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abstract 

To systematically study key factors affecting cascading failures in power systems, this paper advances algorithms for generating synthetic power grids with 

realistic topological and electrical features, while computationally

quantifying how such factors influence system performance probabilistically. Key parameters affecting line out- ages and power losses during cascading failures 

include line redundancy, load/generator layout and re-dispatch strategies. Our study combines a synthetic power grid generator with a direct current (DC) 

cascading failure simulator. The impact of each of the factors and their interactions unravel useful insights for interventions aimed at reducing the probabilities 

of large blackouts on existing and future power systems. Moreover, conclusions drawn from a spectrum of different power grid topologies and electrical 

configurations offer more generality than typically attained when studying specific test cases. Line redundancy and distributed generation appear as the most 
efficacious parameters for reducing the probabilities of large power losses and multiple line overloads, although the effect decays with network density. Also, re-

dispatch strategies are critical on the distribution of the cascading failure size in terms of line failures. These and related results provide the basis for 

probabilistic analyses and future design of evolving power transmission systems under uncertainty.

1. Introduction

The impact that a power transmission system’s topology and asso- 
ciated electrical features have on overall system reliability is still not 
well understood, especially when their joint effect is considered during 
cascading failure events. And even when considering a fixed network 
topology, many different electrical configurations and states are possi- 
ble, as placements of generation units or dispatch strategies result in 
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ten without the joint effects of topological and electrical configurations 
(e.g., layout, element siting, re-dispatch). Thus, conclusions drawn to 
date under probabilistic models, while valuable, remain not easily gen- 
eralizable. Our work attempts to bridge this gap by applying a cascading 
failure model based on an N -2 contingency analysis with Direct Current 
(DC) power flow analyses on a sample of synthetic yet realistic power
networks generated to capture some of the topological as well as elec- 
trical and probabilistic features of power systems [12] . 
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ifferent power system dynamics and associated reliability considera-
ions. 

Power system reliability research encompases the study of cascading
ailures, since these failure dynamics have proven serious in economic
nd social terms [1] . Standard practice in the study of cascading failures
s to apply power or network flow models to a limited set of test systems
o understand evolving system behavior [2–7] . Also, there are topolog-
cal studies for simplified yet analytical explorations of system proper-
ies, typically based on samples of randomly generated networks when
he electrical data are not available [8–11] . However, the probabilistic
nalysis of power systems subjected to contingencies is still limited, of-
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While relying on DC power flow adds realism to the cascading failure
odel, it also requires that the synthetic networks be adequate electri-

ally. Hence, we extend the algorithm by Wang et al. [12] to produce
ynthetic power grids suitable for DC power flow computations. The
umber of features characterizing power grids is high, making the im-
act analysis of all of them prohibitive. Consequently, we group key fea-
ures of power grids into three different macro-areas based on known
ensitivity analyses [2,13] : the underlying topology, the electrical prop-
rties of its components, and the control rules governing the system.
his grouping is also consistent with the way each synthetic power grid

s generated in our study, as the topology is constructed first, then the
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Table 1

Planning matrix of the full factorial experiment with each row

representing a different factor and each column a different

level.

Factors /Levels 0 1 2

Line redundancy 𝜁 = −1 𝜁 = 0 𝜁 = 1 
Generators layout K = 0 K = 0.5 K = 1 
Re-dispatch R : = Proportional R : = OPA 

g  

s  

a  

a  

 

n  

g  

s  

p  

s  

i  

i
 

e  

c  

t  

r  

w  

t  

s  

m  

c  

l  

h  

t
 

f  

a r 
g  

o t 
t s 
t  

p
2

 

l  

o  



f  

p  

b  

f

𝑃

𝑁

 

c  

h  
opology is enriched with the electrical parameters (e.g., impedances,
ower demand and supply levels, generation siting, etc.), and finally,
he dispatch/control rules are embedded into the cascading failure sim-
lator. 

At the topological level, the line redundancy of the network is cho-
en as input variable, since adding lines is the baseline approach fo
ecreasing systems ’ congestion  and has a straightforward interpretation
rom an infrastructural point of view. At the electrical level, the genera-
or/load buses layout is considered a key input that we vary in order to
ompare various degrees of centralization, from clustered to a more 
is- tributed siting of loads and generators. The interest in power 
eneration layout lies in the evolution towards smart grids [1,14].  
inally, from the operational point of view, we consider two 
ifferent power re-dispatch strategies. 

We carry out computational experiments from full factorial design
o study the effect of key input parameters and offer general insight
15].  The input variables involved are fully crossed with each other
llowing us to gather data on cascading failure effects. Since this ap-
roach relies on a catalogue of power grids instead of a particular 
ne, the conclusions drawn have more general appeal. 

As for system performance, we study the reliability of the powe
rid, understood here as the ability of the network to deliver power to
ustomers (via a power loss metric), while the physical infrastructure
ntegrity is preserved (via counts of outages across lines) [1].  The com
putational experiments that follow, allow us studying power loss and
line outages probabilistically, particularly as the topological, electrical
and control parameters of the synthetic networks vary. This work thus
complements two of the approaches that dominate existing literature:
one general and often probabilistic, but limited to topological analyses
16,17],  and the other comprehensive in its electrical aspects but spe
ific to a system model [18,19].  We aim at a middle point, where
e use DC power flows and also study a variety of system

onfigurations and dispatch strategies, so as to gain generalizable
nsights for future operation management and reliability-based design
f evolving power networks. 

The rest of the article is organized as follows: Section 2 describes our
global strategy to study evolving infrastructure, particularly via compu-
tational experiments. Section 3 describes the power network generation
procedure and our updates to make key system parameters tunable.
hen, Section 4 describes our cascading failure model. Section 5 pro-
ides simulation results, and Section 6 discusses outputs and draws in-
ights for network operation. Section 7 concludes the paper and provides
deas for future research. 

. Global strategy for studying evolving power systems

To explore how key inputs affect cascading failures in power systems,
e perform a full factorial experimental design to elicit general conclu-

ions. Appropriate variables and models for our experimental designs as
iscussed next. 

.1. Full factorial design 

Throughout our work, we will deal with a power grid object defined
s follows: 

 = ( 𝑉 , 𝐸, 𝒁 , 𝑷 𝑫 , 𝑷 𝑮 , 𝑷 𝑴 𝑨 𝑿 , 𝑪 ) (1)

here V is the set of buses, E is the set of lines, and 𝐺 = ( 𝑉 , 𝐸 ) is the
ower grid topology. Vector Z captures the impedances of the lines,
hile PD , PG , PMAX are the power demand, supply, and maximum

upply of the nodes in V , respectively. Vector C denotes the capacity
f the lines. We define the subset { Z , PD , PG , PMAX } as the electrical
roperties of the power grid. 

Our goal is to determine which parameters affecting  in Eq. (1) are
est at reducing cascading failures, so as to translate findings into design
uidelines generalizable to evolving power grids. In particular, we con-
ider factors such as: line redundancy 𝜁 , the loads/generators layout K ,
nd re-dispatch strategies. Note that topology and electrical features are
 function of these factors, such that E ( 𝜁), PD ( K ), PG ( K ), and PMAX ( K ).

In particular, 𝜁 will vary in the range [ −1 , 1 ] interpolating electric
etworks generated by the RT-nested Small World (RT-nestedSW) al-
orithm [12] , where a realistic topology corresponds to 𝜁 = 0 , an as-
ociated spanning tree to , 𝜁 = −1 , and a greedy triangulation (or dense
lanar network) to 𝜁 = 1 . In this way, we are able to produce power grid
tructures with varying levels of line redundancy. Parameter K will vary
n [0, 1], and is used to produce power grids with increased decentral-
zed generator layout as K increases. 

In addition, we analyze the impact on cascading failures of differ-
nt re-dispatch strategies. The term re-dispatch refers to the action of
hanging the power supply or demand at the power grid’s nodes in real
ime, so that the total supply and demand are balanced. We compare two
e-dispatch strategies in our experiments. First, a proportional strategy
here power supply and demand at the nodes changes proportionally to

heir initial values, and deemed as a baseline strategy. Second, we con-
ider the OPA model [20] , which is a simplification of how an operator
ight intervene in a realistic system when facing complex contingen-

ies. It consists of an optimization routine which minimizes the power
osses, subject to constraints in power carrying limits. The OPA model
as been used in applications with fast dynamics and long term evolu-
ion of power transmission systems [4] . 

The computer experiments are set as follows: power grids with dif-
erent values of 𝜁 and K are generated with our extended RT-nestedSW

lgorithm, for all their possible combinations. For each of these powe
rids, two separate N-2 contingency analyses are performed, employing
ne of the two re-dispatch strategies each. This procedure is tantamoun
o a balanced full factorial experimental design [15],  which unravel
he single and joint effects of input factors. Table 1 shows the
lanning matrix of the experiment. 
.2. Response variables 

We compute the total power not served 𝑃 
( 𝑙 𝑖 , 𝑙 𝑗 ) 
𝑙𝑜𝑠𝑠

and the number of

ine failures from cascades 𝑁 

( 𝑙 𝑖 , 𝑙 𝑗 ) 
𝑓𝑎𝑖𝑙 

, following N-2 contingency analyses

n power grids in  , as associated to a pair of failed lines ( l i , l j ). Hence,

 evolves from its initial equilibrium state  

0 into a new state  

( 𝑙 𝑖 , 𝑙 𝑗 ) 

ollowing the dynamics we model trough subsequent Algorithm 4.1 . This
rocedure is then repeated with replacement for all distinct pairs of lines
elonging to  . We then define the total N -2 contingency analysis ef-
ects as power loss P tot and line failures N tot as follows: 

 𝑡𝑜𝑡 

(


)
= 

∑
(
𝑙 𝑖 , 𝑙 𝑗

)
∈ 

𝑃

(
𝑙 𝑖 , 𝑙 𝑗

)
𝑙𝑜𝑠𝑠

(2)

 𝑡𝑜𝑡 

(


)
= 

∑
(
𝑙 𝑖 , 𝑙 𝑗

)
∈ 

𝑁

(
𝑙 𝑖 , 𝑙 𝑗

)
𝑓𝑎𝑖𝑙

. (3)

Note that P tot and N tot are computed for each power grid topologi-
al and electrical configuration as well as re-dispatch strategy. Knowing
ow these performance indicators vary in correspondence to different
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Table 2

Summary of the RT-nested Small World model (RT-nestedSW) and ex- 

tensions.

Pseudo-Code RT-nested small world model generation

Step 1 Select the desired number of subnetworks, their

properties, and a geographical distance

threshold d 0 . 

Step 2 Construct subnetworks as follows: for each node

i select links at random (their number follows

a Poisson distribution with mean ⟨k ⟩) from 

nodes j belonging to 𝑁 

( 𝑖 ) 
𝑑0 = { 𝑗 ∶ 𝑑( |𝑗 − 𝑖 |) < 𝑑 0 } 

( i,j are the indices of the nodes considered,

and d ( ∙) is a distance operator). 

Step 3 Rewire the subnetwork links using a Markov

chain model.

Step 4 Randomly connect the subnetworks with each

other, through lattice connections.

Step 5 Assign the lines ’ impedances using a suitable

probability distribution model.

Step 6 Assign power demand and supply to the nodes in

the network. (Extended)

Step 7 Assign lines capacities. (Extended)
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onfigurations of input factors allows us to understand their global im-
act on cascading failure vulnerability and associated probabilities of
ccurrence. 

. Synthetic power grids for computational experiments

The following subsections review the procedure to generate new net-
ork topologies in agreement with real power grids. Then, the authors
xplain the role of line redundancy and generator layout factors ( 𝜁 , K ),

hich enable sensitivity analyses. 

.1. Topological properties of power networks 

Consider a power grid topology 𝐺 = ( 𝑉 , 𝐸 ),  with |𝑉 | = 𝑁 as the num
er of generation sources, aggregate loads at the substation level and
ransmission nodes, and |𝐸| = 𝑚 as the number of links or transmis-
ion lines. Research has shown that commonly used synthetic graph

tructures such as small world [21],  scale free [22] and random net

orks are not able to capture the topological features of real power grids

12,17,23].  For example, Wang et al. [12] found that power grids have

ifferent connectivity scaling laws than standard small world graphs. In
act, the average nodal degree ⟨k⟩ is constant and does not scale with

he network dimension, as would be the case for the small world model

21].  Meanwhile, Cotilla-Sanchez et al. [23] noticed that the average
ath length ⟨l⟩ scaling properties of real power grids are in between

egular grids and small world networks. Overall, these and other stud-
es call for models that capture system topology as well as functionality
onsistent with practical power systems [12,16,17].  

.2. The RT-nested small world model 

Wang et al. [12] postulated nesting several small-world (SW) sub-
etworks into a regular lattice to retain electrical system features while
sing simple topologies that exhibit realistic scaling properties [16,17].
nother power network generator was used in Purchala et al. [24] to

est DC power flow accuracy in active power considerations. They found
ounds for the lines reactances and resistance ratios, below which the
C power estimation has unacceptable high errors. The RT-nestedSW
odel has also been refined by Hu et al. and Genger et al. [25,26] in

rder to produce synthetic DC and AC power flow test cases. While syn-
hetic models continue development, we adopt the basic RT-nestedSW
erspective and expand as needed to realize our experimental design.
he method [12],  and associated extensions are summarized in Table 2

The input parameters necessary to initialize the algorithm in Step
 { d 0,

 

 ⟨k⟩ , N,  and the number of subnetworks}, are estimated from t

EEE 118-node system [27] as our reference realistic network through-
ut the study. Hence, Steps 1–4 generate power networks 𝐺 = ( 𝑉 , 𝐸 )
ith topological properties consistent with real systems. Then, in Step
, line reactances are randomly generated from a specified heavy-tailed
istribution fitted to the real power grid that one wishes to use as a
eference. In this work, a Gamma distribution is found to fit well the
mpedances of the IEEE 118-node system [12].  For each link of the
etwork we sample an impedance value. Then, the sampled values are
orted by magnitude in ascending order and grouped into: local links,
ewire links, and lattice connection links according to corresponding
roportions. Line reactances in each group are then assigned randomly
o the corresponding group of links in the topology. We will denote with
 

G the reactances vector associated to a particular topology G,  where the

omponent 𝑍 

𝐺 
𝑙 

denotes the reactance of line l ∈E . 
With the previous Step and Step 7, we extend the RT-nestedSW algo-

ithm and assign electrical properties, PD , PG , PMAX , C —necessary for
C power flow computations and cascading failure analysis as described

ater. Networks as described constitute the baseline systems correspond-
ng to a line redundancy level of 𝜁 = 0 ( Table 1 ). Note that changes in
result in changes to the parameters d 0 , ⟨k ⟩ of Step 1. We explain next
ow the line redundancy of these baseline networks is varied to form
opologies with levels 𝜁 = −1 and 𝜁 = 1 . 

.3. Bounding models 

The range in which baseline topologies are allowed to vary is
ounded from below and above by two limiting cases: the power grid’s
panning tree ( ST ) which has a minimum level of lines to guarantee
onnectivity, and the greedy triangulation ( GT ) which approximates the
aximum number of lines in a two dimensional planar space. 

From each baseline network generated with the RT-nestedSW algo-
ithm, 𝐺 𝑖 = ( 𝑉 𝐺 𝑖 , 𝐸 

𝐺 𝑖 ) and associated impedance vector 𝒁 

𝐺 𝑖 , we con-
truct the 𝑆 𝑇 𝑖 = ( 𝑉 𝑆 𝑇 𝑖 , 𝐸 

𝑆 𝑇 𝑖 ) and 𝐺 𝑇 𝑖 = ( 𝑉 𝐺 𝑇 𝑖 , 𝐸 

𝐺 𝑇 𝑖 ) networks. Note that
 

𝑆 𝑇 𝑖 = 𝑉 𝐺 𝑖 , while 𝐸 

𝑆 𝑇 𝑖 is the subset of lines belonging to a spanning tree
f G i , with their respective impedances. Similarly, 𝑉 𝐺 𝑇 𝑖 = 𝑉 𝐺 𝑖 and 𝐸 

𝐺 𝑇 𝑖 

s the superset of lines belonging to the planar triangulation of G i , where
he impedances of the lines belonging to 𝐸 

𝐺 𝑇 𝑖 − 𝐸 

𝐺 𝑖 are generated as in
ection 3.2 . 

Factor 𝜁 varies in the range [ −1 , 1 ] where 0 indicates the baseline
opology G and values in −1 ≤ 𝜁 ≤ 0 represent the percentage of lines
elonging to 𝐸 

𝐺 − 𝐸 

𝑆𝑇 up to obtaining G . Meanwhile, values in 0 ≤ 𝜁 ≤ 1
ndicate the percentage of lines belonging to 𝐸 

𝐺𝑇 − 𝐸 

𝐺 which are added
o G up to forming a GT . Fig. 1 shows topologies for 𝜁 = −1 , 0 and 1. 

.4. Siting of loads and generators 

Power demand vector PD and a power supply vector PG across the
odes ’ set V ∈G , help determine the layout for generators/loads within
he synthetic power grids, whose assignment is controlled by parame-
er K in Table 1 . From the loads perspective, we use as vector of power
emand PD a set consistent with the IEEE 118-node system [27] . We
nly retain the original components of the power supply vector PG and
aximum power supply vector PMAX for the 15 major power suppli-

rs, as the IEEE-118 system has generators overrepresented (i.e., sev-
ral serve as boundary conditions to the larger system from which it
as extracted). We complemented available data in terms of PMAX for

he IEEE 118 system, with optimal power flow test case data included
n Zimmerman et al. [28] . Hence, each component PG i , PMAX i , and
 𝐷 𝑖 , 𝑖 = 1 , 2 …𝑁 represents the power supplied, the maximum power
hat could be supplied, and the power demanded by bus i , respectively



Fig. 1. Sample topologies with different redundancy levels for the same node set layout : (a ) 𝜁 = −1 ( 𝑁 = 118 , 𝑚 = 117 ), (b) 𝜁 = 0 ( 𝑁 = 118 , 𝑚 = 184) , and (c) 𝜁 = 
1 ( 𝑁 = 118 , 𝑚 = 369 ) . 

Fig. 2. Sample networks with different generator set positions according to: (a) 𝐾 = 0 , (b) 𝐾 = 0 . 5 , and (c) 𝐾 = 1 . Nodes with black fill are generators . 
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if i is a load node 𝑃 𝐺 𝑖 = 𝑃 𝑀𝐴 𝑋 𝑖 = 0 ). Therefore, synthetic power grids
ave 15 generator buses, 93 load buses and 10 transmission buses, to
aintain realistic proportions. We use the following procedure which

elies on a spectral clustering algorithm [29] to assign the bus positions
f the 15 generators: 

1. Select extremes in the power grid as ext ∈V (the extremes are the pair
of buses most distant from each other), and a threshold distance d ( K )
(intended as number of links as most lines have similar length).

2. Build the subnetwork ̃ = ( 𝑉 , �̃� ) by removing from  all the buses
that are at a distance more than d from ext , and divide it in 15 bus
communities 𝑉 1 , 𝑉 2 , … , 𝑉 15 using the spectral clustering algorithm.

3. Select a node at random for each community 𝑉 𝑖 , and assign to it a
power supply and maximum power supply component.

This procedure forces the generators and the loads to be clustered
ogether depending on: 

 = 𝑑 𝑚𝑖𝑛 + 𝐾 

(
𝑑 𝑚𝑎𝑥 − 𝑑 𝑚𝑖𝑛 

)
(4)

here d min is the minimum distance (in number of links) where at least
5 buses are at a distance less than d min from ext , d max is the diam-
ter of the network and K ∈ [0, 1] is the input factor in our experi-
ent. Note that in this section we are interested in modelling differ-

nt load/generator geographic layouts. For this reason, Eq. (4) uses the
umber of links as distance, as the link length distribution is concen-
rated on a small range of values [30] , and thus adequate to capture
eographic patterns; alternatives such as electrical distances [31] , are
lso desirable for dynamic analyses, but not necessarily to reproduce
eographical layout patterns as in Fig. 2 . This figure has three exam-
les of generator positioning for different values of K , so as to assist
nraveling the impacts of generator siting on cascading failures. 

In Eq. (4) as K approaches 0, d approaches d min and only a few nodes
lose to the network extremes are available to become power generators.
his results in most power generators concentrated in a small portion of
he power grid, spatially distinct with respect to the rest of the grid. As
 approaches 1 more and more nodes become available as generators,
ence power can be supplied by buses all over the power grid, and the
patial clustering between generators and loads blurs. In particular, the
alues of K considered for sensitivity analysis are: 0, 0.5 and 1 ( Table 1 ).
his factor allow us exploring the effect of spatially distributed versus
entralized power generation, which is of interest from a “smart grid ”
erspective, especially as the mainly centralized power generation struc-
ure of existing grids evolves into one that admits decentralization and
istributed generation [1] . As the position of power generating units
as been found in Pahwa et al. [13] to affect the frequency and voltage
tability of power grids, it also determines the paths in DC power flows.

.5. Line capacity assignments 

To perform cascading failure simulations, it is necessary to also have
ransmission lines ’ capacity data consistent with functional systems. In
eal power system lines, capacities belong to a set of finite discrete val-
es, while power grids are usually 𝑁 − 1 compliant. To produce syn-
hetic power networks with these features, we build a model for the
ine capacity allocation that differs from a proportional model usually
ound in the literature [13,32,5,33] . Therefore, to sample the capacity
 l of line l , we base our model on a truncated exponential distribution,
q. (5) , with parameter 𝜆 estimated from the power flow-to-capacity ra-
io data of a large real system (we used a Kolmogorov–Smirnov test to
onfirm that the exponential model was not rejected). Specifically, we
tudied the Polish grid available in Zimmerman et al. [28] to set our ex-
onential model, as it is one of the most complete power transmission
etwork datasets (note that the IEEE 118 system does not offer such



Algorithm 4.1

Cascading failure simulator (CFS).

Input: Power network  , initial failures l i , l j ∈E 

1.  

0 =  ,compute f 0 vector of power flow in  

0

2.  

1 = ( 𝑉 , 𝐸 − { 𝑙 𝑖 , 𝑙 𝑗 } , 𝒁 , 𝑷 𝑫 , 𝑷 𝑮 , 𝑷 𝑴 𝑨 𝑿 , 𝑪 )
For: 𝑟 = 1 , 2 … Do

3. Adjust load and generation R : = {proportional or OPA} strategy

4. Compute f r power flow vector in  

𝑟

5. Identify O 

r as the set of lines outaged in iteration r

If | O 

r | ≥ 1

6. Set  

𝑟 +1 = ( 𝑉 , 𝐸 𝑟 − 𝑂 𝑟 , 𝒁 , 𝑷 𝑫 

𝒓 , 𝑷 𝑮 

𝒓 , 𝑷 𝑴 𝑨 𝑿 , 𝑪 )
Otherwise: END
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etails): 

 𝐶 𝑙 |𝑓 𝑙 , 𝑓 𝑚𝑎𝑥 𝑙 
, 𝜁 ) ∼

𝜆||𝑓 𝑙 ||𝑒 − 𝜆|𝑓𝑙 |𝑐

𝑐 2 

( 

𝑒

𝜆|𝑓 𝑙 |
𝐶 𝑚𝑎𝑥
𝜁 − 𝑒

− 𝜆|𝑓 𝑙 |
𝑓 𝑚𝑎𝑥
𝑙

) 

𝐼 (
𝑓 𝑚𝑎𝑥 
𝑙

,𝐶 𝑚𝑎𝑥 
𝜁

]( 𝑐 ) (5)

here I is the indicator function, 𝜁 is the redundancy level of the net-
ork to which line l belongs to, 𝐶 𝑚𝑎𝑥 

𝜁
is a capacity limit dependent on the

ine redundancy, f l is the power flowing through l when the DC power
ow is computed on the full network, and 𝑓 𝑚𝑎𝑥 

𝑙 
is: 

 

𝑚𝑎𝑥 
𝑙 

= max 
(|||𝑓 𝑙 |, |𝑓 1 𝑙 |, |𝑓 2 𝑙 |, … , |𝑓 𝑚 

𝑙 

|||) 𝑙 ∈ 𝐸 

 (6)

ith 𝑓 𝑖 
𝑙 

as the power flowing through line l when line i is removed from

 

 , considering 𝑓 𝑙 
𝑙 
= 0 , and 𝑚 = |𝐸 

 |. Note that the support of the
robability density function (pdf) in Eq. (5) , for different values of f l and
 

𝑚𝑎𝑥 
𝑙

, covers capacity values that are finite and guarantee 𝑁 − 1 com-
liance. However, since we want our sample to belong to a discrete
et of capacities, we discretize Eq. (5) among equally spaced quantiles:
 ̄𝐶 1 < �̄� 2 < … < �̄� 𝑛 𝜁 } , where n 𝜁 is dependent on the average number of
ines of the networks with redundancy 𝜁 : 

 

(
𝐶 𝑙 = �̄� 𝑖 |𝑓 𝑙 , 𝑓 𝑚𝑎𝑥 𝑙 

, 𝜁
)
= 

𝑒 
− 𝜆|𝑓 𝑙 |

�̄�𝑖 − 𝑒
− 𝜆|𝑓 𝑙 |
�̄� 𝑖 −1

𝑐 2 

( 

𝑒

𝜆|𝑓 𝑙 |
𝐶 𝑚𝑎𝑥
𝜁 − 𝑒

− 𝜆|𝑓 𝑙 |
𝑓 𝑚𝑎𝑥
𝑙

) 

𝐼 (
𝑓 𝑚𝑎𝑥 
𝑙

,𝐶 𝑚𝑎𝑥
𝜁

](�̄� 𝑖). (7)

The distribution in Eq. (7) reflects discrete and finite capacities as
een in real systems. Our line power flow-capacity ratios are distributed
n a similar way to the Polish grid as a reference, and are initially 𝑁 − 1
ompliant. The demanding computation here is for 𝑓 𝑚𝑎𝑥 

𝑙 
, as one needs to

ompute the power flow for a network with one of its lines removed, for
ll of its lines in all the generated networks. After applying consecutively
ll the procedures just described, a complete set of synthetic DC power
rid models N is obtained whose elements  ∈ N are defined as in
q. (1) . 

. Cascading failure model

In the following sections we explain the cascading failure model em-
loyed to study all the power grid configurations in N . 

.1. Algorithm for cascading failure process 

The general steps are illustrated in Algorithm 4.1 (Cascading failure
imulator, CFS) based on Bienstock [2] . The algorithm receives as input
 power grid object  , and the indices of the initial couple of line fail-
res ( l i , l j ) to study N -2 reliability compliance. Then, Step 1 computes
he power flow at the equilibrium state before initial failures. Step 2 ap-
lies the initial failure to the power grid by removing the targeted lines.
hen, each iteration r of the For loop corresponds to a failure event in
he cascade simulation [i.e., when some lines become overloaded, with
 = 1 corresponding to the initial failure of ( l i , l j )]. If the initial failure
oes not lead to a cascade, then CFS 4.1 stops at 𝑟 = 1 . Step 3 is neces-
ary in order to deal with islanding when line failures break the original
etwork G into multiple connected components which might have an
mbalance in power supply or demand [34] . Step 3 is handled by a DC
e-dispatch logic that will be explained in Section 4.2 . At the end of the

imulation, systemic metrics 𝑃 
( 𝑙 𝑖 , 𝑙 𝑗 ) 
𝑙𝑜𝑠𝑠 

and 𝑁 

( 𝑙 𝑖 , 𝑙 𝑗 ) 
𝑓𝑎𝑖𝑙 

are computed, and after
he algorithm has run for all the couples of lines of the network, P tot and
 tot are computed as in Eqs (2) and (3) . 

.2. Re-dispatch logic 

During a cascading failure it is possible that an originally con-
ected power network becomes separated in v subnetworks or is-
ands: 𝐼 𝑠 𝑙 1 , 𝐼 𝑠 𝑙 2 , … , 𝐼𝑠 𝑙 𝑣 [2] . Each island, being a subset of the orig-
nal power grid  , is defined consistently with Eq. (1) as follows:
𝑠 𝑙 𝑖 = ( 𝑉 𝐼𝑠 𝑙 𝑖 , 𝐸 

𝐼𝑠 𝑙 𝑖 , 𝒁 

𝐼𝑠 𝑙 𝑖 , 𝑷 𝑫 

𝐼𝑠 𝑙 𝑖 , 𝑷 𝑮 

𝐼𝑠 𝑙 𝑖 , 𝑷 𝑴 𝑨 𝑿 

𝐼𝑠 𝑙 𝑖 , 𝑪 

𝐼𝑠 𝑙 𝑖 ) ⊂ . In prin-
iple, islands do not have balanced power supply and demand, thus re-
uiring a readjustment in vectors PG , PD through an operation called
e-dispatch. Re-dispatch is not a property of the power grid structure of
q. (1) , and hence it is embedded in Step 3 of the CFS Algorithm 4.1 .
e could have chosen other control actions; however, re-dispatch is still

ne of the most common operational actions used to reduce costs and
ounteract line overloads. Meanwhile, other operations such as trans-
ission switching are mainly applied for planned outage management

nd costs reduction, but their impact on reliability is only starting to be
nderstood [35] . Hence, at each iteration r of an overloading event, the
roportional routine adjusts power in 𝐼 𝑠 𝑙 1 , 𝐼 𝑠 𝑙 2 , … , 𝐼𝑠 𝑙 𝑣 as follows:

𝑖 ∈ 𝑉 𝐼𝑠 𝑙 𝑗 ∶ 𝑃 𝐺 

𝑟 
𝑖 
= 𝛼𝑖 𝑃 𝐺 

𝑟 −1 
𝑖 

+ 𝛾𝑖 , 𝑃 𝐷 

𝑟 
𝑖 
= 𝛽𝑖 𝑃 𝐷 

𝑟 −1
𝑖 

(8)

here 𝛼i , 𝛽 i and 𝛾 i take different values depending on particular situa-
ions: 

𝑖 = 

𝑃 𝐷 

𝑟 −1 
𝑗 

𝑃 𝐺 

𝑟 −1 
𝑗 

, 𝛾𝑖 = 0 , 𝛽𝑖 = 1 𝑖𝑓 𝑃 𝐺 

𝑟 −1 
𝐼𝑠 𝑙 𝑗

≥ 𝑃 𝐷 

𝑟 −1 
𝐼𝑠 𝑙 𝑗

(9)

𝑖 = 1 , 𝛾𝑖 = 

(
𝑃 𝑀𝐴 𝑋 𝑖 − 𝑃 𝐺 

𝑟 −1 
𝑖 

)(
𝑃 𝐷 

𝑟 −1 
𝐼𝑠 𝑙 𝑗

− 𝑃 𝐺 

𝑟 −1
𝐼𝑠 𝑙 𝑗

)
𝑃 𝑀𝐴 𝑋 𝐼𝑠 𝑙 𝑗 

− 𝑃 𝐺 

𝑟 −1
𝐼𝑠 𝑙 𝑗

,

𝛽𝑖 = 1 𝑖𝑓 𝑃 𝑀𝐴 𝑋 𝐼𝑠 𝑙 𝑗 
≥ 𝑃 𝐷𝑟 −1 

𝐼𝑠 𝑙 𝑗
≥ 𝑃 𝐺 

𝑟 −1 
𝐼𝑠 𝑙 𝑗

(10)

𝑖 = 

𝑃 𝑀𝐴 𝑋 𝑖 

𝑃 𝐺 

𝑟 −1 
𝑖 

, 𝛾𝑖 = 0 𝛽𝑖 = 

𝑃 𝑀𝐴𝑋 

𝑟 −1 
𝐼𝑠 𝑙 𝑗 

𝑃 𝐷 

𝑟 −1 
𝐼𝑠 𝑙 𝑗

𝑖𝑓 𝑃 𝐷 

𝑟 −1 
𝐼𝑠 𝑙 𝑗 

≥ 𝑃 𝑀𝐴 𝑋 𝐼𝑠 𝑙 𝑗 
(11)

here 𝑃 𝐺 

𝑟 −1 
𝐼𝑠 𝑙 𝑗

= 

∑
𝑖 ∈𝑉 𝐼𝑠 𝑙 𝑗 

𝑃 𝐺 

𝑟 −1 
𝑖 

, 𝑃 𝐷 

𝑟 −1 
𝐼𝑠 𝑙 𝑗

= 

∑
𝑖 ∈𝑉 𝐼𝑠 𝑙 𝑗 

𝑃 𝐷 

𝑟 −1 
𝑖 

are the total power

enerated and demanded in island j before the overloading event r . Also,
 𝑀𝐴 𝑋 𝐼𝑠 𝑙 𝑗 

= 

∑
𝑖 ∈𝑉 𝐼𝑠 𝑙 𝑗 

𝑃 𝑀𝐴 𝑋 𝑖 is the total power capacity of the island.

his proportional logic is simple by not taking into account the capaci-
ies of the surviving lines in the system and is close to a “no-redispatch
imulation ”, particularly as it maintains power balance in the network
ith limited optimization steps, intervening only in case of islanding.
roportional power generation is still frequently used in practice as in
he case of generator disconnections [34] . In the case of fast cascading
ailures, there could be insufficient time to carry out more sophisticated
han proportional interventions. Hence, the proportional logic offers a
uitable baseline for comparison with desired optimization based strate-
ies. 

In contrast, the OPA model re-dispatches power by solving the fol-
owing linear program for each island 𝐼 𝑠 𝑙 1 , 𝐼 𝑠 𝑙 2 , … , 𝐼𝑠 𝑙 𝑣 :

∀ 𝑗 ∈ { 1 , 2 , … , 𝑣 } solve : 

min 
𝑝𝑔, Δ𝑝𝑑 

∑
𝑖 ∈𝑉 𝐼𝑠 𝑙 𝑗 

Δ𝑝 𝑔 𝑖 + 100 
∑

𝑖 ∈𝑉 𝐼𝑠 𝑙 𝑗 
Δ𝑝 𝑑 𝑖 (12)

Subject to: 

𝑖 ∈ 𝑉 𝐼𝑠 𝑙 𝑗 ∶ − 𝑃 𝐺 

𝑟 −1 ≤ Δ𝑝 𝑔 𝑖 ≤ 𝑃 𝑀𝐴 𝑋 𝑖 (13)
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Fig. 3. Probabilistic response variables as a function of topology variations governed by 𝜁 : (a) log-log plot of the tail distributions of P loss , and (b) semi-log plot for 

the tail distribution of N fail . 
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s  
𝑖 ∈ 𝑉 𝐼𝑠 𝑙 𝑗 ∶ 0 ≤ Δ𝑝 𝑑 𝑖 ≤ 𝑃 𝐷 

𝑟 −1
𝑖 

(14)

∑
 ∈𝑉 𝐼𝑠 𝑙 𝑗 

(Δ𝑝 𝑔 𝑖 − Δ𝑝 𝑑 𝑖 ) = 

∑
𝑖 ∈𝑉 𝐼𝑠 𝑙 𝑗 

( 𝑃 𝐺 

𝑟 −1
𝑖 

− 𝑃 𝐷 

𝑟 −1 
𝑖 

) (15)

∀𝑙 ∈ 𝐸 

𝐼𝑠 𝑙 𝑗 ∶ − 𝐶 𝑙 − 𝑓 𝑙 + 𝜀 𝑙 𝐶 𝑙 ≤ 𝑩 𝑙⋅( 𝚫𝒑 𝒈 − 𝚫𝒑 𝒅 ) ≤ 𝐶 𝑙 − 𝑓 𝑙 + 𝜀 𝑙 𝐶 𝑙 (16)

here B l · is the l th row of the susceptance matrix B of the network. The
bjective function in Eq. (12) allows to re-dispatch power giving prior-
ty to generators by penalizing power demand modifications, as avoided
henever possible in practice. Constraints in Eq. (13) make sure that the
ower supplied by each generator is always below its maximum capac-
ty, while constraints in Eq. (14) bound the power demanded from each
oad to its initial value (when the grid is in equilibrium). Constraints in
q. (15) ensure that in each island, supply and demand are balanced,
nd constraints in Eq. (16) force the re-dispatch action to respect the
urviving lines ’ capacities. Since in real situations the thermal rating of
ransmission lines is never known exactly and depends on external con-
itions as well as intrinsic properties of the material and shape of the
onductors, a small error noise ɛ l C l is introduced in the nominal capacity
alue C l . ɛ l is randomly sampled from a uniform distribution between
 0.01 and 0.01 every time the optimization is performed. After solv-

ng the linear program, the power supply/demand of each bus in Isl j is
djusted:

 𝐷 

𝑟 
𝑖 
= 𝑃 𝐷 

𝑟 −1
𝑖 

− Δ𝑝 𝑑 𝑖 ∀𝑖 ∈ 𝑉 𝐼𝑠 𝑙 𝑗 (17)

 𝐺 

𝑟 
𝑖 
= 𝑃 𝐺 

𝑟 −1
𝑖 

+ Δ𝑝 𝑔 𝑖 ∀𝑖 ∈ 𝑉 𝐼𝑠 𝑙 𝑗 (18)

The OPA model is a simplification of how a power grid operator
ight intervene in re-dispatching power. It has been used to solve opti-
ization problems related to the prevention of blackouts [36] , as well

s to study the vulnerability of interdependent systems [37] . 

. Computational experiments and results

.1. Impact of topology on cascade failure vulnerability 

Fig. 3 shows the log-log and semi-log plots of the tail distribution of
esponse variables P loss and N fail for the original synthetic power grids
nd the two bounding topologies derived in Section 3.3 , representing
arious line redundancy factors 𝜁 . 
As expected, the complementary cumulative distribution function
ccdf) for baseline networks ( 𝜁 = 0 ) is halfway vulnerable between
ower delivery interruptions in the tree network ( 𝜁 = −1 ) and the greedy
riangulation ( 𝜁 = 1 ) [ Fig. 3 (a)]. For 𝜁 = −1 , the power grids show high
robabilities of power losses, as the probability of P loss > 10 2 MW is
bove 50%. Since power losses depend on islanding and bus disconnec-
ions in our model, such strategies are at odds when 𝜁 = −1 as only min-
mal sets of lines necessary to ensure connectivity are present. Hence,
ach line failure is sufficient to split the grids into multiple connected
omponents and, depending on the position of generators, cause power
osses. When 𝜁 = 0 and 𝜁 = 1 , topologies are less sensitive to line failure
iven more alternative paths to satisfy demands, and in most cases few
ailures do not alter system-level functional pathways. In fact, the prob-
bility of having P loss > 10 2 MW after a double contingency is approxi-
ately 1% for 𝜁 = 0 , and below 0.01% for 𝜁 = 1 . However, note that

he tail of the ccdf for 𝜁 = 0 still reaches values comparable to the worst
cenarios in the tree networks, signaling undesirable configurations al-
hough at a much lower frequency. No such configuration is present in
he greedy triangulation given the short tail. The maximum power losses
or the three different network groups are: 3,879 MW for 𝜁 = −1 , 3,098
W for 𝜁 = 0 and 598 MW for 𝜁 = 1 on a total initial power production

f 4,377 MW. 
The role of line redundancy is different with respect to N tot , where

ig. 3 (b) shows that the 𝜁 = 0 topologies have higher probabilities of
dditional line failures after the initial double line contingency. This is
ecause line overloads affect lines belonging to alternative paths, and
ince in 𝜁 = −1 configurations only one path exists between each couple
f buses, no overload due to power flow re-distribution is possible. In
ontrast, the 𝜁 = 0 and 𝜁 = 1 topologies can be subject to line failures
hen the power flow is re-directed. The tail distribution of N fail is higher

or 𝜁 = 0 than 𝜁 = 1 showing that N fail is non-linear and non-monotonic
ith respect to 𝜁 . The 𝜁 = 1 networks have a much higher number of
lternative paths than the 𝜁 = 0 configurations, thus the power flow
e-directed by the initial line failures is dispersed among a larger set
f possible alternative routes. Specific results show that the maximum
umber of consecutive overloads for the three different structures is 4
or 𝜁 = −1 , 28 for 𝜁 = 0 and 15 for 𝜁 = 1 . 

.2. Impact of generators positions 

Regarding the electrical structure, there is impact from different po-
itions of generator buses via the K factor (spanning from a centralized
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ower supply layout to a distributed one). Fig. 4 shows the log-log plot
f the empirical tail distributions for P loss and semi-log of the same quan-
ity for N fail for the different levels of factor K —here we considered a
otal of 360 cases. 

Fig. 4 (a) and (b) show that the probability of both high power losses
nd additional line failures decreases as K increases (i.e., as we move
rom a centralized structure to a distributed one). In fact, centralized
ower generation structures have important tie lines which connect the
ower supply agglomerates with the power demand sites. Failing these
ie lines cause more widespread power interruptions as reflected in the
igher values of expected P loss . In contrast, the distributed generation
ases ( 𝐾 = 1 ) are more robust since the supply and demand buses are
pread through the network and not separable by a few line failures.
hese general considerations do not apply equally to every topological
ype, as one can see from the multivariate chart for the 𝜁 ×K groups
n Fig. 5 . As expected, 𝜁 = −1 networks are greatly influenced by the
iting of generators. In fact, in centralized generator configurations the
umber of tie lines is minimal for this type of network. Even the initial
ouble contingency, in some configurations, can disconnect entirely the
upply nodes from the demand nodes. The other network topologies are
ot so sensitive, thanks to their N -1 compliant design, as even when all
u  
enerators are clustered together, there is enough redundancy in the tie
ines to prevent the complete power supply/demand disconnection (see
ig. 2 for clustering examples). 

The layout of load and generators seem to affect the line outages N tot 

n all configurations, especially the 𝜁 = 0 case. For 𝜁 = −1 the distributed
enerators slightly increase the quantity of line outages in the networks
 tot —an opposite trend with respect to 𝜁 = { 0 , 1 } . Overall, one notices

hat the role of 𝜁 , at low to medium levels that capture most realistic
ystems, is critical with respect to K in determining the behavior of both
ower losses and line failures. 

.3. Impact of re-dispatch policy 

In addition to the topological structure and electrical features of a
ower grid, the re-dispatch of power generation is one of the most fre-
uently used control actions taken by operators to decrease operational
osts and increase reliability (thus essential in the case of islanding
34] ). When contingencies strike, re-dispatch is also applied as a mit-
gation action to avoid additional cascade failures; however, in some
eal fast-evolving cases, wrong re-dispatch can actually worsen the sit-
ation [38] . Fig. 6 shows the log-log plot of the tail distribution for



Fig. 6. Probabilistic response variables as a function of re-dispatch strategy: (a) log-log plot of the tail distributions of P loss , and (b) semi-log plot for the tail 

distribution of N tot . 

Fig. 7. Multivariate chart for identifying interactions between (a) re-dispatch and topology , and (b) re-dispatch and generator siting K.
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 loss and the semi-log plot of the tail distribution for N fail , across cases
hich share the same re-dispatch procedure. In particular, we consider
 proportional procedure and the OPA model. The impact of the more
ophisticated OPA control strategy in preventing overloads is clear in
ig. 6 (b). In fact, different from the proportional model which tries to
ccommodate the demand in a greedy way, the OPA model sacrifices
ower demand in order to prevent line failures whenever the linear pro-
ram (12) –(18) is feasible, thus preventing cascading failures to spread.
egarding P loss , OPA seems to succeed in reducing power losses in the
ost extreme scenarios, but does not have significant impact on small

nd medium power outages as evidenced in Fig. 6 (a). This is because
he OPA policy focuses on optimizing power losses under the constraint
f no additional overloads ( Eq. (16) ), thus avoiding extended cascades
hich represents the extreme scenarios where large amounts of power
re lost. 

Fig. 7 shows the multivariate chart for N tot , comparing the mean ef-
ect of the combinations of the re-dispatch factor with topology and gen-
rator position. The OPA re-dispatch successfully prevents line failures
n all different topologies and also with respect to all generator config-
rations in K . Overall, the best improvement is obtained in the interme-
iate line redundancy level 𝜁 = 0 which was identified as more vulner-
ble to line overloads (and the closest to redundancy levels in practice).
 g  
eanwhile, P tot offers no discernible interaction pattern, mainly because
s noted in Fig. 6 , the main effect of the re-dispatch factor on P tot is itself
eak, influencing the outcomes of only rare scenarios. 

. Insights for power grid design and operation

This work shows that line redundancy and generator/load layout fac-
ors have a significant impact on the robustness of power grids to power
oss and cascading line failures. From the line redundancy perspective,
 minimum amount of redundant transmission lines is clearly necessary
o avoid power interruptions every time a line fails. As shown in Fig. 3 ,
f topologies are denser than the 𝜁 = −1 case (approaching the 𝜁 = 0 lay-
ut), power losses decrease, although it is still possible to overload lines
ue to power flow re-distribution, and lead to widespread blackouts.
t an extreme, if a considerable number of redundant lines are added

approaching the 𝜁 = 1 layout), it becomes possible to do both: signif-
cantly decrease the overload frequency of the transmission lines and
void large blackouts. In practice, however, building new transmission
s too expensive to pursue a 𝜁 = 1 power grid. Therefore, we identify a
aseline combination of the topological factors of redundancy and gen-
rator layout which, while being attainable in practice, still achieve a
ood level of protection to cascading failures. To this end, we perform



Fig. 8. Confidence intervals of the group mean of (a) P tot and (b) N tot for different line redundancy values . 
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Fig. 9. Confidence intervals of the group means of (a) P tot and (b) N tot for different line redundancy values and generator layouts. 
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dditional simulations with power networks with intermediate redun-
ancy levels, in-between 𝜁 = { −1 , 0 , 1 } . Since the design of the control
trategy can be carried out independently from the choices of 𝜁 and K ,
e perform simulations with the proportional re-dispatch only. In this
ay we obtain lower bounds on the power network robustness that can

hen be further improved by applying a more sophisticated control strat-
gy, such as OPA ( Figs. 6 and 7 ). Fig. 8 (a) and (b) show the confidence
ntervals for the mean of P tot and N tot as we vary the redundancy level
f the baseline case (0 on the x -axis) toward − 1 or 1 with proportional
e-dispatch. 

Fig. 8 (a) shows that adding lines always helps saving power losses
s P tot is monotonically decreasing. The behavior of N tot is more com-
lex and not monotonic as also evidenced in Fig. 3 . Having only a few
edundant lines above the ST configuration leads to highly vulnerable
opologies, while continuing to add more lines after the peak, slowly
mproves the situation ( Fig. 8 (b)). Also, after 25% of the lines which
eparate GT from G are added to the latter, significant improvement is
chieved, but beyond that point improvement is marginal. Hence, build-
ng new transmission lines would not be the most economic and time
fficient strategy to reduce the power grid risk of cascading failures for
enser topologies, so measures relying on control strategies and/or dis-
ributed generators should also be included. 

Considering the layout of loads and generators we show they af-
ect mainly N . On average, more distributed configurations render less
tot 
ower loss and noticeably smaller cascading failures. The magnitude of
he improvements depends on the redundancy level of the network. In
articular, the lower the number of redundant lines in the grid beforee
ecoming trees, the more sensitive the response to generator layout.
ig. 9 shows the confidence intervals for the mean of P tot and N tot as we
ary the redundancy level of the baseline topology for the three differ-
nt generators layouts. Looking at the confidence bands in Figs. 8 (b) and
 (b), we notice how for N tot the intervals are wider for sparse topologies
nd clustered generators layouts. 

These results suggest that dispersing power generating units across
he power grid helps to avoid line overloads whenever the number of
edundant lines is not sufficient. This type of intervention is happening
d-hoc via smart grid technologies and distributed generation (DG) to-
ay. Most likely, combinations of transmission line build up and DG,
hich require novel controls, offer a foreseeable solution to manage
ower losses and cascades in evolving power systems. 

Regarding re-dispatch, we find it has a determinant role in avoiding
he overload of additional transmission lines after initial contingencies
aterialize. Moreover, corrective re-dispatch actions interact in a syn-

rgistic way with the power grid topologies, bringing weaker configu-
ations at approximately the same level of the stronger ones. In power
rids vulnerable to overload, the optimized OPA model could generally
void large scale cascades and associated blackouts, relative to simpler
roportional strategies. 
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. 
. Summary and conclusions

This study develops new strategies to evaluate cascading failure dy-
amics through a broad set of realistic power grid topologies operated
ith different power re-dispatch strategies. Cascading failures are sen-

itive to the initial power grid topology, supply/demand states, and the
ontrol actions applied while cascades evolve. Most existing work is spe-
ific to case study systems with set topology, and thus conclusions are
ypically not generalizable. The approach taken in this work is instead
o explore key topological, electrical and control inputs across realistic
ower grids in order to find parameter settings to safeguard grids from
ascading failures. The quantitative results drawn from this exploration
re translated into high-level guidelines for reliability-based power grid
esign that are generalizable, since the global-to-local computational
trategy employed here is probabilistic and accommodates an ensemble
f topological and electrical system configurations. 

Results show that for reducing the probability of large power losses,
mprovements at the structure/layout levels are necessary, including
trategies that increase line redundancy, decentralize generators, or use
ombinations of them (at levels not too distant from realistic system
onfigurations). Meanwhile, if major risks derive from too frequent over-
oads, it is better to inspect the control policies currently employed in
he system and assess if it is necessary to improve or optimize them.
n particular, power re-dispatch shows that line overload containment
hrough optimized load shedding and power generation re-scheduling
s effective in prevent the propagation of failures in all the power grid
onfigurations considered. 

Overall results show that the best practical solution to the problem of

inimizing the probability of power losses and multiple line overloads

s to have a topology slightly more redundant than the average level
or realistic systems 0 < 𝜁 <  0.25, coupled with distributed generators

ayout K > 0.50. In addition to this topological solution, an optimized re-

ispatch strategy would bring even greater benefits by curtailing the few
ascading failures that still can breach a robust power network design.
lso, increased line redundancy and generator decentralization levels
educe the variability of performance measures, such as the number of
ines overloaded, furthering the manageability of complex power sys-
ems. 

Future research includes extending the computational experiments
resented in this work by considering AC power flow [34] and other
orms of control actions such as those that modify the topology of the
rid [35].  Moreover, instead of considering single or double contingen
ies, the initial failure events could be generated with hazard-consistent
imulation approaches, so as to represent risk due to extreme events and
uantify the associated uncertainty in the cascading dynamics of power
rid systems. And risk analyses that exploit the hierarchical structure of
etworks also offer untapped opportunities for power systems [39].  

Notation list: 

Factors 

𝜁 : line redundancy factor 
K : generator layout factor 
R : re-dispatch factor 

Sets 

N : set of power grid objects 
E : set of arcs of the graph representing the power grid topology
V : set of vertices of the graph representing the power grid topol-

ogy 

Objects: 

 : power grid object 
 

0 : power grid object at initial state 
 

𝑟 : power grid configuration after the r th line failure event 

Power grid electrical parameters: 

Z : vector containing the impedances of the arcs 
PD : vector containing the power demands for buses in the power
grid 

PD i : power demand for bus i 
PG : vector containing the power supplies for buses in the power

grid 
PG i : power supply for bus i 
PMAX : vector containing the power supplies limits for buses in the

power grid 
PMAX i : power supply limit for bus i 
C : vector containing the capacities for the arcs in the power grid

Power flow and capacity allocation parameters and variables: 

l : line of the power grid defined as an arc with impedance and
capacity ( e, Z, C ) 

f l : power flowing through line l 
𝑓 𝑖 
𝑙 
: power flowing through line l when only line i is failed 

𝑓 𝑚𝑎𝑥 
𝑙

∶ maximum power flowing through l obtained from 𝑁 − 1 con-
tigency analysis 

f r : power flow vector associated with  

𝑟 

�̄� 𝑖 : i th smaller capacity value that can be sampled from the ca-
pacity distribution 

𝐶 𝑚𝑎𝑥 
𝜁

∶ maximum capacity value allowed for a given value of line
redundancy 𝜁

Re-dispatch parameters and variables: 

𝛼i : coefficient for proportional power generator adjustment for
bus i (proportional re-dispatch) 

𝛾 i : constant coefficient for power generator adjustment for bus i
(proportional re-dispatch) 

𝛽 i : coefficient for proportional power demand adjustment for bus
i (proportional re-dispatch) 

𝚫pg : power generation adjustment vector (OPA re-dispatch) 
𝚫pd : power demand adjustment vector (OPA re-dispatch) 
Δpg i : power generation adjustment for bus i (OPA re-dispatch) 
Δpd i : power demand adjustment for bus i (OPA re-dispatch) 
B : susceptance matrix 
ɛ l : noise in the capacity nominal value for line l 

Response measures: 

𝑃
( 𝑙 𝑖 , 𝑙 𝑗 ) 
𝑙𝑜𝑠𝑠

∶ amount of power not supplied at the final state when l i , l j are
selected as initial failures 

𝑁
( 𝑙 𝑖 , 𝑙 𝑗 ) 
𝑓𝑎𝑖𝑙

: amount of lines failed at the final state when l i , l j are selected
as initial failures 

P tot : total power loss across N -2 contingencies 
N tot : total cascading lines across N -2 contingencies 
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[28] Zimmerman RD,  Murillo Sá nchez CE,  Thomas RJ.  MATPOWER: Steady-stat
opera- tions, planning, and analysis tools for power systems research and 
education. Power Syst IEEE Trans 2011;26(1):12–19. 

[29] Hespanha P.  An efficient MATLAB algorithm for graph partitioning technical 
report graph partitioning. October 2004:1–8. 

[30] Li J,  Dueñas-Osorio L,  Chen C,  Berryhill B,  Yazdani A.  Characterizing the 
topologi- cal and controllability features of U.S. power transmission networks. 
Physica A Jul. 2016;453:84–98. 

[31] Cetinay H,  Kuipers FA,  Mieghem PV.  A topological investigation of power 
flow. IEEE Syst J 2017(99):1–9. 

[32] Zio E,  Piccinelli R.  Randomized flow model and centrality measure for 
electrical power transmission network analysis. Reliab Eng Syst Saf 
2010;95(4):379–85. 

[33] Dueñas-Osorio L,  Vemuru SM.  Cascading failures in complex infrastructure 
systems. Struct Saf 2009;31(2):157–67. 

[34] Allen J Wood BFW.  Power generation operation and control. 2nd Ed. WILEY-INTER
SCIENCE; 1996. 

[35] Zhang C,  Wang J.  Optimal transmission switching considering probabilistic 
reliabil- ity. IEEE Trans Power Syst 2014;29(2):974–5. 

[36] Bienstock D,  Mattia S.  Using mixed-integer programming to solve power grid 
black- out problems. Discrete Optim 2007;4(1):115–41. 

[37] Ouyang M HL,  Mao Z,  Yu M,  Qi F.  A methodological approach to analyze 
vulnera- bility of interdependent infrastructure. Simul Modell Pract Theory 
2009;17(5):12. 

[38] Andersson G,  et al. Causes of the 2003 major grid blackouts in North America Eu
rope, and recommended means to improve system dynamic performance. IEEE Trans
Power Syst 2005;20(4):1922–8. 

[39] Gómez C,  Sanchez-Silva M,  Dueñas-Osorio L,  Rosowsky D.  Hierarchical 

http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0007
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0007
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0007
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0008
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0008
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0008
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0009
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0009
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0009
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0009
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0010
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0010
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0010
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0010
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0011
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0011
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0011
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0011
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0011
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0011
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0012
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0012
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0012
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0012
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0013
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0013
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0013
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0013
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0014
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0014
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0014
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0015
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0015
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0016
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0016
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0016
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0016
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0017
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0017
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0017
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0018
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0018
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0018
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0019
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0019
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0019
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0019
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0019
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0019
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0020
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0020
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0020
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0020
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0020
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0021
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0021
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0021
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0021
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0021
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0022
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0022
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0022
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0023
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0023
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0023
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0023
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0023
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0024
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0024
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0024
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0024
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0024
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0025
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0025
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0025
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0025
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0026
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0026
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0026
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0026
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0026
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0026
https://www.ee.washington.edu/research/pstca/
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0027
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0027
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0027
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0027
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0028
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0028
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0029
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0029
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0029
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0029
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0029
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0029
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0030
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0030
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0030
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0030
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0031
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0031
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0031
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0032
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0032
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0032
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0033
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0033
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0034
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0034
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0034
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0035
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0035
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0035
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0036
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0036
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0036
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0036
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0036
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0037
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0037
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0037
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0037a
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0037a
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0037a
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0037a
http://refhub.elsevier.com/S0951-8320(16)31035-3/sbref0037a

	Electrical and topological drivers of the cascading failure dynamics in power transmission networks
	1 Introduction
	2 Global strategy for studying evolving power systems
	2.1 Full factorial design
	2.2 Response variables

	3 Synthetic power grids for computational experiments 
	3.1 Topological properties of power networks
	3.2 The RT-nested small world model
	3.3 Bounding models
	3.4 Siting of loads and generators
	3.5 Line capacity assignments

	4 Cascading failure model
	4.1 Algorithm for cascading failure process
	4.2 Re-dispatch logic

	5 Computational experiments and results
	5.1 Impact of topology on cascade failure vulnerability
	5.2 Impact of generators positions
	5.3 Impact of re-dispatch policy

	6 Insights for power grid design and operation
	7 Summary and conclusions
	 Acknowledgments
	 References




