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Abstract.
In the study of disordered models like spin glasses the key object of interest is 
the rugged energy hypersurface defined in configuration space. The statistical 
mechanics calculation of the Gibbs–Boltzmann partition function gives the
information necessary to understand the equilibrium behavior of the system as 
a function of the temperature but is not enough if we are interested in the 
more general aspects of the hypersurface: it does not give us, for instance, the 
dierent degrees of ruggedness at dierent scales. In the context of the replica 
symmetry breaking (RSB) approach we discuss here a rather simple extension
that can provide a much more detailed picture. The attractiveness of the 
method relies on the fact that it is conceptually transparent and the additional 
calculations are rather straightforward. We think that this approach reveals an 
ultrametric organisation with many levels in models like p-spin glasses when 
we include saddle points. In this first paper we present detailed calculations for 
the spherical p-spin glass model where we discover that the corresponding 
decreasing Parisi function q(x) codes this hidden ultrametric organisation.
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1. Introduction

Some time ago we proposed [1–3] a method to introduce more control parameters 
(in addition to temperature) in order to analyse the detailed ruggedness of an energy 
hypersurface of a disordered complex system.

In so doing we were following a long line of research that considers systems com-
posed of several real replicas (in addition to the virtual replicas of the replica trick) 
satisfying various constraints [4–8].

Our proposal here pushes the assumption of ultrametricity to new levels as we will 
be investigating the distribution of saddle points consistent with ultrametricity. The 
skeptical reader may perceive this as an unintended and unjustified consequence of past 
successes with the hypothesis. We hope that the pragmatic reader will instead 
appreciate the elegance and simplicity of the calculations and join us in hoping that this 
extension be proved correct. In any case the cost of configurations that do not comply 
with ultrametricity can be analysed by other methods (see for instance [5, 6, 9, 10]).

In pursuing this approach we were inspired by Derrida’s generalised random energy 
model [11] where a multilevel ultrametric organisation built in can be revealed or hid-
den in the Gibbs–Boltzmann measure depending on the parameters of the model.

Let us then imagine a configuration space partitioned in a hierarchical way along 
an ultrametric tree with K  +  1 layers labeled (0, 1...K ) (K replica symmetry levels;



hereinafter RSB levels). The leaves of the tree are the ergodic pure states and define
regions in the configuration space limited by the Edward–Anderson overlap parameter

=q qK EA. Each region is characterised by some kind of aggregate energy and by its
size. These regions are then grouped in clusters limited by the overlap qK−1 that defines 
a larger scale partition. These clusters are themselves grouped in superclusters in a 
scheme that continues along the tree. At each level we will have some kind of gener-
alised free energy for every cluster/supercluster. The qk satisfy > > >− �q q q qK K 1 1 0.
Then the generic question at any level of the tree is how many kth clusters of overlap 
qk and generalised free energy F are contained in a higher-level cluster of overlap qk−1 
and another particular generalised free energy ′F . This information is relevant, for 
instance, to the relaxation dynamics of the system or to the design of an ecient search 
algorithm of the minima and cannot, in general, be derived from the partition function
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where there is a single parameter β() because the sum aggregates information that one 
needs to keep apart. As usual the subscript J reminds us that in the definition of HJ 
there are an infinite number of random quenched parameters and that we are dealing 
with an ensemble of hypersurfaces. The results take the form of analytic expressions for 
average quantities including correlations among local saddle points at variable distances 
in the configuration space. From now on we omit the J subscript and unless explicitly 
stated otherwise we will be referring to quantities averaged over J.

The remainder of the paper is organized as follows: in section 2, subsection 2.1, we 
first show how to introduce another parameter in addition to the temperature to 
disaggregate the contributions coming from states with dierent free energies and 
configurational complexities so as to ‘see’ smaller or shallower states that would not 
contribute to Z because of their small weight and larger or deeper ones that do not 
contribute because of their reduced number. At this point our method turns out to be 
equivalent to Monasson’s proposal [8]. The advantage of our approach becomes appar-
ent in section 2.2 where a generalisation that adds up to K parameters is considered.

In sections 3 and 4 we present in full detail the case of a p-spin spherical model 
for a hierarchical tree with 3 levels (K  =  2 RSB levels). The generalisation for any K
is straightforward. In this example we will use what is known about the solutions to 
the Thouless–Anderson–Palmer (TAP) equations. We will show that the correspond-
ing ultrametric tree is revealed by the monotonically decreasing x(q) function [6]. The 
presentation will show that in general, for any system, in a particular region of the con-
straint parameters (when the number of real replicas is large enough) the free energy 
of the system per replica becomes equal to a saddle point solution of the unconstrained 
system.

In section 5 we discuss some preliminary conclusions.

2. The proposal: real replicas organised ultrametrically

To simplify the presentation we divide the proposal into 2 subsections and assume 
K  =  2. It will become obvious how to generalise it for arbitrary K.



2.1. Revealing the states when their statistical weight is too small

In this case we consider the partition function of a system composed of R real replicas, 
all of which have mutual overlap q. Specifically:
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where ⋅ ′C Ca a  is the overlap between the configurations Ca and ′Ca  and both ′a a,  run
from 1 to R. At this moment R is larger than 1 and is an integer but, as usual, after 
the calculations we will derive an analytic expression and treat R as a real number. 
Now q roughly delimits a region: due to the properties of the energy hypersurface if a 
configuration has a finite weight there will be a relatively large number of configurations 
nearby that will also contribute to Z. Ultrametricity implies that these configurations 
lie inside a ball with maximum overlap qEA. If ⩾q qEA all the R replicas will be inside
that ball and if =q qEA the entropy per replica will be maximal. The calculation is
particularly simple in this case. Therefore we choose:
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We can also write

( )β β= − + + NS S SZ R RE RSlog , log (3)
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( )β β= +NS SZ R RFlog log , (5)

where we identify ES as the internal energy, SS as the state entropy and NS as the 
number of states.

These equations, equal to those in [8], separate the number of configurations per 
state and the number of states. They should be read in general as a definition of FS, 
the free energy per replica, to be identified with previous definitions when the depen-
dence of FS on R is suciently small. Mathematically they reveal a multidimensional 
Legendre transformation allowing a change of variables from R to FS and therefore the 
number of states expressed as a function of the free energy follows and the Legendre 
transform properties imply:
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Parenthetically we observe that the lowest energy configuration in a state (the bot-
tom of the corresponding valley) is determined implicitly by the equation:

(7) SS Ebotto( )m = 0

It is then evident that
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So SF  is the linear extrapolation estimate of Ebottom from an expansion of SS  around SE . 
Similar arguments will apply going up along the tree; the free energy of a cluster will 
be a good estimator of the lowest free energy state inside the cluster. This is relevant to 
the feasibility of a hierarchical search, and is true in practically any system. In the last 
section with the conclusions we will discuss what goes wrong in p-spin glass systems: 
why in this case of hierarchical search, for instance, simulated annealing will not work 
in spite of this general property.

2.2. Clusters of states

We now consider R1 replicas of groups of R2 configurations such that the latter are 
constrained to have an overlap q2, while replicas belonging to dierent groups have an 
overlap <q q1 2.

Now the number of states defined by q2 is decomposed in two components: the num-
ber of states belonging to a cluster ∈NS V and the number of clusters NV.

Then
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where the indices ′a a,  run from 1 to R1 while ′b b,  run from 1 to R2. We will again choose 
q q,1 2 such that
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Then Zlog  is a function of only R and β and as in equation (3) can be decomposed into:

( )β β= − + + +∈N NS S S V VZ R R R R E R R S Rlog , , log log1 2 1 2 1 2 1 (11)
This equation, as in equation (3), should be read as a multidimensional Legendre trans-
form and thus be complemented with
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the meaning of which is rather transparent: the first equation reads as another 
definition of FS, for a replica interacting with R R1 2 − 1 other replicas while the 2nd can
be read as a definition of the free energy of a cluster. The equation corresponding to 
equation (6) in this case is:

β
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R

log V
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In these formulae log N  means log N  rather than log N . We will be using them 
where they are positive and extensive or at least where the sum is positive and exten-
sive. In the latter case, for instance, if

log 0; loN NV S> <g 0; logV V∈ ∈> loN Ng S V

then we can read log ∈N NS V  V as the total number of states with free energy FS con-
tained in clusters of a certain free energy FV.

We observe that configurations inside a state are weighed by the parameter β, while 
states inside a cluster use the parameter βR2 and the clusters themselves βR R1 2 .

The generalisation of this approach to a generic ultrametric tree with K total lev-
els is now straightforward so we spare the reader a cumbersome notation. A warning 
however is worth repeating: as we have stressed we will choose all the overlaps qk of 
the constraints to coincide with the saddle points of the system. This is the key to the 
simplicity of the calculations and implies that all relevant triangles among both real 
and virtual replicas satisfy ultrametricity.

3. Calculations for the spherical p -spin glass

In this section we detail the calculations for the p-spin spherical model. The Hamiltonian 
is [12]
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where the si are real variables subject to a spherical constraint, ∑ == s 1i N i1,
2 , and we 

have to calculate equation (9).
We apply the canonical Parisi trick ([6, 12]) to derive the free energy per spin as a 

function of an nR R1 2 × nR R1 2 matrix O ,α β :
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We can represent O as a matrix of matrices. The natural way to consider the O matrix 
is to order the columns (rows) lexicographically with 3 indices: the slowest one a index-
ing the clusters and running from 1 to R1, then b indexing the states and running from 
1 to R2 and finally j indexing the n virtual replicas. This generalises the parametrisation 
proposed in [6].
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where ′ ′Oab a b, s is an ×n n matrix that encodes the overlap distribution of (a b) with the
( )′ ′a b  real replicas. The diagonal terms of these matrices satisfy the constraints:
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Clearly up to this point nothing is imposed on o-diagonal terms that relate dierent 
virtual replicas. Then we make the natural ansatz:
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with the Q P P, ,1 2 ×n n Parisi matrices having the same block sizes × ×m m m m,1 1 2 2 as
in the standard RSB approach for virtual replicas with 2 RSB levels. Once the limit 

→n 0 is taken the corresponding functions ( ) ( ) ( )q x p x p x, ,1 2  will have the usual probabi-
listic interpretation. For instance the probability distribution of ⋅C C11 12 will be encoded
into p2(x). Therefore the 3 functions must be monotonously increasing for the formalism
to make sense.

We now restrict our consideration to the case where

( ) ( ) ( ) ( )θ θ θ= − + − −q x q x m q m x x m2 2 1 2 1 (19)

( ) ( )=p x q x2 (20)

( ) ( )θ= −p x q x m .1 1 1 (21)

where ( )θ ⋅  is the Heaviside function and >m m2 1. There are 2 dierent levels of assump-
tions behind these ansatzes, as stated in the previous section. The first one has to 
do with the diagonal terms of the matrices being chosen equal to the saddle point 
of ( )βZ R Rlog , ,1 2 . The second is that all triplets of configurations ″ ″′ ′C C C, ,ab a b a b  obey
ultrametricity. We conjecture, and we have checked it in some examples, that this 2nd 
statement is a consequence of the 1st one.

It is basically this second assumption that simplifies the calculations because if all 
triangles are ultrametric then there must be a way to reshue the rows and columns 
of O to write a new matrix OU explicitly ultrametric as a Parisi ×nR R nR R1 2 1 2 matrix

with 2 levels of replica symmetry breaking. It is easy to check that this matrix will have 

block sizes × ×m m m m,U U U U
2 2 1 1  with parameters = =m m R m m R R,U U

2 2 2 1 1 1 2( ). The calcula-
tion of ( )βZ R Rlog , ,1 2  is then identical to the calculation for the unconstrained case just
replacing the mi variables by the mi

U ones.
From equation (57) in [6] we write:
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where:
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The saddle point (SP) equations will obviously be identical to the equations for the
unconstrained system with two subtle dierences:

 • The investigation of the fluctuations around the saddle point is complicated by

the fact that some of the matrix elements are fixed by the constraints.

 • The saddle point values for the breaking locations apply to = =m m R m m R R,U U
2 2 2 1 1 1 2

while the inequalities necessary for the probabilistic interpretation of the solution 
apply to m m,2 1.

Therefore any solution to the saddle point equations can be interpreted probabilisti-
cally if:
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which is always possible for suciently large R R,1 2. When this happens ( )βZ R Rlog , ,1 2

becomes equal to R R1 2 times the Zlog  of the unconstrained system and both Nlog V 
and ∈Nlog S V are zero. In fact when ( )R R1 2  grows we probe deeper clusters (states in
the cluster) and eventually we hit the corresponding bottom configuration where Nlog V

( ∈Nlog S V) are zero. It is interesting to notice here that contrary to what happens in
the SK model, in systems like p-spin glasses the lowest state in the lowest cluster lies 
higher in free energy than the absolute ground state. We will discuss this further in the 
last section.

3.1. R1 and/or R2 below their critical values

But even if we consider the decreasing values of R R,1 2 reaching and surpassing their 

critical values = =R m m R m/ ;c u u c u
1 1

,SP
2
,SP

2 2
,SP we can still take advantage of the solutions 

of the free unconstrained system.
In fact when R2 (R1) approaches ( )R Rc c

2 1  the probability of 2 states having overlap 
( )q q2 1  goes to zero as can be seen from the matrices’ Q and P. Physical arguments

imply that the same must be true for smaller values. Therefore
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This means that m1 or m2 hits a boundary and ( )βZ R Rlog , ,1 2  is no longer sta-
tionary on them. The system behaviour is then described by the equations of the 



unconstrained system but with m m,U U
1 2  now as possible control parameters. There are 

4 possible scenarios:

 1. > >R R R R,c c
1 1 2 2.

 2. ⩽>R R R R,c c
1 1 2 2

 3. ⩽ >R R R R,c c
1 1 2 2

 4. ⩽ ⩽R R R R,c c
1 1 2 2

In all 4 cases, defining lz as in equation (21) we have:
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In case 1 in addition we have 2 more SP equations:
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that detect the lowest free energy state in the lowest free energy cluster.
In case 2 we have one more SP equation:

∂
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= ⇒ =N
lz

m
0 log 0

U V

1
(28)

and a new control parameter =m RU
2 2 that allows us to probe states in the lowest free

energy cluster with varying free energies above the minimum one.
In case 3 again we have one additional SP equation
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and R1 as a control parameter to explore the lowest free energy states in higher free 
energy clusters.

In case 4, finally, there are no additional SP equations and instead we have 2 con-

trol parameters =m R RU
1 1 2 and =m RU

2 2 that explore higher free energy states lying in
higher free energy clusters.



4. The saddle point equations and their interpretation in terms of log NS∈V

and NV

In principle one should first solve q q,1 2 in terms of m m,U U
1 2  and then use equations (11),

(12) and (26) to derive the expression of other functions in terms of m m,U U
1 2 . But as the

derivatives of ( )βZ R Rlog , ,1 2  with respect to the q are zero it is simpler to take the first
derivatives with respect to the m at constant q and afterwards use the SP equations in 
q to choose any pair of independent variables to express our results. We borrow from 
section 4 of [6] the saddle point equations for K  =  2 of the spherical p-spin glass and a
set of variables that are convenient because their SP values are independent of β:

 1. Variables:
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 2. SP equations in q q,1 2
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that imply one equation among the new variables:
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and another equation that is β dependent;
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that implies a 2nd equation for Y
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 3. Variations with respect to m m,U U
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We highlight the equality of the expression for log NV and the corresponding one for 
log NS derived in [13], both of them independent of the temperature when expressed

in terms of the corresponding variables: y1 and β= −−Y p q q/2 1p2
2

1
2

2( ) ( )  respectively.
This fact is evidence that the multiplicity of states and clusters is connected to the 
multiplicity of solutions at T  =  0, a fact that could be checked by studying the TAP 
equations for the clusters derived from the cavity method. From [6, 13] we know that 
in the range of variations of Y the log NS is 0 when Y = 0.354 993 for p  =  3 while at 
Y  =  1/(p  −  1) all states become unstable. The lower bound for y1 is obviously the same 
but the higher one would depend on a stability analysis that has not been done; we are 
not distinguishing between stable and unstable clusters4.

5. Conclusions and discussion

In this section we first present the picture derived from these calculations that explains 
some idiosyncratic properties of the p-spin glass and in the next subsection we relate 
them to the roughness properties of the rugged energy hypersurface at dierent length 
scales as a way to connect this analysis to a general disordered system.

5.1. Some results for the p-spin glass system

Using equations (32) and (34) we express log N ∈S V  in terms of Y and y1. In figure 1(a) 
we show the contour plot of this function. We observe that the boundary of the region 
where there are an exponentially large number of states inside clusters has a positive 
derivative. This means that if we choose two clusters with dierent y1 the one with the 
largest value contains states with larger Y, an unsurprising result if as expected y1 and 
Y are related to the free energies of the clusters and states. The same result is expected 
in a model like the Sherrington–Kirkpatrick model and should in general be true. In 
a cluster with lower free energy we expect to find the lowest free energy state because 
as proved by definition the cluster free energy is an estimate of the free energy of the 
lowest states inside it.

On the other hand we observe that the lowest value of Y in figure 1(a) lies around 
0.43, a value much larger than the ground state value 0.354 993 found in [6]. So the 
question is, where is the ground state? This is explained in figure 1(b) where we draw 
the contour plot of log N NV S∈V , i.e. the log of the total number of states labeled by Y 
contained in all clusters labeled by y1 and we witness a dramatic change of the deriva-
tive of the contour line 0. What we are finding is that the number of clusters grows 

4 In a work in progress by Parisi, Ricci-Tersenghi and MAV we have shown that the Plefka stability criterion 

implies y1    1/⩽ ( p − 1).



exponentially with y1 at such a rate that even if the probability of finding a state with 
lower Y in a typical cluster goes exponentially to zero there remain a fraction of clusters 
that contain such states. This is exactly the picture suggested by the GREM and we 
believe it is common to all systems where one finds a decreasing Parisi x (q). In fact in
the linear approximation around the lowest state in the lowest cluster:

( ) ( )( )
( ) ( )( )
β
β

≅ −
≅ −∈

N

N
V V V

S S V

F x q F F

F x q F F

log

log

V

S V

1 ,0

2
(37)

so the contour line 0 of figure 1(b)

( ) ( ( ) ( ))= ⇒ + − =∈N S VN x q F x q x q Flog 0 constant.V S V 2 1 2 (38)
Therefore ( ) ( )>x q x q1 2  for <q q1 2 is telling us that an increase in VF  allows for a decrease
in SF .

The calculation for the spherical p-spin determines the value of y1 (in figure 1(b) for
p  =  3 around 0.41) that labels the lowest free energy clusters that contain the ground
state. Unfortunately, and contrary to what we argue in a previous paper [2] it is not
easy to use this additional information to improve on a possible hierarchical search of 
the ground state. At that value of y1 the number of clusters is exponentially large even 
if with a smaller exponent and we have to visit all of them since only a very small frac-
tion (in the limit, just one) will contain the ground state. Furthermore there is no signal
at that level of the search that reveals which are the good clusters. If the search inside 
a cluster could be done using gradient descent there would be some advantage but we 
do not think that even this happens.

5.2. Roughness of the energy hypersurface at dierent scales

The ultrametric hypothesis implies a correspondence between tree levels and length 
scales (qi) in configuration space. As argued in [3] this leads to the definition of a

Figure 1. (a) Contour plot of ∈Nlog S V as a function of y1 and Y. (b) Contour plot
of ∈N Nlog S V S as a function of y1 and Y.



hierarchy of smoothed hypersurfaces obtained by flattening the energy surface in the 
interior of the ith level clusters. Then we can define the roughness at the qi level as the 
variance of the fluctuations of the ith surface with respect to the i  −  1th surface: in 
practice the fluctuations of the ith clusters’ energies inside an i  −  1th cluster; in our 
example the fluctuations of the q2 states inside a q1 cluster, coded in ∈NS V as a func-
tion of Y at fixed y1 and the fluctuations of the q1 cluster coded in NV as a function of 
y1. We observe that the same increment in energies (where again we use Y and y1 as
proxies for the free energies of the states and clusters) implies a much larger variation
of NV than of ∈NS V . This indicates that the distribution of y1 among the clusters is 
more peaked than the corresponding distribution of Y among states inside the cluster, 
that is, the variance of y1 is less than the variance of Y, which translates into: the 
roughness at the q1 level is smaller than the roughness at the q2 level. This is part of a 
picture that when first encountered may seem counterintuitive: the larger the p is, and 
as a consequence the more rapidly the correlation of the energy falls with distance, the 
smaller the hypersurface roughness at large length scales. But it is this same fact that 
connects these models to the ‘golf course hole’ landscape type and therefore ‘explains’
why it is dicult to find a good minimum in them.

Comparing this analysis with Derrida’s study of the GREM [11] we observe that the
thermodynamic behaviour of the GREM depends not only on the roughness parame-
trised by the width of the Gaussian energy distribution but also on the relative phase 
space available at the dierent levels, which in our case would correspond to the total 
number of clusters/states. In fact if we characterise the roughness distribution by a 
probability distribution of energies in a population of states/clusters the same prob-
ability distribution over a larger population will lead to a lower minimum energy where 
the derivative of the logarithm is larger thus emulating the eects of a larger roughness. 
In the example of this paper the number of clusters is always larger than the number 
of states inside a cluster and therefore the eect of the larger phase space considerably 
reduces the eective roughness at the q1 level when compared with the roughness at 
the q2 level.

5.3. Future work

There are many things that remain to be done in the follow-up to this work. The 
most immediate is the analysis of the stability of the solutions of the constrained 
system. Another one is to apply the method to mixtures of dierent p’s spin glasses.
There is also the idea of exploring alternative q(x) for these same systems. Further
work on these aspects is the subject of present work (Parisi, Ricci-Tersenghi, MAV,
in preparation).
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