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Abstract. The stationary Navier–Stokes equations under Navier boundary conditions are considered in a square. The
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1. Introduction and Main Results

Let Ω ⊂ R
2 be a bounded domain and consider the stationary Navier–Stokes equations

− νΔu + (u · ∇)u + ∇p = f , ∇ · u = 0 in Ω , (1)

that model the steady-state motion of an incompressible viscous fluid: u is its velocity, p its pressure, f
is an external force, ν > 0 is the kinematic viscosity. Equation (1) need to be complemented with some
boundary constraint, the most common being the no-slip boundary conditions

u = 0 on ∂Ω , (2)

that are physically reasonable if the boundary of Ω is solid and the flow is regular in a suitable sense.
Existence and regularity results for (1) and (2) are classical topics [15], the latter being strongly influenced
by the regularity of both the boundary ∂Ω and the source f . Much more delicate is the uniqueness, which
is guaranteed only for large viscosities ν or small sources f . Through an application of the Sard-Smale
Lemma, Foias-Temam [13,14] were able to prove that (1) and (2) admits a finite number of solutions,
generically with respect to f and ν. Non-uniqueness has been obtained in very particular situations such
as the Bénard problem [25], see also [20] for the same problem tackled through computer assistance, or
the so-called Taylor problem, where one has multiplicity of solutions if f is large, see [32] and also [15,
Theorem IX.2.2] for a slightly more general statement. There exists no multiplicity result valid in any
situation, nor any detailed description of how the bifurcation from uniqueness might occur; see however
[26]. Therefore, a complete comprehension of these phenomena is a challenging task, see [21, Problem 67].
In some situations, such as in 2D geophysical models [24], (2) is no longer suitable to describe the behavior
of the fluid at the boundary and a slip boundary condition appears more realistic. In 1827, Navier [22]
proposed boundary conditions with friction, with a stagnant layer of fluid close to the wall allowing a fluid
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to slip, and with the tangential component of the strain tensor proportional to the tangential component
of the fluid velocity on the boundary. The Navier boundary conditions read

u · n = (Du, n) · τ = 0 on ∂Ω, Du =
1
2
(∇u + ∇T u), (3)

where n is the outward normal vector to ∂Ω while τ is tangential. The boundary conditions (3) turn
out to be appropriate in many physically relevant cases [29], in particular in presence of permeable walls
[8] or of turbulent boundary layers [16,23]. The Navier–Stokes equations (1) under the Navier boundary
conditions (3) (with and without friction) have been studied by many authors. The first contribution (in
1973) is due to Solonnikov–Scadilov [30], with external forces f ∈ L2(Ω). Concerning regularity results,
we mention the works by Beirão da Veiga [9], Amrouche–Rejaiba [4], Acevedo et al. [2] while Clopeau et
al. [12] and Iftimie–Sueur [18] studied the inviscid limit of (1) under conditions (3). Regularity results can
also be found in the 3D work by Berselli [10] which appears relevant for our purposes, since he considers
flat boundaries. Under the Navier boundary conditions (3) as well, uniqueness results for (1) are available
only for small f or large ν, see e.g. Theorem 1.5 in [23], while multiplicity results are not known. In this
paper we give results on this problem in the simple 2D case of a square:

Ω = (0, π)2 . (4)

It is known [10] that for flat boundaries, the conditions (3) become of mixed Dirichlet-Neumann type and
(1)–(3) read

⎧
⎪⎪⎨

⎪⎪⎩

−νΔu + (u · ∇)u + ∇p = f in Ω,
∇ · u = 0 in Ω,
u1 = ∂xu2 = 0 on {0, π} × (0, π),
u2 = ∂yu1 = 0 on (0, π) × {0, π}.

(5)

The mixed conditions are natural, since they guarantee that the boundary term vanishes after an inte-
gration by parts:

∫

Ω

∇u : ∇v = −
∫

Ω

vΔu +
∫

∂Ω

(v1∂nu1 + v2∂nu2) = −
∫

Ω

vΔu.

The pressure p is defined up to an additive constant so that one can fix its mean value, for instance
∫

Ω

p = 0 . (6)

In Sect. 2 we take advantage of the geometry of the square Ω in order to obtain symmetry and
regularity results for the solutions of (5). Our particular choice of domain allows us to obtain more
precise information and to highlight some phenomena in a simple geometric situation. Still, it seems
plausible that similar phenomena might occur for more general situations as well, including the case of
no-slip boundary conditions (2). Then we focus our attention on uniqueness and multiplicity results for
(5). In Sect. 3.2 we prove the following statement, which shows that small viscosities do not necessarily
imply multiplicity of solutions for (5).

Theorem 1. There exists a continuous curve ν �→ fν from the positive real line (0,∞) to L2(Ω), with
‖fν‖L2 = 1 for all ν, such that the problem (5), (6) with f = fν admits a unique solution (u, p) ∈
H2(Ω) × H1(Ω).

For other curves ν �→ fν , nonuniqueness and bifurcations may occur. Although we believe these to
happen in general, we choose a particular forcing term. We take f symmetric with respect to a reflection
about the line y = π/2, that is,

f1(x, π − y) = f1(x, y), f2(x, π − y) = −f2(x, y) ∀(x, y) ∈ Ω . (7)

One then expects that (at least) a solution of (5) has the same symmetry, namely

u1(x, π − y) = u1(x, y), u2(x, π − y) = −u2(x, y), p(x, π − y) = p(x, y), ∀(x, y) ∈ Ω . (8)
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Fig. 1. Sketch of the bifurcation branch: in black the parts proved through computer assistance, in gray the parts
obtained numerically

We take f analytic and concentrated near the center of the square Ω. Then, as the viscosity decreases from
ν = +∞, we are able to prove nonuniqueness via bifurcations and symmetry breaking. More precisely,
we have

Theorem 2. There exists an analytic function f , with ‖f‖L2 = 1, satisfying (7) and such that:
• for all ν > 0, (5) and (6) admits an analytic solution (uν , pν) satisfying (8), the curve ν �→ uν is

analytic and uν is isolated within the subspace of symmetric functions satisfying (8);
• there exists ν1 > 0 such that the solution of (5) and (6) is unique for all ν > ν1;
• at some positive ν0 ≤ ν1 a pitchfork bifurcation occurs and the secondary branches of solutions that

arise do not contain solutions satisfying (8).

The existence of a symmetric solution is standard, see Sect. 2, and it does not depend on the specific
choice of f . The uniqueness statement for large ν follows from a general statement as well, see Propo-
sition 4 where a lower bound for ν1 is given. The remaining part of the proof of Theorem 2 is obtained
through computer assistance and is described in Sect. 4, where we provide the explicit definition of the
function f and the value ν0 of the bifurcation point. Our computer assisted proof, which takes strong
advantage from the Navier boundary conditions, is based on a well-established technique that, in the last
few years, has been applied to many different kind of differential equations, see e.g. [6,7], and see [31]
for a very recent result on the existence of a periodic solution for the full Navier–Stokes equations. We
emphasize that the proof not only provides the existence of the solutions listed in Theorem 2, but also
rigorous and tight bounds for their Fourier coefficients. Moreover, the proof of the pitchfork bifurcation
and of the existence of the analytic branch of solutions is based on the Taylor expansion of the Fourier
coefficients and is, to the best of our knowledge, completely new. We recall that the analyticity of the
curve ν �→ uν is known since Foias-Temam [14]. The secondary branch mentioned in Theorem 2 has been
determined rigorously only close to the bifurcation value ν0, except for a few isolated points along a nu-
merically determined continuation of the branch; see Figs. 1 and 2. For further details on our bifurcation
results, both rigorous and numerical, we refer to Sect. 4.

Theorems 1 and 2 are complemented with a number of further results. In Sect. 2 we determine explicitly
the eigenfunctions of the associated Stokes problem and we make clear how the symmetry property (7)
for f influences the symmetry of some solutions of (5) and (6). In fact, the symmetric framework also
yields a nonuniqueness criterion, see Corollary 1. Besides the expected uniqueness result for small f
(Proposition 4), we prove a statement yielding uniqueness for some special f with arbitrarily large norm
(Theorem 4), whose proof is based on the knowledge of explicit solutions of (1)–(3): we take advantage
of the fact that the eigenfunctions of the Stokes problem are transformed into conservative vector fields
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Fig. 2. Symmetric and non symmetric solutions at ν = 1/50

by the nonlinearity. In fact, when f coincides with one of these eigenfunctions, we expect uniqueness of
the solution of (1)–(3) for any value of ν: in Theorem 4 we obtain a “strange” necessary condition for
uniqueness to fail, see (31).

The remaining part of this paper is organized as follows. In Sect. 3 we prove Theorem 1 and provide
some additional results concerning the uniqueness of the solution. In Sect. 4 we describe the functional
setting of the computer assisted proof of Theorem 2. In Sect. 5 we provide the technical details of the
computer assisted proof. Section 6 contains the conclusions and a list of open problems, some of which
appear to be quite challenging and of wide interest from several points of view.

2. Existence and Symmetry of Solutions

Most of the results presented in this section are well-known, but it is useful to emphasise some peculiarities
of the problem (5) in the square (4). For this reason, we sketch some steps in the proofs.

We first introduce the usual spaces of the Helmholtz-Weyl decomposition

G1 = {v ∈ L2(Ω); ∇ · v = 0, v · n = 0 on ∂Ω} , U = G1 ∩ H1(Ω),
G2 = {v ∈ L2(Ω); ∃g ∈ H1(Ω), v = ∇g},

(9)

where v �→ n · v denotes the boundary-normal trace operator. It is known that

L2(Ω) = G1 ⊕ G2 , G1 ⊥ G2 , (10)

where orthogonality is with respect to the scalar product in L2(Ω).
Assuming that f ∈ L2(Ω), we say that u ∈ U is a weak solution of (5) if

ν

∫

Ω

∇u : ∇v +
∫

Ω

(u · ∇)u · v =
∫

Ω

fv ∀v ∈ U . (11)

Weak solutions may also be found under the less restrictive assumption that f ∈ H−1(Ω) but, since
our main concern are smooth solutions, we assume here (at least) that f ∈ L2(Ω). In this case, as we
shall see, the solution has the additional regularity u ∈ H2(Ω). Then, (11) implies that the first equation
in (5), seen as an equality of functions in L2(Ω), is satisfied when projected onto G1. Due to (10),
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−νΔu + (u · ∇)u − f ∈ G2 and, therefore, that there exists p ∈ H1(Ω) such that the full equation is
satisfied in a strong form. This is the reason why the pressure p does not show up explicitly in the weak
formulation (11), see also Lemma 1.
The geometry of Ω will also be used to determine explicitly the eigenfunctions of −Δ in U , satisfying the
boundary conditions in (5). Let

Ψ1,j,k(x, y) =
(
sin(jx) cos(ky) , 0

)
, Ψ2,j,k(x, y) =

(
0, cos(jx) sin(ky)

)
. (12)

Then the L2−normalized eigenfunctions of −Δ in U are given by

Φj,k(x, y) =
2

π
√

j2 + k2
(−kΨ1,j,k(x, y) + jΨ2,j,k(x, y))

=
2

π
√

j2 + k2

(−k sin(jx) cos(ky)
j cos(jx) sin(ky)

)

, (j, k = 1, 2, 3, . . .).
(13)

In fact, the eigenfunctions of the Stokes operator are defined up to the addition of the gradient of an
harmonic function, see [27, (1)-(2)-(3)]; here we take such function to be zero.

Remark 1. The eigenfunctions in (13), that will also be used to find explicit solutions of (5) (see the
proof of Theorem 4 below), may be obtained as follows. Consider the (scalar!) eigenfunctions ϕ of −Δ in
H1

0 (Ω), that is,

−Δϕ = λϕ in Ω , ϕ = 0 on ∂Ω .

The eigenfunctions with separated variables are given by ϕj,k(x, y) = sin(jx) sin(ky) with corresponding
eigenvalues λj,k = j2 + k2. The separated-variables-feature excludes, for instance, eigenfunctions that
are linear combinations of sin(jx) sin(ky) and sin(kx) sin(jy) (when k �= j), that belong to the same
eigenspace. Then

Φj,k =
2

π
√

j2 + k2

(−∂yϕj,k

∂xϕj,k

)

(j, k = 1, 2, 3, . . .)

and the corresponding eigenvalue is again given by λj,k = j2 + k2. �
The least eigenvalue λ1,1 = 2 is simple; it is associated to the eigenfunction Φ1,1, and it characterizes

the Poincaré embedding constant:

min
u∈U

‖∇u‖2
L2

‖u‖2
L2

= 2 . (14)

Other eigenvalues λj,j may be simple, for instance λ2,2 = 8, λ3,3 = 18, or λ4,4 = 32. But there are also
multiple eigenvalues: if k �= j, the eigenvalue λj,k is at least double. Note also that Φ1,7, Φ7,1, Φ5,5 are all
eigenfunctions associated to the eigenvalue λ = 50, which is then triple. Finally, also higher multiplicities
are to be expected. We summarize these results in the following statement.

Proposition 1. The functions Φj,k in (13) with j, k = 1, 2, 3, . . . are a complete L2-orthonormal basis of
U , consisting of eigenfunctions of −Δ. The associated eigenvalues are λj,k = j2 + k2.

By exploiting the simple geometry of Ω, we are also able to give a fairly precise picture of the existence
result whenever f possesses some symmetries.

Proposition 2. Assume that f = (f1, f2) ∈ L2(Ω). Then:
• any u ∈ U satisfying (11) is a strong solution u ∈ U ∩ H2(Ω) of (5);
• there exists a solution u ∈ U ∩ H2(Ω) of (5), coupled with a unique p ∈ H1(Ω) satisfying (6).
Furthermore, if f satisfies (7) a.e. in Ω, then:
• there exists (at least) one strong solution (u1, u2, p) ∈ (U ∩ H2(Ω)) × H1(Ω) of (5) and (6) satisfying
the symmetry property (8);
• if (u1, u2, p) ∈ (U ∩ H2(Ω)) × H1(Ω) is a strong solution of (5), so is (v1, v2, q) with

v1(x, y) = u1(x, π − y), v2(x, y) = −u2(x, π − y), q(x, y) = p(x, π − y), ∀(x, y) ∈ Ω. (15)
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Proof. The existence of a weak solution follows from the classical Galerkin method, see e.g. the proof of
Theorem 1.4 in [23]. Since f ∈ L2(Ω), one has that u ∈ H2

loc(Ω) by local elliptic regularity. Then one
can obtain that u ∈ H2(Ω) either by arguing as in the proof of [19, Theorem p.403] or by repeating the
reflection argument in the proof of Proposition 3 below, see Remark 2.
If f satisfies (7), we proceed as in [17, Theorem 3.4] in order to obtain the existence of at least a symmetric
solution satisfying (8). We then notice that (15) solves (5) since in the first scalar equation all the terms
maintain their sign whereas in the second scalar equation all the signs change, see again the proof of
Proposition 3 below. �

Note that (8) and (15) hold pointwise (and not just a.e.) because u ∈ H2(Ω) ⊂ C0(Ω) since Ω is a
planar domain. Note also that a completely similar statement holds, with obvious changes, if f has the
“converse” symmetry:

f1(π − x, y) = −f1(x, y), f2(π − x, y) = f2(x, y) for a.e. (x, y) ∈ Ω . (16)

In this case, (8) and (15) should be replaced, respectively, by

u1(π − x, y) = −u1(x, y), u2(π − x, y) = u2(x, y), p(π − x, y) = p(x, y), ∀(x, y) ∈ Ω , (17)
v1(x, y) = −u1(π − x, y), v2(x, y) = u2(π − x, y), q(x, y) = p(π − x, y), ∀(x, y) ∈ Ω . (18)

Proposition 2 and this variant will be used to obtain multiplicity results, see Corollary 1 below.
For our computer assisted proofs we need much more regularity of the forcing term f in (5). Recalling

(12) and given ρ > 1, denote by Cρ ⊂ L2(Ω) the space of functions

f =
∑

i,j,k

fijkΨi,j,k (fijk ∈ C) (19)

such that

‖f‖ρ :=
∑

i,j,k

|fijk|ρj+k < +∞. (20)

The sum in (19) and (20) ranges over {1, 2} × N × N, with the triples (1, 0, k) and (2, j, 0) excluded.
Notice that these functions extend analytically to the complex domain |�x| < log ρ and |�y| < log ρ. For
a forcing in this space, we have

Proposition 3. Let ρ > 1 and let f ∈ Cρ. Then any solution (u, p) of (5) is analytic in Ω.

Remark 2. Proposition 3 is not the consequence of elliptic regularity since ∂Ω is merely Lipschitz. Instead,
it follows directly from the explicit form of f in (19) which enables one to extend the problem and the
solutions by periodicity to the whole plane. In particular, one can extend all the functions to the rectangle
Rx = (−π, π) × (0, π) ⊃ Ω as follows:

g1(x, y) =
{

f1(x, y) if x ≥ 0
−f1(−x, y) if x ≤ 0 g2(x, y) =

{
f2(x, y) if x ≥ 0
f2(−x, y) if x ≤ 0 ,

v1(x, y) =
{

u1(x, y) if x ≥ 0
−u1(−x, y) if x ≤ 0 v2(x, y) =

{
u2(x, y) if x ≥ 0
u2(−x, y) if x ≤ 0 ,

q(x, y) =
{

p(x, y) if x ≥ 0
p(−x, y) if x ≤ 0 .

Then g is analytic in Rx and (v, q) solves the problem
⎧
⎪⎪⎨

⎪⎪⎩

−νΔv + (v · ∇)v + ∇q = g in Rx

∇ · v = 0 in Rx

v1 = ∂xv2 = 0 on {−π, π} × (0, π)
v2 = ∂yv1 = 0 on (−π, π) × {0, π} ,

since in the first scalar equation all the terms have maintained their sign whereas in the second scalar
equation all the signs have changed; the divergence-free condition is also trivially fulfilled. Therefore,
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(v, q) is analytic in Rx except, at most, in its corners. In particular, it is analytic in a neighborhood of
the two points (0, 0) and (0, π) and so is the original solution (u, p).
With the same reflection technique, one may also obtain intermediate regularity, that is: if f ∈ Hm(Ω)
for some integer m ≥ 0, with f as in (19), then any solution (u, p) of (5) satisfies u ∈ Hm+2(Ω) and
p ∈ Hm+1(Ω). �

3. Uniqueness of the Solution

3.1. Uniqueness for Small Forcing f

In the previous section we have analyzed the main properties of the solutions of (5), but we have not
discussed uniqueness of the solution. This is a delicate matter and is the subject of the present section.
As a straightforward consequence of Proposition 2, we have a nonuniqueness criterion.

Corollary 1. Assume that f ∈ L2(Ω) satisfies (7) (resp. (16)). If (5) admits an asymmetric solution
(u, p) ∈ (U ∩ H2(Ω)) × H1(Ω) violating (8) (resp. (17)), then (5) admits at least two more solutions: its
reflection (v, q) given by (15) (resp. (18)) and a symmetric solution satisfying (8) (resp. (17)).
Moreover, if f ∈ L2(Ω) satisfies both (7)–(16) and (5) admits an asymmetric solution (u, p) ∈ (U ∩
H2(Ω)) × H1(Ω) violating both (8)–(17), then (5) admits at least four more solutions.

When considering the boundary conditions in (5), it is convenient to define the horizontal and vertical
edges of ∂Ω, namely

H = (0, π) × {0, π} and V = {0, π} × (0, π) , (21)

and then to introduce the spaces of scalar functions

H1
H = {w ∈ H1(Ω); w = 0 on H} and H1

V = {w ∈ H1(Ω); w = 0 on V }.

To be more precise, H1
H and H1

V are defined as the closures in H1(Ω) of C∞
c ([0, π]×(0, π)) and C∞

c ((0, π)×
[0, π])) respectively.
A crucial role in uniqueness statements is then is played by the Sobolev constant

S = min
w∈H1

V

‖∇w‖2
L2

‖w‖2
L4

. (22)

Uniqueness for the Navier–Stokes equations (1) is expected under some smallness assumption on the
data. We are interested in conditions, as precise as possible, with explicit bounds on f . This is why we
give here a sketch of the following uniqueness criterion:

Proposition 4. Let S be as in (22) and assume that f = (f1, f2) ∈ L2(Ω). If

‖f‖L2 ≤ ν2 S
√

2, (23)

then the solution (u, p) ∈ (U ∩ H2(Ω)) × H1(Ω) of (5) and (6) is unique. If f also satisfies (7) (resp.
(16)), then the unique solution satisfies (8) (resp. (17)).
Moreover, for any f ∈ L2(Ω), if there exists a solution (u, p) ∈ (U ∩ H2(Ω)) × H1(Ω) of (5) and (6)
satisfying ‖∇u‖L2 < νS, then (u, p) is the unique solution of (5) and (6).

Proof. We divide the proofs in three steps.
Step 1. We determine an a priori bound for the solution of (5). To this end, we claim that

∫

Ω

(u · ∇)v · v = 0 ∀(u, v) ∈ U × U . (24)

Notice that the integral is well-defined due to the embedding U ⊂ L4(Ω) and Hölder’s inequality. If H
and V are as in (21), we have (first component)

∫

Ω

(u1∂xv1 + u2∂yv1)v1 =
1
2

∫

Ω

u1∂xv2
1 +

1
2

∫

Ω

u2∂yv2
1
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(by parts with respect to x or y) = −1
2

∫

Ω

v2
1(∇ · u) +

1
2

∫

V

u1v
2
1 +

1
2

∫

H

u2v
2
1 = 0,

where, in the last step, we used: ∇ · u = 0 (first integral), u1 = 0 on V (second integral), u2 = 0 on H
(third integral). Similarly, one proceeds for the second component thereby proving (24).
Assume that u satisfies (11) and take v = u as test function therein. Then, by (24),

∫

Ω
(u · ∇)u · u = 0

and we obtain

ν

∫

Ω

|∇u|2 =
∫

Ω

fu ≤ ‖f‖L2 ‖u‖L2 ≤ ‖f‖L2
‖∇u‖L2√

2
=⇒ ‖∇u‖L2 ≤ ‖f‖L2

ν
√

2
, (25)

where we used (14).
Step 2. We show that

S‖u‖2
L4 ≤ ‖∇u‖2

L2 ∀u ∈ U , (26)

where S is the constant defined in (22). By switching the roles of x and y, we see that S in (22) may be
defined equivalently by replacing H1

H with H1
V . Hence, the (scalar) components u1 ∈ H1

V and u2 ∈ H1
H of

a vector u = (u1, u2) ∈ U , both satisfy (26). Then, by the Hölder inequality and these scalar versions of
(26), we obtain

S2‖u‖4
L4 ≤ S2

(‖u1‖2
L4 + ‖u2‖2

L4

)2 ≤ (‖∇u1‖2
L2 + ‖∇u2‖2

L2

)2
= ‖∇u‖4

L2 ,

which proves (26).
Step 3. Conclusion, arguing (twice) by contradiction. We assume that there exist two solutions u, v ∈ U
of (11), namely

ν

∫

Ω

∇u : ∇φ +
∫

Ω

(u · ∇)u · φ =
∫

Ω

fφ , ν

∫

Ω

∇v : ∇φ +
∫

Ω

(v · ∇)v · φ =
∫

Ω

fφ ∀φ ∈ U .

We subtract these two equations so that, if w = u − v, we get

ν

∫

Ω

∇w : ∇φ =
∫

Ω

(v · ∇)v · φ −
∫

Ω

(u · ∇)u · φ ∀φ ∈ U .

Take φ = w and use (24) to obtain

ν

∫

Ω

|∇w|2 = −
∫

Ω

(w · ∇)u · w .

Then, by the Hölder inequality, using (25) and (26), we infer that

ν‖∇w‖2
L2 ≤ ‖w‖L4‖∇u‖L2‖w‖L4 ≤ ‖∇w‖2

L2

S

‖f‖L2

ν
√

2
. (27)

By going carefully through the above inequalities, we see that at least one of them is strict, if w �= 0.
Therefore, the last inequality is also strict if w �= 0, which contradicts (23). This shows that w = 0,
thereby proving uniqueness whenever (23) holds.
Moreover, we notice that if f satisfies (7) as well, then the assertion follows from Proposition 2.
Finally, if there exists a solution (u, p) ∈ (U ∩ H2(Ω)) × H1(Ω) of (5) and (6) satisfying ‖∇u‖L2 < νS,
we go back to (27) and obtain

ν‖∇w‖2
L2 ≤ ‖w‖L4‖∇u‖L2‖w‖L4 ≤ ‖∇w‖2

L2

S
νS = ν‖∇w‖2

L2 ,

with strict inequality if w �= 0. This shows that w = 0, and that (u, p) is the unique solution. �

Proposition 4 ensures uniqueness of the solution (u, p) of (5), provided that f is small. But it says
nothing about uniqueness (or multiplicity) of solutions for large values of ‖f‖L2 . This is the reason why
Theorem 1 appears important and we prove it in the next section.
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Fig. 3. Continuous path α �→ fα connecting 0 and ∞ for which (5) admits a unique solution

3.2. Proof of Theorem 1

In this section we prove the following statement, equivalent to Theorem 1, up to a scaling. We maintain
here a constant viscosity ν and we let ‖f‖L2 vary.

Theorem 3. Let ν > 0. There exists a continuous curve α �→ fα from the positive real line to L2(Ω),
with ‖fα‖L2 = α for all α, such that the problem (5) and (6) with f = fα admits a unique solution
(u, p) ∈ H2(Ω) × H1(Ω).

Proof. Consider the eigenfunctions Φj,k in (13) and, for any positive integer n, define the spaces

Vn = span{Φ1,k; k ≥ n} ,

as well as the orthogonal projectors Pn : U → Vn. Then we obtain the improved Poincaré constants

min
v∈Vn

‖∇v‖2
L2

‖v‖2
L2

= 1 + n2 , (28)

to be compared with (14). Next, we claim that

if fα ∈ Vn and ‖fα‖L2 = α ≤ ν2S
√

1 + n2, then (5) admits a unique solution. (29)

In order to prove (29), fix n ≥ 1 and choose any fα satisfying the assumptions therein. The existence of
a solution (u, p) of (5) follows from Proposition 2. Then take v = u as test function in (5) and proceed
as in the proof of (25) in order to obtain

ν

∫

Ω

|∇u|2 =
∫

Ω

fαu ≤ α ‖Pnu‖L2 ≤ α
‖∇u‖L2√

1 + n2
≤ ν2S‖∇u‖L2 =⇒ ‖∇u‖L2 ≤ νS ,

where we used (28). If u �= 0, then one of the above inequalities is strict, that is, ‖∇u‖L2 < νS. Uniqueness
then follows from the last statement in Proposition 4: this proves (29).
Finally, we put γn = ν2S

√
1 + n2 and δn = (γn + γn+1)/2, with γ0 = 0. Then we construct the curve

α �→ fα as follows:
– for all n ≥ 0 and α ∈ (γn, δn], we take fα = αΦ1,n+1;
– for all n ≥ 0 and α ∈ [δn, γn+1], we take

fα = α
(γn+1 − α)Φ1,n+1 + (α − δn)Φ1,n+2

√
(γn+1 − α)2 + (α − δn)2

∈ Vn+1 .

A sketch of this curve is given in Fig. 3 below. Note that, for any α > 0, ‖fα‖L2 = α and uniqueness
for (5) follows from (29). This completes the proof. �
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Clearly, it is possible to build many different curves α �→ fα with the same properties, mostly displaying
a zig-zag path as in Fig. 3. In the next section, we describe the behavior along a specific straight line,
which involves the bifurcation described in Theorem 2.

3.3. Larger Bounds for Uniqueness for Some Special f

Theorem 3 (and Fig. 3) show that there exist a continuous piecewise linear curve in L2(Ω) connecting 0 and
∞ such that if f belongs to this curve, then (5) admits a unique solution. One can then wonder whether
this holds true for some straight lines as well. In this respect, an interesting case occurs whenever f is an
eigenfunction of −Δ in U . In the next statement we improve the uniqueness threshold of Proposition 4
for some special f and we describe a property of possible multiple solutions when ‖f‖L2 becomes large.

Theorem 4. Let j, k ≥ 1 and define

Υj,k(x, y) =
4
(
k2 sin2(jx) + j2 sin2(ky)

)

π2(j2 + k2)
.

Let fα = αΨj,k with α ∈ R and Ψj,k as defined in (13). If ‖fα‖L2 ≤ ν2S
√

j2 + k2, with S as in (22),
then (5) and (6) admits a unique solution (u, p) ∈ (U ∩ H2(Ω)) × H1(Ω) which is explicitly given by

u =
α

ν(j2 + k2)
Φj,k , p =

α2

ν2(j2 + k2)2

(
2
π2

− Υj,k

)

. (30)

Moreover, (30) is the “largest solution”, that is: if ‖fα‖L2 = |α| > ν2S
√

j2 + k2 and (5) and (6)
admits another solution (v, q), different from (30), then

νS ≤ ‖∇v‖L2 < ‖∇u‖L2 ,

∫

Ω

(v · ∇)v · u > 0 , v2Δv1 �≡ v1Δv2 in Ω . (31)

Proof. We first remark that

(Φj,k · ∇)Φj,k = ∇Υj,k (32)

by explicit computation, so that (Φj,k · ∇)Φj,k ∈ G2, see (9). Therefore, (30) is indeed a smooth solution
of (5) and (6) and the uniqueness statement for small |α| is a straightforward consequence of a generalized
version of (29).
Assume now that, for some |α| > ν2S

√
j2 + k2, there exists another solution (v, q) of (5) and (6). The

lower bound for ‖∇v‖L2 in (31) follows from Proposition 4 since, otherwise, v would be the unique solution
(5).
In view of (30) and (32) we know that (u · ∇)u ∈ G2. Therefore, if we test the Eq. (11) satisfied by u
with v, we obtain (recall fα = αΦj,k)

ν

∫

Ω

∇u : ∇v = α

∫

Ω

Φj,kv .

Moreover, if we test (11) satisfied by v with v itself and we recall (24), we get

ν

∫

Ω

|∇v|2 = α

∫

Ω

Φj,kv .

By combining these two identities, we infer that
∫

Ω

|∇v|2 =
∫

Ω

∇u : ∇v . (33)

In turn, (33) yields
∫

Ω

|∇u|2 −
∫

Ω

|∇v|2 =
∫

Ω

|∇u|2 − 2
∫

Ω

∇v :∇u +
∫

Ω

|∇v|2 =
∫

Ω

|∇(u−v)|2 > 0

since v �= u. This proves the upper bound for ‖∇v‖L2 in (31).
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From (30) we infer that

‖∇u‖2
L2 =

α2

ν2(j2 + k2)
.

Hence, if we test (11), satisfied by v, with u, then we obtain

ν

∫

Ω

∇v :∇u +
∫

Ω

(v · ∇)v · u = α

∫

Ω

Φj,ku =
α2

ν(j2 + k2)
= ν

∫

Ω

|∇u|2 ,

where we used the explicit form of u in (30) and the fact that ‖Φj,k‖L2 = 1. By using again (33), we then
obtain

1
ν

∫

Ω

(v · ∇)v · u =
∫

Ω

|∇u|2 −
∫

Ω

∇v : ∇u =
∫

Ω

|∇(u − v)|2 > 0

since v �= u. This proves the second property in (31).
Finally, assume for contradiction that v2Δv1 ≡ v1Δv2 in Ω. Since ∇ · v = 0, we then have that

v2(∂xxv1 + ∂yyv1) = v1(∂xxv2 + ∂yyv2) ⇐⇒ v1∂xyv1 + v2∂yyv1 = v1∂xxv2 + v2∂xyv2

⇐⇒ ∂yv1∂xv1 + v1∂xyv1 + ∂yv1∂yv2 + v2∂yyv1 = ∂xv1∂xv2 + v1∂xxv2 + ∂xv2∂yv2 + v2∂xyv2

⇐⇒ ∂y

(
v1∂xv1 + v2∂yv1

)
= ∂x

(
v1∂xv2 + v2∂yv2

) ⇐⇒ (v · ∇)v ∈ G2

so that
∫

Ω
(v · ∇)v · u = 0 by (10), contradicting the second property in (31). �

Several comments are in order. Theorem 4 may be complemented with some information about the
symmetry of the force and of the solution. If k is even, then Φj,k satisfies (7) and the solution (u, p) in
(30) satisfies (8). If j is even, then Φj,k satisfies (16) and the solution (u, p) in (30) satisfies (17). Finally,
if both j and k are even, then Φj,k satisfies both (7)–(16) and the solution (u, p) in (30) satisfies both
(8)–(17).

Although (31) may apply in more general settings, Theorem 4 gives no practical condition ensuring
multiplicity of solutions. It appears out of reach to detect a bifurcation through classical arguments since
the linearized equations, around the solution u in (30), read

−νΔw + (u · ∇)w + (w · ∇)u = 0 , ∇ · w = 0 in Ω .

These equations, and their weak formulation, are naturally associated to the bilinear form

au(w,ϕ) := ν

∫

Ω

∇w : ∇ϕ +
∫

Ω

(u · ∇)w · ϕ +
∫

Ω

(w · ∇)u · ϕ

over U × U ; this form satisfies
∣
∣au(w,ϕ)

∣
∣ ≤ Cu‖∇w‖L2‖∇ϕ‖L2 , au(w,w) = ν‖∇w‖2

L2 +
∫

Ω

(w · ∇)u · w ∀(w,ϕ) ∈ U2 .

The first inequality shows that au(·, ·) is continuous but the second formula shows that it fails to be
coercive if u is large, especially because of the sign arising from (31) (recall that the sign changes if we
switch u and w). Since u in (32) increases linearly with |α|, the Lax-Milgram Theorem cannot be applied
to exclude bifurcations. Clearly, for small |α| and u the bilinear form au is coercive but, in this case, we
are in the uniqueness regime where bifurcation is automatically excluded.
We searched for bifurcations when ‖fα‖L2 = |α| > ν2S

√
j2 + k2 in the case fα = αΦj,k, and we found

numerical evidence that there are none, see Remark 3. Thus we propose the following conjecture, with a
weak and a strong version.

Conjecture 1. For any j, k ∈ N and α ∈ R, (5) with fα = αΦj,k admits a unique solution. Or, at least,
the branch of solutions (u, p) given in (30) is isolated from other possible solutions of (5).

Finally, let us mention that, by repeating the arguments by Foias-Temam [13, Theorem 2.1], one
obtains the following statement.

Proposition 5. There exists a dense open set O ⊂ R × L2(Ω) such that if (ν, f) ∈ O then the problem
(5) – (6) admits a finite number of solutions (u, p) ∈ (U ∩ H2(Ω)) × H1(Ω).
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4. Proof of Theorem 2

4.1. Scaling and Equivalent Formulation

To study (5) numerically, and to make a computer assisted proof of the existence of solutions, it is
convenient to define β = ν−2 and scale (u, p) to (νu, ν2u), so that (5) becomes

⎧
⎪⎪⎨

⎪⎪⎩

−Δu + (u · ∇)u + ∇p = βf in Ω,
∇ · u = 0 in Ω,
u1 = ∂xu2 = 0 on {0, π} × (0, π),
u2 = ∂yu1 = 0 on (0, π) × {0, π}.

(34)

We look for solutions in the space Cρ defined in (19), with ρ = 33
32 . For u =

(
u1, u2

) ∈ Cρ we write

u =
∑

i,j,k

uijkΨi,j,k, (35)

where the vector fields Ψi,j,k are defined in (12) and satisfy the boundary conditions in (34). Furthermore,
the orthogonal projection onto the space G1 of solenoidal vector fields is given by

P
(
c1Ψ1,j,k + c2Ψ2,j,k

)
=

(c1k − c2j)k
j2 + k2

Ψ1,j,k − (c1k − c2j)j
j2 + k2

Ψ2,j,k. (36)

Applying P on both sides of the first equation in (34) yields

P(−Δ)u = P
[
βf − (u · ∇)u

]
,

while the remaining equations in (34) show that u = Pu. As it happens for the variational characterization
(11), the pressure p does not appear in the equation, when projected onto G1:

Lemma 1. Let f ∈ Cρ. For u ∈ Cρ define

Fβ(u)
def= P(−Δ)−1

P
[
βf − (u · ∇)u

]
. (37)

Equation (34) admits a solution u ∈ Cρ if and only if u = Fβ(u).

Proof. Since functions in Cρ satisfy the boundary conditions in (34), and Ω is simply connected, then
u ∈ Cρ is a solution of (34) if and only if both u and f − (u · ∇)u are divergence free. When restricted to
Cρ, the Laplacian commutes with the projection P, therefore if u = Fβ(u), then u is divergence free and
so is f − (u · ∇)u. �

We take f = (f1, 0), where

f1(x, y) =
∑

j,k=1,...,11

fjkΨ1jk(x, y),

with the coefficients fjk being approximations of the coefficients f̂jk of the expansion of a Gaussian
centered in (π/2, π/2), that is

∑

j,k≥1

f̂jkΨ1jk(x, y) = −e−30((x−π/2)2+(y−π/2)2).

For the exact values of the coefficients fjk we refer to the file data/f in [5], where they are stored in
hexadecimal format. For comparison with the uniqueness result presented in Proposition 4, we note that
‖f‖L2 = 0.1578 . . .

By recalling the change of parameters leading to (34), Theorem 2 will be proved once we prove the
following statement.
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Table 1. Branch intervals

i b δ L

1 250 250 10
2 750 250 10
3 1200 200 7
4 1600 200 7
5 2000 200 6
6 2350 150 6

Theorem 5. For all β ∈ [0, 2500] Eq. (34), with f as described above, admits a solution uβ ∈ Cρ symmetric
with respect to the reflection y �→ π/2 − y, see (8). The function β �→ uβ is analytic. The solution uβ is
isolated within the subspace of symmetric functions satisfying (8). At some β ∈ [2065+1485 ·2−11, 2065+
1487 ·2−11] there is a pitchfork bifurcation, and the secondary branches are not symmetric. Equation (34)
also admits non-symmetric solutions at β = 2100, β = 2200 and β = 2500. The solution at the bifurcation
point satisfies ‖∇u‖L2 = 66.83 . . .

Remark 3. As observed in Theorem 4, when the forcing term is proportional to Φj,k and sufficiently small,
there exists a unique solution also proportional to Φj,k and, for such solution, the quadratic term is a
gradient, therefore its projection on G1 is zero. Then the eigenvalues of DFβ are proportional to β. We
have numerical evidence that such eigenvalues lie all on the imaginary axis for some arbitrary choice of
β, therefore no eigenvalue can reach the value 1 for any value of β, and since that is a necessary condition
to have a bifurcation we conjecture that no bifurcation takes place.

4.2. Branches

Denote by Dρ the subspace of Cρ characterized by the symmetry (7). Note that Fβ(Dρ) ⊂ Dρ and Pf ∈ Dρ.
To prove that (34) admits a solution u(β) ∈ Dρ for each β ∈ [0, 2500], and that the function β �→ u(β) is
analytic, we write all the coefficients in the Fourier expansion of u as Taylor polynomials in β:

u(β) =
∑

i,j,k

aijk(β)Ψi,j,k, aijk(β) =
L∑

l=0

aijkl

(
β − b

δ

)l

, (38)

where aijkl = 0 if k is odd and b, δ, L are as in Table 1. As a first step, we choose some Fourier–Taylor
polynomial ū that is an approximate fixed point of Fβ , and some finite rank operator M such that I−M
is an approximate inverse of I − DFβ(ū). Then for h ∈ Dρ we define

Nβ(h) = Fβ(ū + Λh) − ū + Mh, Λ = I − M. (39)

Clearly, if h is a fixed point of Nβ , then u = ū+Λh is a fixed point of Fβ and, hence, u solves (34) in view
of Lemma 1. Given r > 0 and w ∈ Cρ, let Br(w) = {v ∈ Cρ : ‖v − w‖ρ < r}. We partition the interval
[0, 2500] into six subintervals. The center b and width δ for each subinterval are shown in Table 1.

Then we prove the following lemma with the aid of a computer, see Sect. 5.

Lemma 2. The following holds for each i ∈ {1, . . . , 6}. Define b, δ, and L as in row i of Table 1. There
exist a Fourier–Taylor polynomial ū(β) of degree L as described in (38), a bounded linear operator M(β)
on Dρ, and positive real numbers ε, r,K satisfying ε + Kr < r, such that

‖Nβ(0)‖ ≤ ε, ‖DNβ(v)‖ ≤ K, ∀v ∈ Br(0) (40)

holds for all {β ∈ C : |β − b| < δ}. Furthermore, if i < 6, then either

Bri(u(δi + bi)) ⊂ Bri+1(u(δi+1 − bi+1)), or Bri+1(u(δi+1 − bi+1)) ⊂ Bri(u(δi + bi)), (41)

where a superscript i refers to the data in row i of Table 1.
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This lemma, together with the Contraction Mapping Theorem and the Implicit Function Theorem,
implies the following:

Proposition 6. For each β ∈ [0, 2500] there exists a fixed point uβ ∈ Br(uβ) of Fβ, and the curve β �→ uβ

is analytic.

4.3. Bifurcations

Let us write the fixed point equation for Fβ as F(β, u) = 0, where

F(β, u)
def= Fβ(u) − u. (42)

Numerically, we observe that DF(β, .) has a (simple) eigenvalue zero for β near b = 2065 + 743 · 2−10.
This suggests the possibility of a bifurcation which takes place in a two dimensional submanifold. We
parametrize this surface by using the parameter β and a coordinate λ for the range of a suitable one-
dimensional projection �. Then we define a two-parameter family of functions u(α, λ) by solving

(I − �)F
(
β, u(β, λ)

)
= 0, �u(β, λ) = λû, (43)

where û is a fixed nonzero function in the range of �. For û we choose a Fourier polynomial that approx-
imates the eigenvector of DF(b, .) for the eigenvalue closest to zero. The projection � is defined by

�u = �0(u)û, �0(u) =
∑

i,j,k=1,2

uijkûijk, (44)

where uijk, ûijk are the Fourier coefficients of u and û, respectively. Our goal is to show that for a rectangle
I × J in the parameter space, the Eq. (43) has a smooth and locally unique solution u : I × J → Cρ .
Then locally, the solutions of F(β, u) = 0 are determined by the zeros of the function g,

g(β, λ)û = �F
(
β, u(β, λ)

)
. (45)

We write all the coefficients in the Fourier expansion of u as Taylor polynomials in β, λ:

u(β, λ) =
∑

i,j,k

aijkΨ1jk, aijk =
∑

l+m≤4

aijklm

(
β − b

δ

)l (
λ

λ1

)m

, (46)

where δ = 2−11 and λ1 = 2−6.
Equation (43) for u = u(β, λ) is equivalent to the fixed point equation for the map Fβ,λ , defined by

Fβ,λ(u) = (I − �)Fβ(u) + λû. (47)

As in the last subsection, we use the contraction mapping principle to solve this fixed point problem. In
place of the map defined in (39), we use the map Mβ,λ defined by

Mβ,λ(h) = Fβ,λ(ū + Λh) − ū + Mh, Λ = I − M. (48)

Here, ū is an approximate fixed point of Fb,0, and M is a finite rank operator such that Λ = I − M is
an approximate inverse of I − DFb,0(ū). By the Implicit Function Theorem, the solution then depends
analytically on the two parameters β and λ. Denote by Dr(z) a disk in the complex plane of radius r and
center z. Let I = Dδ(b) and J = Dλ1(0). The following lemma is proved with the aid of a computer; see
Sect. 5.

Lemma 3. There exists a Fourier polynomial û, a Fourier–Taylor polynomial ū(β, λ) as in (46), and
positive constants ε, r,K satisfying ε + Kr < r, such that

‖Mβ,λ(0)‖ ≤ ε, ‖DMβ,λ(v)‖ ≤ K. (49)

for all v ∈ Br(0) and for all β ∈ I and all λ ∈ J .

As we had in the previous subsection, this lemma, together with the contraction mapping theorem
and the implicit function theorem, implies the following:
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Proposition 7. For every (β, λ) in I × J , the Eq. (43) has a unique solution u(β, λ) in Br(ū(β, λ)), and
the map (β, λ) �→ u = u(β, λ) is analytic. For any given real β ∈ I, a function u in B ∩ �−1(Jû) is a fixed
point of Fβ if and only if u = u(β, λ) for some real λ ∈ J , and g(β, λ) = 0.

This leaves the problem of verifying that the zeros of g correspond to a pitchfork bifurcations. A
sufficient set of conditions for the existence of such a bifurcation is given below, see [6, Lemma 3.4] for a
proof.

If f is any differentiable function of two variables, denote by ḟ and f ′ the partial derivatives of f with
respect to the first and second argument, respectively. Let I = [β1, β2] and J = [−b, b].

Lemma 4. (pitchfork bifurcation) Let g be a real-valued C3 function on an open neighborhood of I × J ,
such that g(β, 0) = 0 for all β ∈ I, and
(1) g′′′ > 0 on I × J, (2) ġ′ < 0 on I × J,
(3) g′(β1, 0) ± 1

2bg′′(β1, 0) > 0, (4) ±g(β2,±b) > 0, (5) g′(β2, 0) < 0.

Then g(β, λ) = λG(β, λ) for some C2 function G, and the solution set of G(β, λ) = 0 in I × J is the
graph of a C2 function β = a(λ), defined on a proper subinterval J0 of J . This function takes the value
β2 at the endpoints of J0 , and satisfies β1 < a(z2) < β2 at all interior points of J0 , which includes the
origin.

The following lemma is proved with the aid of a computer; see Sect. 5.

Lemma 5. For any u(β, λ) ∈ Br(ū(β, λ)) the function g(β, λ)
def= −�0(F(u(β, λ))) satisfies the assumptions

of Lemma 4.

The proof of Theorem 2 is concluded by joining the results of Propositions 6 and 7 , together with
Lemmas 4 and 5 .

5. Computer Estimates

5.1. Verifying Lemmas 2, 3 and 5

In this section we provide a rough description of the proofs of Lemmas 2, 3 and 5 . A complete and
detailed description can be found in [5].

The proofs are carried out with the aid of a computer. Our proof of Lemma 2 involves the following
steps. Consider the parameter values (b, δ) from a fixed but arbitrary row in Table 1. As a first step, we
determine a Fourier–Taylor polynomial ūβ which is an approximate fixed point of Fβ and an approximate
inverse of I − DFβ(ūβ) of the form Λ(β) = I − M(β), where M(β) has finite rank and is a polynomial
in β. The remaining steps are rigorous: we compute an upper bound ε on the norm of Fβ(0), and an
upper bound K on the operator norm of DFβ(h) that holds for all h of norm ε or less. This is done
simultaneously for all values of {β ∈ C : |β − b| < δ}. After verifying that K < 7

8 , we choose a positive
r < 8ε in such a way that ε + Kr < r.

The same approach is used to prove Lemma 3. Concerning the computation of bounds, we refer to
Sect. 5.2 below.
The proof of Lemma 5 consists in verifying some bounds on the derivatives of the function g. Let
h(z1, z2) = g(b + β1z1, γ0 + γ1z2), and note that h is analytic in {z ∈ C

2 : |z1| < 1, |z2| < 1} by
Proposition 6. Given the Fourier–Taylor polynomial ū(β, λ) of Lemma 3, we compute a Taylor polyno-
mial P (z1, z2) of degree 4 and a bound E, such that that

sup
|z1|<1,|z2|<1

|P (z1, z2) − h(z1, z2)| < E. (50)

Derivatives of analytic functions such as f = (P −h)(., z2) or f = (P −h)(z1, .) can be estimated by using
the standard Cauchy bound: if f(z) is an analytic function in the unit disk such that sup|z|≤1 |f(z)| < E,
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then for 0 < � < 1 and n > 0

sup
|z|≤


|f (n)(z)| ≤ n!
(1 − �)n

E. (51)

Using � = 205/256, this bound is applied (separately in each variable) to verify the conditions in Lemma 4.

5.2. Technicalities

The methods used here can be considered perturbation theory: given an approximate solution, prove
bounds that guarantee the existence of a true solution nearby. But the approximate solutions needed
here are too complex to be described without the aid of a computer, and the number of estimates
involved is far too large.

The first part (finding approximate solutions) is a strictly numerical computation. The rigorous part
is still numerical, but instead of truncating series and ignoring rounding errors, it produces guaranteed
enclosures at every step along the computation. This part of the proof is written in the programming
language Ada [3]. The following is meant to be a rough guide for the reader who wishes to check the
correctness of our programs. The complete details can be found in [5].

In the present context, a “bound” on a map f : X → Y is a function F that assigns to a set X ⊂ X
of a given type (Xtype) a set Y ⊂ Y of a given type (Ytype), in such a way that y = f(x) belongs to Y
for all x ∈ X. In Ada, such a bound F can be implemented by defining a procedure F(X : in Xtype ;
Y : out Ytype).

To represent balls in a real Banach algebra X with unit 1 we use pairs S=(S.C,S.R), where S.C is a
representable number (Rep) and S.R a nonnegative representable number (Radius). The corresponding
ball in X is 〈S,X〉 = {x ∈ X : ‖x − (S.C)1‖ ≤ S.R}.

When X = R the data type described above is called Ball. Our bounds on some standard functions
involving the type Ball are defined in the packages Flts Std Balls. Other basic functions are covered
in the packages Vectors and Matrices. Bounds of this type have been used in many computer-assisted
proofs; so we focus here on the more problem-specific aspects of our programs.

The computation and validation of branches involves Taylor series in one variable, which are rep-
resented by the type Taylor1 with coefficients of type Ball. The definition of the type and its basic
procedures are in the package Taylors1. Given a Radius ρ, consider the space Tρ of all real analytic
functions g(t) =

∑
n gntn on the interval |t| < ρ, obtained by completing the space of polynomials with

respect to the norm ‖g‖ρ =
∑

n |gn|ρn. Given a positive integer D, a Taylor1 is a triple P=(P.C,P.F,P.R),
where P.F is a nonnegative integer, P.R = ρ, and P.C is an array(0..D) of Ball. The corresponding
set in 〈Taylor1,Tρ〉 is defined as

〈P,Tρ〉 =
m−1∑

n=0

〈
P.C(n),R

〉
pn +

D∑

n=m

〈
P.C(n),Tρ

〉
pn, pn(t) = tn, (52)

where m = min(P.F, D + 1). For the operations that we need in our proof, this type of enclosure allows
for simple and efficient bounds. We also need a type Taylor2, representing Taylor series of two variables,
for the proof of Lemmas 3 and 5, which is defined similarly in the package Taylors2.

Finally, solutions of the Eq. (34) are given as Fourier series in two variables, represented by the
type Fourier2 with coefficients in some Banach algebra with unit X . Consider the space Fρ of all real
analytic functions in two variables periodic of period 2π in both variables, obtained by completing the
space of Fourier polynomials p(w, z) =

∑
jk pjkei(jw+kz), pjk ∈ X , with respect to the norm ‖p‖ρ =

∑
jk ‖pjk‖ρj+k.
The type Fourier2 consists of a triple F=(F.T,F.C,F.E), where F.T is a record identifying the parity

(see below), F.C is an array(0..K,0..K) of Ball, and F.E is an array(0..2*K,0..2*K) of Radius.
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Let fj,k = The corresponding set 〈F,Fρ〉 is the set of all function u = p + h ∈ Fρ, where

p(w, z) =
K∑

j,k=1

〈F.C(J, K),X〉 ei(jw+kz), h =
2K∑

j,k=1

hj,k, hj,k(w, z) =
∑

m≥j,n≥k

hj,k
m,n ei(mw+nz), (53)

with pJ,K ∈ 〈F.C(J, K),X〉 and ‖hJ,K‖ ≤ F.E(J, K), for all J,K ≥ 1. To be more precise, instead of (53) we
use cosine series (parity 0) and sine series (parity 1). The parities are specified by the component F.T.
The definition of the type and its basic procedures are in the package Fouriers2. For the operations that
we need in our proof, this type of enclosure allows for simple and efficient bounds.

We note that Fourier2 (just like Taylor1 and Taylor2) allows a generic type Scalar for its coeffi-
cients; and this Scalar can be again a Taylor (or Fourier) series. This feature makes it easy to represent
Fourier series whose coefficients depend on parameters.

In particular, our enclosures for the functions described in (38) use an instantiation of Fourier2 with
Scalar = TScalar, where TScalar is an istantiation of Taylor1 with Scalar = Ball. The corresponding
type VF describes (sets of) vector field in the spaces Cρ and Dρ. These types are defined in the package
Taylors1.Foor. Types and bounds that are specific to the Navier–Stokes equation (34) are defined in the
child package Fouriers2.VFs. This includes the type VF (a pair of Fouriers2) which is used to specify
enclosures on vector fields in the spaces Cρ, a bound NegInvLap on −Δ−1, a bound ProjDivFree on the
projection onto divergence-free vector fields, a bound NonLinearAdv on the map u �→ f − u · ∇u, and a
bound DNonLinearAdv on the derivative of NonLinearAdv.

Analogous types, with Taylor1 replaced by Taylor2, are defined in the package Taylors2.Foor. These
types are used as enclosures for for the functions described in (46). A bound on the map Fβ defined in (37)
is implemented by the procedure GMap in the package Taylors1.Foor.Fix. Defining and estimating a
contraction like Nβ is a common task in many of our computer-assisted proofs. An implementation is done
via two generic packages, Linear and Linear.Contr. For a description of this process we refer to [7]. The
only problem-dependent parts here are the bound GMap, and the type VFMode defined in Taylors1.Foor.
The same approach is used for the estimates (49) on the contraction Cβ,λ defined in (48). The bound
GMap on the map Fβ,λ defined in (47) is implemented in the package Taylors2.Foor.Fix.

6. Concluding Remarks and Open Problems

In this paper we were able to exhibit a bifurcation for the Navier–Stokes equations under Navier boundary
conditions (5) for a particular force f . We exploited the geometry of the square Ω and we highlighted
possible symmetry breaking of the solutions. We were also able to follow some branches of arbitrarily large
forces for which uniqueness for (5) holds. Although our results shed some light on these fairly difficult
topics, many problems remain open. Among them are the following.

Problem 1. Classical arguments in critical point theory show that a (scalar) minimizer w ∈ H1
V of the

ratio ‖∇w‖2
L2/‖w‖2

L4 satisfies the Euler–Lagrange equation

−Δw = w3 in Ω , w = 0 on V , ∂yw = 0 on H .

If we take w0 ∈ H1
V independent of y we find a boundary value problem for an ODE, that is,

w′′
0 (x) + w0(x)3 = 0 in (0, π) , w0(0) = w0(π) = 0 , (54)

whose solution is given by

w0(x) =
T

2π
cn

(
T

2π

(
x − π

2

)
,

1√
2

)

, T = 4
∫ π/2

0

dt
√

1 − sin2 t
2

≈ 7.416 ,
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where cn denotes the Jacobi cosine, see [1]. Multiplying (54) by w0 and integrating by parts yields

∫ π

0

w′
0(x)2 dx =

∫ π

0

w0(x)4 dx =
T 4

16π4

∫ π

0

cn
(

T

2π

(
x− π

2

)
,

1√
2

)4

dx =
16
3π3

⎡

⎣

∫ π/2

0

dt
√

1− sin2 t
2

⎤

⎦

4

.

Therefore, if we view w0 as a function of two variables, we obtain the following bound for S in (22):

S = min
w∈H1

V

‖∇w‖2
L2

‖w‖2
L4

≤ ‖∇w0‖2
L2

‖w0‖2
L4

=

∫ π

0

∫ π

0
w′

0(x)2 dx dy

(
∫ π

0

∫ π

0
w0(x)4 dx dy)1/2

=
√

π

[∫ π

0

w0(x)4dx

]1/2

≈ 1.4257 . (55)

We do not know if the minimizers for (22) depend on x only. Is the inequality (55) an equality? The
precise knowledge of S would allow to obtain more precise statements for uniqueness, see Proposition 4
and Theorem 4.

Several further problems were left open. We summarize them in the following list.
• Is it ν0 = ν1 in Theorem 2 and for any f? In other words, for general f is uniqueness of the

solution of (5) lost due to a bifurcation or to the appearance of isolated solutions, far away from the
symmetric branch? This uncertainty also occurs for (possibly inhomogeneous) Dirichlet problems,
see Théorème 3.3 in [14] and the subsequent picture therein.

• Do the results obtained in the present paper hold in more general situations? That is, can Theorems 1
and 2 be extended to any planar bounded domain Ω, and to more general forces f? Can the same
technique be extended to 3D domains?

• Is it possible to find g ∈ L2(Ω) such that Eq. (5) with f = αg admits a unique solution for all
α ∈ [0,+∞)? This problem is related to Conjecture 1.

• The bifurcation branches obtained in Theorem 5 only contain non-symmetric solutions. Is it possible
to obtain multiplicity of symmetric solutions satisfying (8)? Alternatively, if f satisfies (7), is there
always a unique symmetric solution? This problem appears quite challenging also from a numerical
point of view: in a symmetric channel containing a circular cylinder, Sahin-Owens [28, Fig.6] (see
branches 1, 3, 5 therein) numerically found different symmetric solutions for suitable Reynolds
numbers, but for different ratio between the width of the channel and the diameter of the cylinder.
Form a theoretical point of view, the answer to this question would enable to understand whether
the bifurcation from the symmetric solution is both a necessary and a sufficient condition for the
appearance of a lift force on a symmetric obstacle immersed in the fluid, see [11,17].

• Can the construction of eigenvectors of the Stokes problem, as described in Remark 1, be extended
to more general domains? Here we exploited the geometry of the square Ω, while in general domains
this issue appears to be much more involved. Let us mention that also under the no-slip boundary
conditions (2), explicit eigenvalues and eigenfunctions are known only in special domains, see [27]
and references therein.
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