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Abstract We discuss the parallel between the third-order Moore–Gibson–Thompson 
equation

∂t t t  u + α∂t t  u − β�∂t u − γ�u = 0

depending on the parameters α, β, γ > 0, and the equation of linear viscoelasticity

∂t t u(t) − κ(0)�u(t) −
∫ ∞

0
κ ′(s)�u(t − s) ds = 0

for the particular choice of the exponential kernel

κ(s) = ae−bs + c

with a, b, c > 0. In particular, the latter model is shown to exhibit a preservation
of regularity for a certain class of initial data, which is unexpected in presence of a
general memory kernel κ .

Keywords Moore–Gibson–Thompson equation · Exponential decay · Linear
viscoelasticity

Mathematics Subject Classification 35B35 · 35G05 · 47D06 · 74D05

B Vittorino Pata
vittorino.pata@polimi.it

Filippo Dell’Oro
filippo.delloro@polimi.it

1 Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milan, Italy

This is a post-peer-review, pre-copyedit version of an article published in Appl Math Optim (2017) 76:641–
655. The final authenticated version is available online at: https://doi.org/10.1007/s00245-016-9365-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-016-9365-1&domain=pdf


1 Introduction

1.1 The MGT Equation

Given a smooth bounded domain � ⊂ R
3, we consider for t > 0 the third-order

Moore–Gibson–Thompson (MGT) equation

∂t t t u + α∂t t u − β�∂t u − γ�u = 0 (1.1)

in the unknown variable u = u(x, t) : � × [0,∞) → R, where α, β, γ > 0 are fixed
constants, and

−� with domain D(−�) = H2(�) ∩ H1
0 (�)

is the Laplace–Dirichlet operator on the Hilbert space L2(�). The equation is supple-
mented with the initial conditions assigned at time t = 0

u(x, 0) = u0(x), ∂t u(x, 0) = v0(x), ∂t t u(x, 0) = w0(x),

being u0, v0, w0 : � → R prescribed initial data. From the physical viewpoint, the 
MGT equation (1.1) arises in the modeling of wave propagation in viscous thermally 
relaxing fluids [9,15], although its first derivation seems to be due to Stokes [14]. 
Such an equation is known to generate a (linear) solution semigroup S(t) acting on 
the natural weak energy space

H = H1
0 (�) × H1

0 (�) × L2(�).

However, although the structural constants α, β, γ are all strictly positive, the asymp-
totic properties of S(t) turn out to depend on the stability number

	 = β − γ

α
.

Indeed, the following hold [5,8].

• If 	 > 0 then S(t) is exponentially stable.
• If 	 = 0 then S(t) is marginally stable.
• If 	 < 0 then S(t) is unstable.

The reason of such a different behavior is that, in order for the system to exhibit
exponential stability of the trajectories, the ratio between the sound speed γ and the 
sound diffusivity β has to be small with respect to the natural damping coefficient α 
(see [5]). Here, we want to give an alternative interpretation. To this end, let us first 
examine another (apparently unrelated) problem. 



1.2 The Equation of Viscoelasticity

We consider for t > 0 the integro-differential equation1

∂t t u(t) − κ(0)�u(t) −
∫ ∞

0
κ ′(s)�u(t − s) ds = 0, (1.2)

which rules the evolution of the relative displacement field u = u(x, t) : � × R → R 
in a linearly viscoelastic solid occupying a volume � at rest (see e.g. [13]). The 
variable u is understood to be an assigned datum for negative times t ≤ 0, while the 
function κ ∈ C2(R+), usually called memory kernel, is supposed to be nonnegative, 
nonincreasing, convex, and such that

κ(0) > κ(∞) >  0.

In his famous article [2], C.M. Dafermos proposed to introduce the auxiliary variable

ηt (s) = u(t) − u(t − s), t ≥ 0, s > 0,

containing all the information on the past history of u, which allows to rewrite (1.2) 
in the form

⎧⎨
⎩

∂t t u(t) − κ(∞)�u(t) +
∫ ∞

0
κ ′(s)�ηt (s) ds = 0,

∂tη
t (s) = −∂sη

t (s) + ∂t u(t).
(1.3)

The latter system generates a contraction semigroup �(t) of solutions, acting on a 
suitable Hilbert space V accounting for the presence of the past history component η. 
This semigroup is long known to be stable, that is, all its trajectories vanish as t goes 
to infinity [2]. On the contrary, the problem of the uniform (exponential) stability has 
been completely understood only quite recently, although sufficient conditions can 
be found e.g. in [4,7,10]. Indeed, we have the following result from [12].

Theorem 1.1 The semigroup �(t) on V is exponentially stable if and only if there 
exist two constants C ≥ 1 and δ > 0 such that, for every t ≥ 0 and every s > 0,

κ ′(t + s) ≥ Ce−δtκ ′(s). (1.4)

1.3 The Exponential Kernel

From the physical side, the most interesting (and most relevant) case for the equation 
of viscoelasticity (1.2) is the exponential kernel

κ(s) = ae−bs + c,

1 Here and in what follows, the prime denotes the derivative with respect to the variable s > 0.



for some strictly positive constants a, b, c, which naturally arises in the description of 
viscoelastic solids via rheological models (see e.g. [3]). In which case, (1.2) becomes

∂t t u(t) − (a + c)�u(t) + ab
∫ ∞

0
e−bs�u(t − s) ds = 0. (1.5)

Observe that this particular κ complies with (1.4), which is actually an equality for C 
= 1 and δ = b. Accordingly, the corresponding semigroup �(t) is exponentially 
stable.

Differentiating (1.5) with respect to time, we have

∂t t t u(t) − (a + c)�∂t u(t) + ab�u(t) − ab2
∫ ∞

0
e−bs�u(t − s) ds = 0. (1.6)

Then, taking the sum b(1.5) + (1.6), we obtain

∂t t t u + b∂t t u − (a + c)�∂t u − bc�u = 0, (1.7)

which is nothing but the MGT equation with

α = b, β = a + c, γ = bc.

An interpretation of (1.7) as a model of linear viscoelasticity has been also proposed 
in [1]. In particular, the stability number reads

	 = a > 0,

telling that the semigroup S(t) generated by (1.7) is exponentially stable as well. It is 
also clear that (1.7) can always be written in the form (1.1) by choosing

a = 	, b = α, c = γ

α
,

provided that 	 = β − γ /α  >  0.
In summary: the MGT equation (1.1) is exponentially stable if and only if it models 

linear viscoelasticity, which is the case if and only if 	 > 0.
Note that, in the limit situation where a = 0, equation (1.7) becomes

∂t (∂t t  u − c�u) + b(∂t t  u − c�u) = 0,

namely, the sum of a conservative wave equation with its time derivative.

2 The Abstract Formulation

We will actually analyze an abstract generalization of (1.1). We begin with some 
notation. 



2.1 Functional Setting

Let (H, 〈·, ·〉, ‖ · ‖) be a separable real Hilbert space, and let

A : D(A) ⊂ H → H

be a strictly positive selfadjoint unbounded linear operator of domain D(A) densely
(but not necessarily compactly) embedded into H. For r ∈ R, we introduce the family
of nested Hilbert spaces (the subscript r will be always omitted whenever zero)

Hr = D(A
r
2 ), 〈u, v〉r = 〈A r

2 u, A
r
2 v〉, ‖u‖r = ‖A r

2 u‖.

Then we define the product Hilbert space

H = H1 × H1 × H,

endowed with the standard Euclidean product norm

‖(u, v, w)‖2H = ‖u‖21 + ‖v‖21 + ‖w‖2.

2.2 The Abstract Equation

For t > 0, we consider the third-order evolution equation in the unknown variable
u = u(t)

∂t t t u + α∂t t u + βA∂t u + γ Au = 0, (2.1)

of which (1.1) is just the particular instance obtained by the choice H = L2(�) and
A = −� with the Dirichlet boundary condition. Introducing the state vector

U(t) = (u(t), ∂t u(t), ∂t t u(t)),

we view (2.1) as the ordinary differential equation inH

d

dt
U(t) = AU(t)

where A is the (closed) linear operator acting as

A(u, v, w) = (v,w,−αw − A
[
βv + γ u

]
)

of dense domain

D(A) = {
(u, v, w) ∈ H : w ∈ H1, βv + γ u ∈ H2

} ⊂ H.

The equation is supplemented with the initial condition U(0) = U0 ∈ H.



2.3 The Spectrum of A

For further use, we are interested to describe the spectrum of (the complexification
of) the operator A. To this end, we define for every λ > 0 the third-order complex
polynomial

Pλ(μ) = μ3 + αμ2 + λβμ + λγ.

Proposition 2.1 The spectrum of A is given by

σ(A) =
⋃

λ∈σ(A)

{
μ ∈ C : Pλ(μ) = 0

} ∪
{

− γ

β

}
.

Proof Given F = ( f, g, h) ∈ H, let us look for a unique solution U = (u, v, w) ∈
D(A) to the resolvent equation

μU − AU = F.

In components, this reads

⎧⎪⎨
⎪⎩

μu − v = f,

μv − w = g,

μw + αw + A (βv + γ u) = h.

Writing v and w in terms of u, we obtain

μ3u + αμ2u + μβAu + γ Au = Aψ,

where

ψ = A−1[h + (μ f + g)(μ + α)
] + β f ∈ H1.

By the functional calculus,

u =
∫

σ(A)

λ

Pλ(μ)
dEA(λ)ψ,

being EA the spectral measure of A. It is then clear that u ∈ H1 for any given ψ ∈ H1
if and only if

sup
λ∈σ(A)

∣∣∣∣ λ

Pλ(μ)

∣∣∣∣ < ∞.

Since σ(A) is a closed subset of the real line, this occurs if and only if

μ �= −γ

β
and Pλ(μ) �= 0, ∀λ ∈ σ(A).



In which case, we learn from the system above that

v = μu − f ∈ H1,

w = μv − g ∈ H1,

βv + γ u = A−1[h − (μ + α)w
] ∈ H2,

meaning thatU ∈ D(A) is the unique solution to the resolvent equation. Accordingly,
μ belongs to the resolvent set ρ(A). ��
Remark When A has compact resolvent, a detailed description of σ(A) has been given
in [8]. In that work, three branches of eigenvalues have been explicitly displayed.
Among them, there is one branch of negative eigenvalues in a sharp finite interval,
monotonically converging to− γ

β
from the left, the limit point− γ

β
being in the contin-

uous spectrum ofA. Moreover, it is proved that the whole state space is the direct sum
of the spans of the eigenvectors corresponding to each branch of eigenvalues, and the
infinitesimal generator is a normal operator when restricted to each summand. Since
the set of eigenvectors forms a Riesz basis, there exists a bounded invertible operator
that transforms the original operator into a normal one. In particular, the transformed
semigroup is normal (and contractive when 	 > 0). See [8] for more details.

3 The Solution Semigroup

The existence and uniqueness result for (2.1) is stated in the next theorem.

Theorem 3.1 The operator A is the infinitesimal generator of a C0-semigroup

S(t) = etA : H → H.

Theorem 3.1 is proved in [5,8] by means of linear semigroups techniques. Here
we propose a simple argument of PDE flavor, which is also applicable to nonlinear
generalizations of the equation.

Proof We choose m ≥ 0 large enough that

	m = β − γ

α + m
> 0.

Calling for simplicity αm = α + m, we consider the (equivalent) norm onH

|(u, v, w)|2H = γ

αm
‖v + αmu‖21 + ‖w + αmv‖2 + 	m‖v‖21.

With this position, for an arbitrarily fixed time T > 0, let

U(t) = (u(t), ∂t u(t), ∂t t u(t)) ∈ C([0, T ],H)



be a regular solution to (2.1) on [0, T ]. Introducing the natural energy

E(t) = 1

2

[
γ

αm
‖∂t u(t) + αmu(t)‖21 + ‖∂t t u(t) + αm∂t u(t)‖2 + 	m‖∂t u(t)‖21

]
,

we take the product in H of (2.1) and ∂t t u + αm∂t u. Exploiting the Young and the
Poincaré inequalities, we easily get

d

dt
E + αm	m‖∂t u‖21 = m

(‖∂t t u‖2 + αm〈∂t t u, ∂t u〉) ≤ 2ωE,

for some ω ≥ 0 depending only on m and on the structural constants of the problem.
Then from the Gronwall lemma we draw the estimate

E(t) ≤ E(0)e2ωt . (3.1)

For any fixed U0 ∈ H, this gives the required uniform bound in L∞(0, T ;H) of any
sequence Un of Galerkin approximants with initial data Un

0 → U0 in H, implying
the weak-∗ convergence (up to a subsequence)

Un ⇀ U in L∞(0, T ;H),

for some U that solves the equation in the weak sense. At the same time, since the
equation is linear, (3.1) holds for the differenceUn−Uk of two approximants, yielding
the convergence of the entire sequenceUn to its limitU in the topologyofC([0, T ],H).
By the same token, the energy of the difference of two solutions satisfies (3.1) as well,
providing the continuous dependence estimate

|S(t)U1 − S(t)U2|H ≤ eωt |U1 − U2|H
for every pair of initial data U1,U2 ∈ H.

In particular, we proved that the semigroup S(t) is ω-contractive with respect to
the equivalent norm | · |H, i.e.

|S(t)U0|H ≤ eωt |U0|H, ∀U0 ∈ H.

Note that when 	 > 0 we can take m = 0 (hence αm = α and 	m = 	). The basic
energy identity, now valid for all initial data U0 ∈ D(A), becomes

d

dt
E + α	‖∂t u‖21 = 0,

telling that S(t) is a contraction semigroup with respect to | · |H.

Remark In the “noncritical” case 	 > 0, the contractivity of the semigroup S(t) is
already contained in [6] (see the proof of Theorem 2.2), where the authors use a
different norm, equivalent to | · |H.



Remark Actually, in the case 	 > 0, by recasting the calculations above using A1+r

in place of the operator A, the contractivity of S(t) can be proven also in the space

Hr = H1+r × H1+r × Hr , ∀r ∈ R.

4 Asymptotic Behavior

• If 	 > 0, then S(t) is exponentially stable. Namely, there exist ε > 0 and C ≥ 1
such that the operator norm of S(t) fulfills

‖S(t)‖L(H) ≤ Ce−εt . (4.1)

This result is proved in [5] (by means of the renowned Datko theorem) and in [8]. 
In particular, in the latter paper, the generation of a strongly continuous group has 
been shown, and uniform decay has been obtained in several state settings, with 
sharp explicit rates.

• The case 	 = 0 is much different. Indeed, as shown in [5,8], the pseudoenergy

E(t) = 1

2

[
β‖∂t u(t) + αu(t)‖21 + ‖∂t t u(t) + α∂t u(t)‖2

]

is conserved. In fact, setting φ = ∂t t  u + β Au, equation (2.1) reads

∂tφ + αφ = 0.

As a consequence,

φ(t) = e−αtφ(0),

meaning that u solves the Cauchy problem

⎧⎪⎨
⎪⎩

∂t t u(t) + βAu(t) = e−αt (w0 + βAu0),

u(0) = u0,

∂t u(0) = v0.

This, together with the conservation of the pseudoenergy, imply that S(t) is a
bounded semigroup. In particular, choosing w0 = −βAu0 with u0 ∈ H2, we have
the conservative wave equation.

• We finally discuss the case 	 < 0. The instability of S(t) has been shown via 
numerical simulations in [5], whereas when A has compact resolvent a rigorous 
analysis has been made in [8]. In what follows, we agree to work with the 
complex-ification of the operator A, as well as with the complexification of the 
semigroup S(t). With standard notation, let

ω∗ = lim
t→∞

1

t
log ‖S(t)‖L(H)



be the growth bound of S(t). It is well-known that

σ∗ = sup{�μ : μ ∈ σ(A)} ≤ ω∗.

Lemma 4.1 Assume that 	 < 0. Then, for any fixed λ ∈ σ(A), the complex polyno-
mial

Pλ(μ) = μ3 + αμ2 + λβμ + λγ

has always three distinct roots: a real root μ1(λ) < 0, and a pair of complex conjugate 
ones μ2(λ), μ3(λ) with positive real part.

In the light of Proposition 2.1, we have an immediate corollary.

Corollary 4.2 If 	 < 0 it follows that σ∗ > 0, implying in turn ω∗ > 0. Therefore 
the semigroup S(t) has solutions with energy growing exponentially fast.

Proof of Lemma 4.1. Let λ ∈ σ(A) be fixed. Since

Pλ(0) = λγ > 0,

it is clear that there exists a real root μ1(λ) < 0. We prove that Pλ(μ) admits also two 
complex conjugate roots with positive real part. To this end, writing μ = x + iy with 
x, y ∈ R, from the equation Pλ(μ) = 0 we obtain the system

{
(x2 − y2)(x + α) − 2xy2 + xλβ + λγ = 0,

(x2 − y2)y + 2xy(x + α) + yλβ = 0.

Assuming y �= 0, and substituting the second equation into the first one, we are led to

Qλ(x) = 8x3 + 8x2α + 2x(α2 + λβ) + λα	 = 0.

Since

Qλ(0) = λα	 < 0,

the cubic polynomial Qλ(x) has a real root ξ > 0. In turn, the two complex conjugate
numbers

μ2,3(λ) = ξ ± i
√
3ξ2 + 2ξα + λβ

are roots of Pλ(μ).

Remark An elementary visual argument provides the lower bound

ω∗ ≥ σ∗ = −α	

2β
.



Indeed, it is enough noting that the number ξ is the abscissa of the intersection between 
the cubic 8x3 + 8x2α and the line −2x(α2 + λβ) − λα	, and since A is unbounded 
we can let λ → +∞.

5 Rigorous Comparison with the Equation of Viscoelasticity

In this final section, we discuss the link between the abstract form of system (1.3) 
with the exponential kernel

κ(s) = ae−bs + c,

and (2.1) in the case when 	 > 0, which can be more conveniently rewritten as

∂t t t u + b∂t t u + (a + c)A∂t u + bcAu = 0. (5.1)

To this end, let M be the space of square summable functions η : R+ → H1 with
respect to the measure abe−bsds, endowed with the norm

‖η‖2M = ab
∫ ∞

0
e−bs‖η(s)‖21 ds,

and define the product Hilbert space

V = H1 × H × M,

with the usual Euclidean product norm. Then, introducing the infinitesimal generator
of the right-translation semigroup on M, i.e. the linear operator T given by

Tη = −η′ with domain D(T) = {
η ∈ M : η′ ∈ M, η(0) = 0

}
,

the abstract version of (1.3) with the exponential kernel reads
⎧⎨
⎩

∂t t u(t) + cAu(t) + ab
∫ ∞

0
e−bs Aηt (s) ds = 0,

∂tη = Tηt + ∂t u(t).
(5.2)

Introducing the three-component vector V (t) = (u(t), ∂t u(t), ηt ), we view sys-
tem (5.2) as the ordinary differential equation in V

d

dt
V (t) = LV (t),

where L is the linear operator on V defined as

L(u, v, η) =
(

v,−A
[
cu + ab

∫ ∞

0
e−bsη(s) ds

]
,Tη + v

)
,



with domain

D(L) =
{
(u, v, η) ∈ V : v ∈ H1, cu + ab

∫ ∞

0
e−bsη(s) ds ∈ H2, η ∈ D(T)

}
.

This equation generates an exponentially stable linear contraction semigroup

�(t) = etL : V → V.

Moreover, for any initial datum V 0 = (u0, v0, η0) ∈ V , the third component of the
solution�(t)V 0 = (u(t), ∂t u(t), ηt ) fulfills the representation formula (see e.g. [11])

ηt (s) =
{
u(t) − u(t − s) 0 < s ≤ t,

η0(s − t) + u(t) − u0 s > t.
(5.3)

The rigorous comparison between (5.1) and (5.2) is established the next theorem. 

Theorem 5.1 The following hold.

(i) Let V (t) = (u(t), ∂t u(t), ηt ) be the solution to (5.2) corresponding to any initial
datum

V 0 = (u0, v0, η0) ∈ V

satisfying the regularity conditions

v0 ∈ H1 and cu0 + ab
∫ ∞

0
e−bsη0(s) ds ∈ H2. (5.4)

Then U(t) = (u(t), ∂t u(t), ∂t t  u(t)) is the solution to (5.1) with initial datum

U0 = (u0, v0, w0) ∈ H,

where we set

w0 = −A
[
cu0 + ab

∫ ∞

0
e−bsη0(s) ds

]
. (5.5)

(ii) Conversely, let U(t) = (u(t), ∂t u(t), ∂t t  u(t)) be the solution to (5.1) correspond-
ing to any initial datum

U0 = (u0, v0, w0) ∈ H.

Then, for every η0 ∈ M satisfying the relation

ab
∫ ∞

0
e−bsη0(s) = −cu0 − A−1w0, (5.6)



the function V (t) = (u(t), ∂t u(t), ηt ), with ηt given by (5.3), is the solution to
(5.2) with initial datum

V 0 = (u0, v0, η0) ∈ V.

Remark If V 0 ∈ V satisfies (5.4), it does not necessarily mean that V 0 ∈ D(L). Also
note that the function η0 satisfying (5.6) is not uniquely determined: one possibility
is, for instance,

η0 = −1

a

[
A−1w0 + cu0

]
,

which is actually constant in s, but there are infinitely many other possible choices.

Proof We will limit ourselves to prove (i), since repeating the argument backwards
the proof of (ii) follows. Let then

V (t) = (u(t), ∂t u(t), ηt )

be the solution to (5.2) corresponding to an initial datum V 0 = (u0, v0, η0) complying
with (5.4). Substituting the representation formula2 (5.3) into the first equation of (5.2),
we obtain the identity

∂t t u(t) + (a + c)Au(t) − abe−bt
∫ t

0
ebs Au(s) ds = −e−bt Aq0, (5.7)

having set

q0 = ab
∫ ∞

0
e−bsη0(s) ds − au0 ∈ H1.

In particular, due to (5.4),

∂t t u(0) = −A
[
(a + c)u0 + q0

] = −A

[
cu0 + ab

∫ ∞

0
e−bsη0(s) ds

]
∈ H.

Next, multiplying equality (5.7) by ebt , and taking the derivative with respect to time,
we have

ebt (∂t t t u + b∂t t u) + (a + c)ebt (A∂t u + bAu) − abebt Au = 0,

and a final multiplication by e−bt yields (5.1).

2 The representation formula (5.3) is actually completely equivalent to the second equation of (5.2), once 
the initial conditions are fixed.



As a byproduct, system (5.2) exhibits a preservation of regularity for a certain class
of initial data, which does not generally occur for different types of memory kernels
κ .

Corollary 5.2 Let V 0 = (u0, v0, η0) ∈ V satisfy the further regularity conditions
(5.4). Then, the solution �(t)V 0 = (u(t), ∂t u(t), ηt ) fulfills

u ∈ C1([0,∞),H1) ∩ C2([0,∞),H).

Moreover, there exists ε > 0 and C ≥ 1 such that

‖�(t)V 0‖V + ‖∂t u(t)‖1 + ‖∂t t u(t)‖ ≤ C
[‖u0‖1 + ‖v0‖1 + ‖w0‖ + ‖η0‖M

]
e−εt ,

with w0 given by (5.5).

Proof We know from Theorem 5.1 that the function u(t) solves (5.1). Therefore, u
has the claimed regularity. Since S(t) and �(t) are both exponentially stable (in the
respective spaces), there exist ε > 0 and C ≥ 1 such that

‖∂t u(t)‖1 + ‖∂t t u(t)‖ ≤ C
[‖u0‖1 + ‖v0‖1 + ‖w0‖

]
e−εt ,

and

‖�(t)V 0‖V ≤ C
[‖u0‖1 + ‖v0‖ + ‖η0‖M

]
e−εt .

Adding the relations, and estimating ‖v0‖ with the Poincaré inequality, we are done.
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