∆ with domain D(A) = H1
0 (Ω) ∩H2(Ω),

and we define for σ ∈ R the scale of compactly nested Hilbert spaces

Hσ = D(Aσ/2)

endowed with the standard inner products and norms

〈u, v〉σ = 〈Aσ/2u,Aσ/2v〉, ‖u‖σ = ‖Aσ/2u‖.
The index σ will be always omitted whenever zero. In particular, we have the equalities

H−1 = H−1(Ω), H1 = H1
0 (Ω), H2 = D(A).

The symbol 〈·, ·〉 will also be used for the duality product between Hσ and its dual H−σ.
Then, we introduce the L2-weighted spaces on R+ = (0,∞)

Mσ = L2
µ(R

+,Hσ+1)

normed by

‖η‖Mσ =

(∫ ∞

0

µ(s)‖η(s)‖2σ+1ds

) 1
2

,
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along with the infinitesimal generator of the right-translation semigroup on M
T = −∂s with domain D(T ) =

{
η ∈ M : ∂sη ∈ M, η(0) = 0

}
,

where ∂s is the distributional derivative with respect to the internal variable s. Finally,
we define the extended memory spaces (again, σ is omitted if zero)

Hσ = Hσ+1 ×Hσ ×Mσ

with the Euclidean product norm

‖(u, v, η)‖2Hσ = ‖u‖2σ+1 + ‖v‖2σ + ‖η‖2Mσ .

In what follows, for any U = (u, v, η) ∈ H, we agree to call

(2.1) Φ(U) =
1

2
‖U‖2H + ‖u‖p+1

Lp+1,

where p ∈ [1, 3) is the growth order of f . This quantity is finite due to the Sobolev
embedding Lp+1(Ω) ⊂ H1. Besides, for any bounded set B ⊂ H, we use the notation

Φ(B) = sup
U∈B

Φ(U).

3. General Assumptions

3.1. Assumptions on the nonlinearity. Let f ∈ C1(R), with f(0) = 0, satisfy for a
fixed p ∈ [1, 3) the growth and the dissipation conditions

|f ′(u)| ≤ c(1 + |u|p−1),(3.1)

f(u)u ≥ d0|u|p+1 − c,(3.2)

for some d0 > 0. Defining for every u ∈ H1

F(u) =

∫

Ω

(∫ u(x)

0

f(y)dy

)
dx,

it is readily seen from (3.1)-(3.2) that there exists d > 0 such that

d‖u‖p+1
Lp+1 − c ≤ F(u) ≤ c‖u‖p+1

Lp+1 + c,(3.3)

d‖u‖p+1
Lp+1 − c ≤ 〈f(u), u〉.(3.4)

Besides, the following inequality holds:

(3.5) ‖f(u)‖L6/5 ≤ c+ c|F(u)|
p

p+1 .

Indeed, from (3.1), the Hölder inequality and (3.3),

‖f(u)‖L6/5 ≤ c+ c

[∫

Ω

|u(x)| 6p5 dx
] 5

6

≤ c+ c‖u‖pLp+1 ≤ c+ c|F(u)|
p

p+1 .

Remark 3.1. In the Lipschitz case, i.e. when (3.1) holds with p = 1, instead of (3.2) it
is sufficient to require the weaker dissipation condition

lim inf
|u|→∞

f(u)

u
> −λ1,
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where λ1 > 0 is the first eigenvalue of A. Indeed, on account of the Poincaré inequality,
it is a standard matter to verify that (3.3)-(3.4) continue to hold if we redefine f(u) as
f(u) + λu, for a suitable λ < λ1 sufficiently close to λ1, replacing the term Au in the first
equation of (1.4) with (A− λ)u. Observe that the powers (A− λ)σ/2 generate the same
spaces Hσ with equivalent norms.

3.2. Assumptions on the external force. The functions g0 and g1 are translation
bounded in L2

loc(R; H), i.e.

‖g0‖2tb := sup
t∈R

∫ t+1

t

‖g0(y)‖2dy = M0,(3.6)

‖g1‖2tb := sup
t∈R

∫ t+1

t

‖g1(y)‖2dy = M1,(3.7)

for some M0,M1 ≥ 0. A straightforward consequence of (3.7) is
∫ t+1

t

‖g1(y/ε)‖2dy = ε

∫ (t+1)/ε

t/ε

‖g1(y)‖2dy ≤ ε(1 + 1/ε)M1 ≤ 2M1,

so that
‖g1(·/ε)‖2tb ≤ 2M1, ∀ε ∈ (0, 1].

Hence, for ε > 0,

‖gε‖2tb ≤ 2‖g0‖tb + 2ε−2ρ‖g1(·/ε)‖tb ≤ 2M0 + 4M1ε
−2ρ.

As a result, if we set

(3.8) Qε =

{
2M0 + 4M1ε

−2ρ if ε > 0,

M0 if ε = 0,

we learn that

(3.9) ‖gε‖2tb ≤ Qε, ∀ε ∈ [0, 1],

meaning that the norm ‖gε‖tb can grow with a rate of order ε−ρ as ε → 0.

3.3. Assumptions on the memory kernel. The kernel µ(s) = −κ′(s) is supposed to
be nonnegative, absolutely continuous and summable on R+, of total mass

κ0 :=

∫ ∞

0

µ(s)ds ∈ (0, 1).

Moreover, we assume the existence of δ > 0 such that

(3.10) µ′(s) + δµ(s) ≤ 0

for almost every s ∈ R+. It is worth noting that µ can be (weakly) singular at the origin.
The typical example of a kernel in this class is

µ(s) = Cs−αe−δs, α ∈ [0, 1),

for any positive constant

C <
δ1−α

Γ(1− α)
,

where Γ is the Euler-Gamma function.
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4. The Dynamical Processes

As anticipated in the Introduction, the original problem (1.1)-(1.3) can be translated into
the evolution system in the unknown variables u = u(t) and η = ηt(·)

(4.1)





∂ttu+ Au+

∫ ∞

0

µ(s)Aη(s)ds+ f(u) = gε(t),

∂tη = Tη + ∂tu,

u(τ) = uτ , ∂tu(τ) = vτ , ητ = ητ ,

where the set of data
(uτ , vτ , ητ ) ∈ H

is assigned at an arbitrary initial time τ ∈ R. The equivalence between the two formula-
tions is discussed in [20]. Introducing the three-component vectors

U(t) = (u(t), ∂tu(t), η
t) and Uτ = (uτ , vτ , ητ ),

we view (4.1) as the semilinear ODE in H

(4.2)





d

dt
U(t) = AU(t) + Fε(U(t), t),

U(τ) = Uτ ,

where A is the linear operator on H acting on the vector U = (u, v, η) as

AU =
(
v,−A

[
u+

∫ ∞

0

µ(s)η(s)ds

]
, T η + v

)

with domain

D(A) =

{
U ∈ H : v ∈ H1, u+

∫ ∞

0

µ(s)η(s)ds ∈ H, η ∈ D(T )

}
,

while
Fε(U, t) =

(
0, gε(t)− f(u), 0

)
.

From the same paper [20] (but see also [12, 19]), it is well-known that for every fixed
ε ∈ [0, 1] and every Uτ ∈ H the initial value problem (4.2) has a unique solution

U ∈ C([τ,∞),H),

depending with continuity on the initial data. Besides, the third component ηt of the
solution U(t) fulfills the explicit representation formula

ηt(s) =

{
u(t)− u(t− s), 0 < s ≤ t− τ,

ητ (s− t) + u(t)− uτ , s > t− τ.

Accordingly, for every fixed ε ∈ [0, 1], the map

Sε(t, τ) : H → H, t ≥ τ,

acting by the formula
Sε(t, τ)Uτ = U(t),

defines a dynamical process on the natural weak energy space H, characterized by the
two properties
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(i) Sε(τ, τ) is the identity map on H for every τ ∈ R.

(ii) Sε(t, τ)Sε(τ, r) = Sε(t, r) for every t ≥ τ ≥ r.

Moreover, the family Sε(t, τ) generated by problem (4.2) fulfills the joint continuity

(iii) (t, Uτ ) 7→ Sε(t, τ)Uτ ∈ C([τ,∞)×H,H) for every τ ∈ R.

5. Dissipativity

5.1. Uniform absorbing sets. The first step towards the asymptotic analysis of the
process Sε(t, τ) is an a priori estimate on the solutions U(t) = Sε(t, τ)Uτ . With Φ and
Qε given by (2.1) and (3.8), respectively, the main result of this section reads as follows.

Theorem 5.1. For every fixed ε ∈ [0, 1], every t ≥ τ and every initial datum Uτ ∈ H, we
have the estimate

Φ(U(t)) ≤ Q(‖Uτ‖H)e−ω(t−τ) + c (1 +Qε) ,

where ω > 0 is a universal constant independent of ε and τ .

The theorem has a straightforward corollary.

Corollary 5.2. For every fixed ε ∈ [0, 1], the process Sε(t, τ) has a uniform (with respect
to τ ∈ R) absorbing set.

By definition, this is a bounded set Bε ⊂ H with the following property: for any
bounded set B ⊂ H of initial data assigned at time τ ∈ R, there is an entering time
te = te(B, ε) > 0, independent of τ , such that

Sε(t, τ)B ⊂ Bε, ∀t ≥ τ + te.

It is then apparent after Theorem 5.1 that one can take as Bε the closed subset of H
(5.1) Bε =

{
U ∈ H : Φ(U) ≤ R

}
,

for any fixed

R > c (1 +Qε) .

Remark 5.3. Note that, although Bε is bounded in H for every given ε, its norm blows
up to infinity in the limit ε → 0.

The remaining of the section is devoted to the proof of Theorem 5.1.

5.2. A preliminary lemma. The main tool needed in the proof is a Gronwall-type
lemma from [25].

Lemma 5.4. Let Λν be a family of absolutely continuous nonnegative functions on [τ,∞)
satisfying for every ν > 0 small the differential inequality

d

dt
Λν(t) + νΛν(t) ≤ cν2[Λν(t)]

β +
g(t)

ν
,

where 1 ≤ β < 3
2
and

sup
t≥τ

∫ t+1

t

|g(y)|dy = M < ∞.
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Moreover, let φ be a continuous nonnegative function on [τ,∞) such that

1

C0

φ(t) ≤ Λν(t) ≤ C0φ(t) + C1

for every ν > 0 small and some C0 ≥ 1, C1 ≥ 0. Then, there exist ω > 0, C ≥ 0 and an
increasing positive function Q(·) such that

φ(t) ≤ Q(φ(τ))e−ω(t−τ) + CM + C.

If M = 0, the constant C is zero as well, yielding the exponential decay of φ.

5.3. Energy functionals. Let now ε ∈ [0, 1] be fixed, and let

U(t) = (u(t), ∂tu(t), η
t)

be the solution to (4.1) (or (4.2) which is the same) originating from a given Uτ ∈ H at
time t = τ . In what follows, we will use several times without explicit mention the Young,
Hölder and Poincaré inequalities. We will also perform several formal computations, all
justified within a suitable regularization scheme. The reader is addressed to [24], where
the same estimates have been carried out for the linear model.

• We begin to introduce the main energy functional

E(t) =
1

2
‖U(t)‖2H + F(u(t)) + cE .

Up to choosing the constant cE > 0 sufficiently large, it is clear from (3.3) that

(5.2)
1

c
Φ(U(t)) ≤ E(t) ≤ cΦ(U(t)) + c, c ≥ 1.

The basic multiplication of (4.2) by U in H gives

(5.3)
d

dt
E + I = 〈gε, ∂tu〉 ≤ ‖gε‖‖∂tu‖,

having set

I(t) = −1

2

∫ ∞

0

µ′(s)‖ηt(s)‖21ds.

On account of (3.10), we have the control

(5.4)
δ

2
‖ηt‖2M ≤ I(t).

• Next, in order to handle the possible singularity of µ at zero, we choose ̟ > 0 small,
to be properly fixed later, and s̟ > 0 such that

∫ s̟

0

µ(s)ds ≤ ̟κ0

2
.

Setting

µ̟(s) =

{
µ(s̟), 0 < s ≤ s̟,

µ(s), s > s̟,
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we introduce the auxiliary functionals

L1(t) = − 1

κ0

∫ ∞

0

µ̟(s)〈∂tu(t), ηt(s)〉ds,

L2(t) = 〈∂tu(t), u(t)〉.
Then, we have the inequality (cf. [19, 24])

d

dt
L1 + (1−̟)‖∂tu‖2 ≤ ǫ̟‖u‖21 + c‖η‖2M + cI +

∫ ∞

0

µ(s)|〈f(u), η(s)〉|ds

+

∫ ∞

0

µ(s)|〈gε, η(s)〉|ds

for some ǫ̟ > 0, with the property that ǫ̟ → 0 as ̟ → 0. Here the constant c may
possibly blow up when ̟ → 0. Exploiting (3.5), and subsequently using (3.3),

∫ ∞

0

µ(s)|〈f(u), η(s)〉|ds ≤ c‖f(u)‖L6/5

∫ ∞

0

µ(s)‖η(s)‖1ds

≤ c|F(u)|
p

p+1‖η‖M + c‖η‖M

≤ c‖u‖pLp+1‖η‖M + c‖η‖2M + c,

while ∫ ∞

0

µ(s)|〈gε, η(s)〉|ds ≤ c‖gε‖2 + c‖η‖2M.

Hence, recalling (5.4), we end up with

(5.5)
d

dt
L1 + (1−̟)‖∂tu‖2 ≤ ǫ̟‖u‖21 + cI + c‖u‖pLp+1

√
I + c‖gε‖2 + c.

Concerning L2, we have the equality

d

dt
L2 + ‖u‖21 + 〈f(u), u〉 = ‖∂tu‖2 − 〈u, η〉M + 〈gε, u〉,

and by means of (3.4) and (5.4) we obtain

(5.6)
d

dt
L2 +

1

2
‖u‖21 + d‖u‖p+1

Lp+1 ≤ ‖∂tu‖2 + cI + c‖gε‖2 + c.

At this point, we define

L(t) = 2L1(t) + L2(t),

noting that

(5.7) |L(t)| ≤ c‖U(t)‖2H.
Collecting (5.5)-(5.6), and fixing ̟ suitably small, we draw the differential inequality

(5.8)
d

dt
L+ α

[
‖u‖21 + ‖∂tu‖2 + ‖u‖p+1

Lp+1

]
≤ cI + c‖u‖pLp+1

√
I + c‖gε‖2 + c,

where, say, α = min{1
4
, d}.
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5.4. Proof of Theorem 5.1. We introduce the family of energy functionals depending
on ν > 0 small

Λν(t) = E(t) + νL(t).

Due to (5.2) and (5.7), for every ν small enough we have the control

(5.9)
1

c
Φ(U(t)) ≤ Λν(t) ≤ cΦ(U(t)) + c, c ≥ 1.

Besides, from (5.3) and (5.8) we deduce the family of differential inequalities

d

dt
Λν + αν

[
‖u‖21 + ‖∂tu‖2 + ‖u‖p+1

Lp+1

]
+ (1− cν)I

≤ cν‖u‖pLp+1

√
I + c‖gε‖2 + ‖gε‖‖∂tu‖+ c,

which, after simple manipulations and a further use of (5.4), enhances to

d

dt
Λν + ανΦ(U) ≤ cν2‖u‖2pLp+1 +

c

ν
‖gε‖2 + c,

for all ν > 0 sufficiently small. Observing that

‖u‖2pLp+1 ≤ [Φ(U)]
2p
p+1 ,

and using the double control provided by (5.9), we finally obtain (up to redefining ν),

d

dt
Λν + νΛν ≤ cν2Λβ

ν +
c

ν
‖gε‖2 + c,

with

β =
2p

p+ 1
.

Note that β ∈ [1, 3
2
), since p ∈ [1, 3). Thus, having in mind (3.9), the latter inequality

together with (5.9) allow us to apply Lemma 5.4 with φ(t) = Φ(U(t)), yielding the desired
conclusion. This finishes the proof of Theorem 5.1.

6. Uniform Global Attractors

6.1. Translation compact external forces. We make the following assumption:

(6.1) both g0 and g1 are translation compact in L2
loc(R; H).

By definition, this means that for ı = 0, 1 the set of translates

T(gı) = {gı(·+ y) : y ∈ R}
is precompact in L2

loc(R; H).

Definition 6.1. The closure of the set T(gı) in the space L2
loc(R; H) is called the hull of

gı, and is denoted by H(gı).

Remark 6.2. Given any g translation compact in L2
loc(R; H), then a function ĝ belongs

to H(g) if and only if there exists a sequence yn ∈ R such that

lim
n→∞

∫ b

a

‖g(t+ yn)− ĝ(t)‖2dt = 0, ∀b > a.

We address the reader to [5] for more details on translation compact functions.
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It is easily seen that gε is translation compact in L2
loc(R; H) if and only if (6.1) holds.

In that case, a function ĝε belongs to the hull H(gε) of gε if and only if

ĝε(t) = ĝ0(t) + ε−ρĝ1(t/ε),

for some ĝı ∈ H(gı). It is also apparent that

‖ĝε‖tb ≤ ‖gε‖tb.
Thus, on account of (3.9), we obtain the bound

‖ĝε‖2tb ≤ Qε, ∀ĝε ∈ H(gε).

6.2. The family of processes. We now consider, in place of the single problem (4.2),
the family of equations

(6.2)





d

dt
U(t) = AU(t) + F̂ε(U(t), t),

U(τ) = Uτ ,

where

F̂ε(U, t) =
(
0, ĝε(t)− f(u), 0

)
, ĝε ∈ H(gε).

Clearly, for any given ĝε, problem (6.2) generates a (jointly continuous) dynamical process

Sĝε(t, τ) : H → H.

With no changes in the proof, the analogue of Theorem 5.1 holds. Namely, for every t ≥ τ
and every initial datum Uτ ∈ H, the solution

U(t) = Sĝε(t, τ)Uτ

fulfills the estimate

Φ(U(t)) ≤ Q(‖Uτ‖H)e−ω(t−τ) + c (1 +Qε) .

In particular, arguing as in Corollary 5.2, the family Sĝε(t, τ)Uτ possesses an absorbing
set (that we keep calling Bε), which is uniform with respect to both τ ∈ R and ĝε ∈ H(gε).

6.3. Existence of uniform global attractors. We begin with two definitions.

Definition 6.3. A set K ⊂ H is said to be uniformly (with respect to τ ∈ R) attracting
for the process Sε(t, τ) if for any bounded set B ⊂ H we have the limit relation

lim
t−τ→∞

distH
(
Sε(t, τ)B,K

)
= 0.

Definition 6.4. A compact set Aε ⊂ H is said to be the uniform global attractor of the
process Sε(t, τ) if it is the minimal uniformly attracting set. The minimality property
means that Aε belongs to any compact uniformly attracting set.

The following holds.

Theorem 6.5. Let (6.1) hold. Then, for any fixed ρ ∈ [0, 1] and ε ∈ [0, 1], the process
Sε(t, τ) : H → H possesses the uniform global attractor Aε.
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Remark 6.6. What one actually proves is the existence of the uniform global attractor
AH(gε) for the family of processes generated by (6.2)

{
Sĝε(t, τ) : ĝ

ε ∈ H(gε)
}
.

Such an object satisfies the stronger attraction property

lim
t−τ→∞

[
sup

ĝε∈H(gε)

distH
(
Sĝε(t, τ)B,AH(gε)

)]
= 0.

However, since it is standard matter to prove the continuity of the map

ĝε 7→ Sĝε(t, τ)Uτ : H(gε) → H,

for every fixed t ≥ τ and Uτ ∈ H, we draw from [1, Theorem 29] the equality

AH(gε) = Aε.

The proof of the theorem exploits the next abstract result from [3, 4, 5] (see also [1]).

Theorem 6.7. Assume that the process is asymptotically compact, that is, there exists a
compact uniformly attracting set. Then there is the (unique) uniform global attractor.

A way to prove asymptotic compactness, in fact of the whole family of processes
Sĝε(t, τ), is to show that

(6.3) lim
t−τ→∞

[
sup

ĝε∈H(gε)

αH

(
Sĝε(t, τ)Bε

)]
= 0,

where Bε is a uniform absorbing set for Sĝε(t, τ), and

αH(B) = inf
{
d : B has a finite cover of balls of H of diameter less than d

}

denotes the Kuratowski measure of noncompactness of a bounded set B ⊂ H (see [21] for
more details on αH).

Proof of Theorem 6.5. In order to verify (6.3), for an arbitrarily fixed τ ∈ R, Uτ ∈ Bε and
ĝε ∈ H(gε), let us decompose the solution U(t) to (6.2) into the sum

U(t) = V (t) +W (t),

where 



d

dt
V (t) = AV (t),

V (τ) = Uτ ,

and 



d

dt
W (t) = AW (t) + F̂ε(U(t), t),

W (τ) = 0.

The solution V (t) to the first (linear) autonomous problem can be written as

V (t) = S(t− τ)Uτ ,

where S(t) is an exponentially stable (contraction) semigroup onH (see [24]). Accordingly,

‖V (t)‖2H ≤ Ce−ω(t−τ),
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for some constant C > 0 depending only on Bε. Such a conclusion can also be drawn
from Theorem 5.1. Concerning W (t), via the Duhamel representation formula we have

W (t) = W (t; τ, ĝε) =

∫ t

τ

S(t− y)F̂ε(U(y), y)dy.

Consequently, (6.3) follows if one proves the precompactness in H of the set

Kt,τ =
⋃

Uτ∈Bε

⋃

ĝε∈H(gε)

W (t; τ, ĝε)

for every fixed t ≥ τ . This can be done, with no essential differences, as in the case of
the nonautonomous damped hyperbolic equation treated in detail in [5] (see the proof of
Proposition VI.4.3 therein).

Since the attractor is contained in any closed uniform absorbing set, we learn from (5.1)
that

(6.4) Φ(Aε) ≤ Q

ε2ρ
, ∀ε ∈ (0, 1],

for some Q > 0 independent of ε. In turn, this gives the bound

‖Aε‖H ≤ c

ερ
.

Thus, in principle, the size of the global attractor Aε of equation (4.1) with singularly
oscillating terms can grow to infinity as the oscillating rate 1/ε → ∞.

6.4. Structure of the attractors. We now provide a complete description of the struc-
ture of the global attractors Aε.

Definition 6.8. Let ĝε ∈ H(gε) be fixed. A function y 7→ U(y) : R → H is called a
complete bounded trajectory (cbt) of Sĝε(t, τ) if

(i) supy∈R ‖U(y)‖H < ∞, and

(ii) U(y) = Sĝε(y, τ)U(τ) for every y ≥ τ and every τ ∈ R.

The kernel section of ĝε at time y is the set

Kĝε(y) =
{
U(y) : U is a cbt of Sĝε(t, τ)

}
.

We have now all the ingredients to state our characterization theorem, which follows
from the results of the recent paper [1], generalizing the theory presented in [5].

Theorem 6.9. Let (6.1) hold. Then, for every ε ∈ [0, 1], the global attractor Aε of the
process Sε(t, τ) has the form

Aε =
⋃

ĝε∈H(gε)

Kĝε(y),

for an arbitrarily given y ∈ R. Moreover, Kĝε(y) is non empty for every y ∈ R and
ĝε ∈ H(gε).



15

Remark 6.10. Indeed, according to [1], it is enough to prove that the map

(U0, ĝ
ε) 7→ Sĝε(y⋆, 0)U0 : H× H(gε) → H

is closed for some y⋆ > 0.1

7. An Auxiliary Linear Problem

For further scopes, we now consider for ε > 0 the family of auxiliary problems on [τ,∞)

(7.1)





∂ttv + Av +

∫ ∞

0

µ(s)Aζ(s)ds = k(t/ε),

ζt = Tζ + ∂tv,

(v(τ), ∂tv(τ), ζ
τ) = (0, 0, 0),

where k ∈ L2
loc(R; H

σ) for some σ ∈ R. Setting

K(t, τ) =

∫ t

τ

k(y)dy, t ≥ τ,

the following holds.

Proposition 7.1. Assume that

(7.2) sup
t≥τ, τ∈R

{
‖K(t, τ)‖2σ−1 +

∫ t+1

t

‖K(y, τ)‖2σdy
}

≤ ℓ2,

for some ℓ ≥ 0. Then, problem (7.1) has a unique solution V (t) = (v(t), ∂tv(t), ζ
t)

satisfying

‖V (t)‖Hσ−1 ≤ cℓε, ∀t ≥ τ,

where c > 0 is independent of k.

Remark 7.2. Condition (7.2) is satisfied, for instance, if k ∈ L∞(R; Hσ−1) ∩ L1
loc(R; H

σ)
is a time periodic function of period Π > 0 having zero mean, i.e

∫ Π

0

k(y)dy = 0.

Other examples of quasiperiodic and almost periodic in time functions satisfying (7.2)
can be found in [3, 5].

The proof of the proposition requires a preliminary lemma.

Lemma 7.3. The unique solution V (t) = (v(t), ∂tv(t), ζ
t) to the problem (7.1) with ε = 1

fulfills the inequality

‖V (t)‖2Hσ ≤ c

∫ t

τ

e−ω(t−y)‖k(y)‖2σdy,

for every t ≥ τ and some ω > 0 independent of the initial time τ .

1Recall that a map ψ : X → Y is closed if ψ(x) = y whenever xn → x and ψ(xn) → x.
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Proof. Existence and uniqueness of the linear problem follows by standard semigroup
arguments, which are applicable in any space Hσ (see e.g. [24]). Arguing as in the proof
of Theorem 5.1, and using the fact that here f ≡ 0, it is not difficult to prove the
differential inequality

d

dt
‖V ‖2Hσ + ω‖V ‖2Hσ ≤ c‖k‖2σ,

for some ω > 0. The desired result follows by the (classical) Gronwall lemma.

Proof of Proposition 7.1. Without loss of generality, we may assume τ = 0. Denoting

ṽ(t) =

∫ t

0

v(y)dy, ζ̃ t(s) =

∫ t

0

ζy(s)dy,

an integration of (7.1) in time yields




∂ttṽ + Aṽ +

∫ ∞

0

µ(s)Aζ̃(s)ds = Kε(t),

ζ̃t = T ζ̃ + ∂tṽ,

(ṽ(0), ∂tṽ(0), ζ̃
0) = (0, 0, 0),

where

Kε(t) =

∫ t

0

k (y/ε) dy = εK (t/ε, 0) .

Then, we easily infer from (7.2) that

sup
t≥0

{
‖Kε(t)‖2σ−1 +

∫ t+1

t

‖Kε(y)‖2σdy
}

≤ cℓ2ε2.

Applying Lemma 7.3 to the system above we obtain

‖ṽ(t)‖2σ+1 + ‖∂tṽ(t)‖2σ + ‖ζ̃ t‖2Mσ ≤ c

∫ t

0

e−ω(t−y)‖Kε(y)‖2σdy ≤ cℓ2ε2,

where the last passage follows from the well-known inequality (see e.g. [26])

sup
t≥0

∫ t

0

e−ω(t−s)h(y)ds ≤ 1

1− e−ω
sup
t≥0

∫ t+1

t

h(y)dy,

valid for every nonnegative locally summable function h and every ω > 0. In particular,
we learn that

‖v(t)‖σ = ‖∂tṽ(t)‖σ ≤ cℓε.

Besides, by comparison in the equation

‖∂ttṽ(t)‖σ−1 ≤ ‖Aṽ(t)‖σ−1 +

∫ ∞

0

µ(s)‖Aζ̃ t(s)‖σ−1ds+ ‖Kε(t)‖σ−1.

But
‖Aṽ(t)‖σ−1 = ‖ṽ(t)‖σ+1 ≤ cℓε,

and ∫ ∞

0

µ(s)‖Aζ̃ t(s)‖σ−1ds ≤ c‖ζ̃ t‖Mσ ≤ cℓε.
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Accordingly,
‖∂tv(t)‖σ−1 = ‖∂ttṽ(t)‖σ−1 ≤ cℓε.

We are left to prove the estimate

‖ζ t‖Mσ−1 ≤ cℓε.

To this end, we multiply the second equation of the system by ζ t in Mσ−1. Making use
of (3.10), we get

d

dt
‖ζ t‖2Mσ−1 + δ‖ζ t‖2Mσ−1 ≤ c‖∂tv(t)‖2σ−1 ≤ cℓ2ε2,

and the claim follows from the Gronwall lemma.

8. Uniform Boundedness of the Global Attractors

8.1. Statement of the result. Estimate (6.4) provides a bound on the size of the at-
tractors which, unless ρ = 0, is not uniform with respect to ε ∈ [0, 1]. Here, as far as the
more interesting case ρ > 0 is concerned, we give a sufficient condition in order for the
family Aε to be uniformly bounded in H. Such a condition involves only the function g1,
which introduces singular oscillations in the external force. Setting

G1(t, τ) =

∫ t

τ

g1(y)dy, t ≥ τ,

our main assumption reads

(8.1) sup
t≥τ, τ∈R

{
‖G1(t, τ)‖2ϑ−1 +

∫ t+1

t

‖G1(y, τ)‖2ϑdy
}

≤ ℓ2,

for some ℓ ≥ 0, where

ϑ =





1 if 1 ≤ p ≤ 2,

3(p− 1)

p+ 1
if 2 < p < 3.

Theorem 8.1. Let (6.1) hold, and let G1 satisfy (8.1). Then, for every ρ ∈ [0, 1), the
global attractors Aε are uniformly bounded in H, i.e.

sup
ε∈[0,1]

‖Aε‖H < ∞.

Actually, as it will be clear in the upcoming proof, in the Lipschitz situation p = 1 the
result extends to the limiting case ρ = 1 as well.

8.2. Proof of Theorem 8.1. Till the end of the section, ρ ∈ (0, 1) and p ∈ [1, 3) are
understood to be fixed. The key argument is in the following lemma.

Lemma 8.2. Let Q > 0 and γ > 0 be given constants. Assume to have the bound

Φ(Aε) ≤ Q

ε2γ
, ∀ε ∈ (0, 1].

Then, there exists Q̂ > 0 such that

Φ(Aε) ≤ Q̂

ε2γmγ
,
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where

mγ = max

{
0,

2(p− 1)

p+ 1
− 1− ρ

γ

}
.

In particular, if mγ = 0, the family Aε is uniformly bounded in H.

Remark 8.3. Note that if p = 1 then mγ = 0 for every γ > 0 (even if ρ = 1). Instead, if
p > 1, the conclusion mγ = 0 holds whenever

(8.2) γ ≤ γ⋆ :=
(1− ρ)(p+ 1)

2(p− 1)
.

Proof of Lemma 8.2. Let ε ∈ (0, 1] be fixed, and let U(t) = (u(t), ∂tu(t), η
t) be any cbt

lying on the attractor Aε. Thus, U(t) solves for all times problem (6.2) for some

ĝε(t) = ĝ0(t) + ε−ρĝ1(t/ε) ∈ H(gε).

In particular (see e.g. [9]), the function

Ĝ1(t, τ) =

∫ t

τ

ĝ1(y)dy, t ≥ τ,

fulfills the analogue of (8.1). In the light of the assumptions, the characterization Theo-
rem 6.9 implies that

(8.3) Φ(U(t)) ≤ Q

ε2γ
, ∀t ∈ R.

We divide the proof in a number of steps. In what follows, τ ∈ R will be an arbitrary
initial time.

Step I. For t > τ , let V (t) = (v(t), ∂tv(t), ζ
t) be the solution to the auxiliary problem

(8.4)




∂ttv + Av +

∫ ∞

0

µ(s)Aζ(s)ds = ε−ρĝ1(t/ε),

ζt = Tζ + ∂tv,

with null initial datum

V (τ) = 0.

On account of Proposition 7.1, we have the inequality

(8.5) ‖V (t)‖Hϑ−1 ≤ cℓε1−ρ.

Then, from the Sobolev embedding theorem

Hϑ ⊂ H3(p−1)/(p+1) ⊂ L2(p+1)/(3−p)(Ω),

we deduce the estimate

(8.6) ‖v‖L2(p+1)/(3−p) ≤ c‖v‖ϑ ≤ cℓε1−ρ.
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Step II. The difference

W (t) = (w(t), ∂tw(t), ξ
t) = U(t)− V (t)

fulfills the system



∂ttw + Aw +

∫ ∞

0

µ(s)Aξ(s)ds+ f(w) = −[f(w + v)− f(w)] + ĝ0(t),

ξt = Tξ + ∂tw,

with initial condition
W (τ) = U(τ).

Then, we define the family of functionals Λν as in the proof of Theorem 5.1, but using
now W (t) in place of U(t). Recasting verbatim that proof, we draw the analogue of (5.9),
i.e.

(8.7)
1

c
Φ(W (t)) ≤ Λν(t) ≤ cΦ(W (t)) + c, c ≥ 1,

along with the family of differential inequalities

d

dt
Λν + νΛν ≤ cν2Λ

2p
p+1
ν +

c

ν
‖f(w + v)− f(w)‖2 + c

ν
‖ĝ0‖2 + c,

for all ν > 0 small.

Step III. We now estimate the term in the right-hand side above. From (3.1),

|f(w + v)− f(w)| ≤ c
(
1 + |w|p−1 + |v|p−1

)
|v|.

Therefore, we have the control

‖f(w + v)− f(w)‖2 ≤ c

∫

Ω

|w(x, ·)|2(p−1)|v(x, ·)|2dx+ c‖v‖2pL2p + c‖v‖2.

Since 0 < 2(p− 1) < p+ 1, setting

p1 =
p+ 1

2(p− 1)
> 1, p2 =

p+ 1

3− p
> 1,

we infer from the Hölder inequality with exponents (p1, p2) together with (8.6) that
∫

Ω

|w(x, ·)|2(p−1)|v(x, ·)|2dx ≤ ‖w‖2(p−1)

Lp+1 ‖v‖2L2(p+1)/(3−p) ≤ cε2(1−ρ)‖w‖2(p−1)

Lp+1 .

As 2p < 2(p+ 1)/(3− p), by a further use of (8.6) we also get

‖v‖2pL2p + ‖v‖2 ≤ c
(
‖v‖2p

L2(p+1)/(3−p) + ‖v‖2L2(p+1)/(3−p)

)
≤ c.

Summarizing,

‖f(w + v)− f(w)‖2 ≤ cε2(1−ρ)‖w‖2(p−1)
Lp+1 + c.

Hence, denoting

hε(t) = ε2(1−ρ)‖w(t)‖2(p−1)

Lp+1 ,

we end up with
d

dt
Λν + νΛν ≤ cν2Λ

2p
p+1
ν +

c

ν
hε +

c

ν
‖ĝ0‖2 +

c

ν
.



20

Step IV. In the light of (8.3) and (8.6), it is clear that

‖w(t)‖p+1
Lp+1 ≤ cε−2γ.

In turn,

hε ≤ c
[
ε−2γ

] 2(p−1)
p+1

− 1−ρ
γ .

Thus, by the very definition of mγ ,

hε(t) ≤ cε−2γmγ .

Accordingly, we arrive at

d

dt
Λν + νΛν ≤ cν2Λ

2p
p+1
ν +

c

ν
ε−2γmγ +

c

ν
‖ĝ0‖2.

On account of (8.7), an application of the Gronwall Lemma 5.4 yields

Φ(W (t)) ≤ cεe
−ω(t−τ) + cε−2γmγ

for some ω > 0 and every t ≥ τ , where cε > 0 is a constant depending only on the size
of the attractor Aε. It is worth noting that neither cε nor c depend on the chosen initial
time τ . Letting τ → −∞, we finally obtain the uniform-in-time estimate

Φ(W (t)) ≤ cε−2γmγ .

Since Φ(V (t)) ≤ c, we get by comparison

Φ(U(t)) ≤ cε−2γmγ .

Recalling that U(t) is an arbitrary cbt, we are done.

Conclusion of the proof of Theorem 8.1. Since A0 is bounded in H, let us restrict our
attention to the case ε > 0. We know from (6.4) that

Φ(Aε) ≤ Q

ε2ρ
, ∀ε ∈ (0, 1].

Then, by an application of Lemma 8.2 with γ = ρ, the thesis is trivially true whenever
ρ ≤ γ⋆, which is the same as saying that

ρ ≤ ρ⋆ :=
p+ 1

3p− 1
.

This concludes the proof when p = 1, where ρ⋆ = 1. Note that, in this case, the result
holds also for ρ = 1.

Conversely, for p > 1, we have to discuss those values of ρ such that ρ⋆ < ρ. Define

κ =
2(p− 1)

p+ 1
− 1− ρ

ρ
.

Note that
0 < κ < 1

for every p ∈ (1, 3) and ρ ∈ (ρ⋆, 1). Indeed, since ρ > ρ⋆, we have

κ >
2(p− 1)

p+ 1
− 1

ρ⋆
+ 1 = 0.
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On the other hand,

κ < 1 ⇔ ρ <
p+ 1

2(p− 1)
,

the latter being true for every ρ ∈ [0, 1), as p < 3 implies that the right-hand side is
greater than 1. We now prove by induction that for every n ∈ N there exists Qn > 0 such
that

Φ(Aε) ≤ Qn

ε2ρκn , ∀ε ∈ (0, 1].

The case n = 0 is already known. Hence, it is enough showing the implication

Φ(Aε) ≤ Qn

ε2ρκn ⇒ Φ(Aε) ≤ Qn+1

ε2ρκn+1 .

Indeed, Lemma 8.2 with γ = ρκn yields

Φ(Aε) ≤ Q̂n

ε2ρκnmγ
,

with

mγ = max

{
0,

2(p− 1)

p+ 1
− 1− ρ

ρκn

}
.

On the other hand, since 0 < κ < 1, it is apparent that

2(p− 1)

p+ 1
− 1− ρ

ρκn
< κ.

Hence

ρκnmγ < ρκn+1,

and the inductive claim follows by setting Qn+1 = Q̂n. At this point, since

lim
n→∞

ρκn = 0,

up to choosing n large enough such that

ρκn ≤ γ⋆,

an application of Lemma 8.2 with γ = ρκn and Q = Qn provides the desired uniform
bound. �

9. Convergence of the Global Attractors

We finally establish the upper semicontinuity of the attractors as ε → 0.

Theorem 9.1. Let (6.1) hold, and let G1 satisfy (8.1). Then, for every ρ ∈ [0, 1), the
global attractors Aε converge to A0 with respect to the Hausdorff semidistance in H as
ε → 0, i.e.

lim
ε→0

distH
(
Aε,A0

)
= 0.
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In order to prove the theorem, we make a comparison between some particular solutions
to (6.2) with ε > 0 and those to (6.2) with ε = 0, sharing the same value at a given time
τ ∈ R. For a given ε > 0, let us take any cbt

Uε(t) = (uε(t), ∂tuε(t), η
t
ε)

of the process Sĝε(t, τ), for some

ĝε(t) = ĝ0(t) + ε−ρĝ1(t/ε) ∈ H(gε).

Then, for an arbitrarily fixed τ ∈ R, consider the solution (corresponding to ε = 0)

U0(t) = Sĝ0(t, τ)Uε(τ) = (u0(t), ∂tu0(t), η
t
0).

Due to Theorem 8.1, along with the estimate of Theorem 5.1 to handle the case ε = 0,
we have the uniform bound

(9.1) sup
ε∈[0,1]

‖Uε(t)‖H ≤ c, ∀t ≥ τ ∈ R.

Next, we define the deviation

Ū(t) = Uε(t)− U0(t) = (ū(t), ∂tū(t), η̄
t).

Lemma 9.2. We have the estimate

‖Ū(t)‖H ≤ cε1−ρec(t−τ), ∀t ≥ τ.

Here, c > 0 is independent of ε, τ , ĝε and of the choice of Uε(t).

Proof. Let V (t) = (v(t), ∂tv(t), ζ
t) be the solution to the auxiliary problem (8.4) with null

initial datum V (τ) = 0. The difference

W (t) = Ū(t)− V (t) = (w(t), ∂tw(t), ξ
t)

fulfills the problem


∂ttw + Aw +

∫ ∞

0

µ(s)Aξ(s)ds+ f(w) = −[f(uε)− f(u0)],

ξt = Tξ + ∂tw,

with initial conditions W (τ) = 0. By the usual multiplications, we get

d

dt
‖W‖2H ≤ ‖∂tw‖2 + c‖f(uε)− f(u0)‖2.

Exploiting (3.1) and (9.1), we readily obtain

‖f(uε)− f(u0)‖ ≤ c‖ū‖1 ≤ c‖w‖1 + c‖v‖1.
On the other hand, we know from (8.5) that (note that ϑ ≥ 1)

‖V (t)‖H ≤ cε1−ρ, ∀t ≥ τ.

Combining the estimates, we end up with

d

dt
‖W‖2H ≤ c‖W‖2H + cε2(1−ρ),

and the Gronwall lemma yields

‖W (t)‖2H ≤ ε2(1−ρ)cec(t−τ), ∀t ≥ τ.
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The desired conclusion follows then by comparison.

Proof of Theorem 9.1. For ε > 0, let Uε be an arbitrary element of Aε. Then Uε = Uε(0)
for some cbt Uε(t) of Sĝε(t, τ). By applying Lemma 9.2 with t = 0,

‖Uε − Sĝ0(0, τ)Uε(τ)‖H ≤ cε1−ρe−cτ , ∀τ ≤ 0.

At the same time, in the light of Remark 6.6, the set A0 attracts uniformly not only with
respect to τ ∈ R, but also with respect to ĝ0 ∈ H(g0). Thus, setting ν > 0 arbitrarily
small, and recalling (9.1), we find τ = τ(ν) ≤ 0 independent of ε such that

distH
(
Sĝ0(0, τ)Uε(τ),A0

)
≤ ν.

Exploiting the triangle inequality we arrive at

distH
(
Uε,A0

)
≤ cε1−ρe−cτ + ν,

and by arbitrariness of Uε ∈ Aε we reach the conclusion

distH
(
Aε,A0

)
≤ cε1−ρe−cτ + ν.

Accordingly,

lim sup
ε→0

distH
(
Aε,A0

)
≤ ν.

A final limit ν → 0 completes the argument.
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