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Abstract: This article presents a gradient-based aerodynamic optimization framework and investi-
gates optimum deformations for a transonic airfoil equipped with morphing leading and trailing
edges. Specifically, the proposed optimization framework integrates an innovative morphing shape
parameterization with a high fidelity Reynolds-averaged Navier–Stokes computational fluid dynamic
solver, a hybrid mesh deformation algorithm, and an efficient gradient evaluation method based on
continuous adjoint implementation. To achieve a feasible morphing shape, some structural properties
of skin and wing-box constraints were introduced into the morphing shape parameterization, which
offers skin length control and enables wing-box shape invariance. In this study, the optimum leading
and trailing edge deformations with minimization of drag at this cruise stage were searched for using
the adjoint-based optimization with a nested feasible morphing procedure, subject to the wing-box,
skin length, and airfoil volume constraints. The numerical studies verified the effectiveness of the
optimization strategy, and demonstrated the significant aerodynamic performance improvement
achieved by using the morphing devices. A lambda shock pattern was observed for the optimized
morphing leading edge. That result further indicates the importance of leading edge radius control.

Keywords: morphing; gradient-based aerodynamic optimization; skin length control

1. Introduction

With ever-increasing international awareness of economic efficiency and environmen-
tal protection, a more efficient aircraft design that reduces fuel consumption is urgent. The
morphing technology developed in recent decades aims at addressing this issue through
increasing efficiency during cruising, or better yet, during off-design points by adapting
the wing shape or dedicated control surfaces. To date, most studies have focused on
implementing the morphing technology by retrofitting the existing aircraft configurations
by implementing new dedicated devices, such as leading and trailing edge morphing [1–5].

Aerodynamic optimization is an essential part in the definition of morphing shape.
Fincham and Firswell [6] established an airfoil camber morphing optimization framework
with Genetic Algorithms (GAs), in which the XFOIL solver based on potential flow theory
with boundary layer correction was adopted. They used a third-order polynomial to
accurately represent the camber-line deformation of the airfoil embedded with the Fish
Bone Active Camber (FishBAC) system. In [7], the aerodynamic benefits of transport airfoil
with morphing trailing edge wings were quantified by a gradient-based optimization
optimizer coupled with a high-fidelity computational fluid dynamic (CFD) solver. The wing
is parameterized by the free form deformation (FFD) method. The FFD control points
near the trailing edge can move independently in the vertical direction to simulate the
small perturbations of the morphing trailing edge. However, vertical deformation of
the trailing edge increases or decreases skin length, resulting in additional axial stress
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that is necessary to avoid. Generally, a morphing device consists of actuators, internal
mechanisms, and skin, and it is designed to deform in a prescribed manner. Incorporating
of the structural requirements in the aerodynamic optimization of morphing airfoil appears
as beneficial to guarantee a good compromise between the aerodynamic performance
and the energy requested to deform the structure, mainly the skin. Indeed, even during
an aerodynamic optimization to define an optimal morphing shape when the internal
structure does not exist, the skin’s structural behaviors should be considered to obtain
a feasible morphing shape that is not excessively deformed and at the same time easily
controlled by the actuation and internal structure [3,8].

One possible approach to defining a feasible morphing shape is by evaluating the
existing internal mechanisms. For the active trailing edge device reported in [9], the airfoil
surface comprises rigid and flexible regions and is driven by three rotation inputs. Bézier
curves controlled by four points at each flexible region are employed to represent the
discrete kinematic model. Inspired by the conventional drop nose device, Suzuki et al. [10]
established leading edge deformation by imposing a rigid rotation first and smoothing
the curve by variation of the camber line and thickness distribution. A fourth-order
polynomial term of the camber line and thickness is used, and a total of 10 coefficients is
needed. Kan and Li et al. [11] used a parabolic function to deform the front quarter chord
of the airfoil, and examined the unsteady aerodynamic characteristics.

Other researchers discovered the potential of the existing class/shape transforma-
tion (CST) parameterization method in pursuing the development of a general morphing
airfoil shape. As a result, the existence of specific morphing devices is unnecessary. CST
parameterization was initially developed by Kulfan [12] and proved to be one of the best
candidates for parameterization under the criteria of completeness, flawlessness, intuitive-
ness, orthogonality, and parsimony [13], thereby improve smoothness when involving
machining [14,15]. Magrini et al. [16] provided a procedure to maintain the skin length to
minimize the axial stress. Specifically, an iterative optimization algorithm automatically
adjusts two additional coefficients (one for each upper or lower surface) to keep the skin
length of the new airfoil equal to that of initial airfoil. Based on the observation of existing
morphing airfoils, some authors suggested varying the chord length during morphing.
Leal et al. [17] proposed a modified CST method in order to maintain structural consistency,
based on the morphing structural assumptions of compliant ribs, rigid spar, constant
leading edge radius, and passive surface length. The chord length is adopted as the pa-
rameter, and the constant length of the passive surface assumption is satisfied by solving a
fixed-point iteration problem. De Gaspari et al. [18] developed a knowledge-based skin
structural (KBSS) feedback method considering the wing-box, airfoil area, skin length,
and curvature constraints, and performed morphing wing shape optimization using GAs.

Such parameterization, which considers the general characteristics of the morphing
airfoil without considering specific morphing mechanisms, is beneficial for the morphing
aerodynamic shape optimization. However, current optimizations based on feasible mor-
phing shape parameterization are solved by GAs, which requires an enormous evaluation
of the aerodynamic responses that are time-consuming when a high fidelity CFD solver
is involved. With the rapid development of a CFD adjoint solver, gradient optimization
has the potential to be an affordable tool for resolving the problem mentioned above.
In each optimization iteration, the computation requires solving one flow and several
adjoint problems depending on the number of functions to be evaluated. Consequently,
the computational time of evaluating the sensitivities is independent of the number of the
design variables.

In this paper, we focus on the aerodynamic shape optimization with a parameter-
ization dedicated to the morphing, particularly for two-dimensional morphing airfoil
design. A gradient-based morphing shape optimization framework is presented that uses
a Reynolds-averaged Navier–Stokes (RANS) CFD solver, an advanced adjoint implemen-
tation, a robust mesh deformation algorithm, and an innovate shape parameterization
method. In this method, the shape of the morphing system is implicitly represented by
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the parameterization that not only keeps the shape invariant in the wing-box region but
also provides skin length control. Using this framework, an optimization example that
minimized the drag by morphing the leading and trailing edges was carried out, and the
potential of drag reduction was investigated.

The paper is organized as follows: the feasible morphing airfoil geometry param-
eterization and the optimization framework are detailed described in Section 2; then,
in Section 3, the presented method is applied on a transonic airfoil to increase the perfor-
mance by minimizing the drag coefficient at cruise; finally, the conclusions are summarized
in Section 4.

2. Methodologies
2.1. Optimization Framework

The aerodynamic shape optimization framework is illustrated in Figure 1, which
includes a CST-based morphing airfoil parameterization, a mesh deformation tool, a flow
and adjoint solver, and a gradient-based optimizer. For each iteration, the optimizer
invokes each component sequentially if necessary. The baseline airfoil is initially prepared
as a mesh file, and the corresponding shape is identified by the shape parameterization
method as a vector of design variables. Then, the optimizer launches the primary flow
solver and adjoint solver successively, in order to evaluate the objective function and obtain
the sensitivities with respect to the surface mesh. The obtained surface sensitivities are
then projected into design space through geometric sensitivities (also known as design
velocities). The optimizer drives the optimization loop, finds new design variables, deforms
the mesh, and evaluates the new shape.

Figure 1. Optimization framework.

2.2. Feasible Morphing Airfoil Geometry Parameterization

The generalized CST equations are presented first, aiming at offering a matrix formu-
lation. Local shape deformation, a smooth contour, skin length restraints, and an airfoil
volume constraint are considered as the basic characteristics of a feasible morphing shape
parameterization. The choice of keeping a constant arc length for the passive skin is in-
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tuitive, and this was done to minimize the axial stress in the skin and eliminate the skin
buckling when being compressed.

2.2.1. Generalized CST Equations

The CST method, a fundamental parametric airfoil geometry parameterization
method [12], consists of a class function C(ψ), a shape function S(ψ), and a pair of bound-
ary conditions at leading and trailing edges [18]. The geometric parameters describing
the CST airfoil are shown in Figure 2 This method maps the non-dimensional coordinate
ψ ∈ [0, 1], which is the chord-wise axis of the Cartesian coordinate system, to vertical
ordinate ζ = ζ(ψ):

ζ(ψ) = CN1
N2
(ψ)S(ψ) + (1− ψ)ζLE + ψζTE (1)

where the subscript (·)TE and (·)LE represent trailing edge and leading edge, respectively.

LEz

LEx

TEz

c

�

� �� �

�

LE,uR
LE,lR

front� rear�

L.E. T.E.

, 1, ,6u iA i� �

,0uA

, 7,8u iA i�

, 1, ,6l iA i� �

, 7,8l iA i�

,0lA

Component of Bernstein Polynomial

�

Figure 2. The geometric parameters describing the class/shape transformation (CST) airfoil and the
corresponding Bernstein polynomial of the baseline shape. RLE is the dimensional radius of leading
edge curvature, the subscripts ,u and ,l represent upper and lower surfaces. zLE and zTE are the vertical
positions of leading and trailing edge points. xLE and xTE are chord-wise positions. β is the trailing
edge’s boat-tail angle. A is the coefficient that scales each corresponding Bernstein polynomial.

The class function C(ψ), a single-lope curve, is a term that includes two parameters, N1
and N2. Various general shapes, such as airfoil and aircraft body cross-sectional shape, can
be represented by adjusting those two parameters [12]. For example, by setting N1 = 0.5
and N2 = 1, a round leading and sharp (or blunt) trailing edge subsonic airfoil can be
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defined. In this paper, N1 = 0.5 and N2 = 1 are default parameters. The expression of class
function is:

CN1
N2
(ψ) = ψN1(1− ψ)N2 (2)

The geometry is further modified by introducing the shape function S(ψ), which is
composed of Bernstein polynomials Bi(ψ) to order n, and coefficients Ai that adjust and
scale each polynomial. The shape function can be expressed in a compact form:

S(ψ) =
n

∑
i=0

AiBi(ψ) =
n

∑
i=0

AiKi,nψi(1− ψ)n−i = AᵀB(ψ) (3)

where Ki,n = n!
i!(n−i)! is the binomial coefficient, A = {A0 A1 · · · An}ᵀ is a column vector

of coefficients, and B(ψ) consists of Bernstein polynomials.
Furthermore, a pair of boundary conditions for leading and trailing edges is added to

release the vertical displacement freedom, thereby enabling the ability of representing the
movement of the morphing leading and trailing edges physically:

ζLE =
ZLE

c

ζTE =
ZTE ± 0.5∆ZTE

c

(4)

where ζLE and ζTE are the non-dimensional vertical positions of leading and trailing edge
points, respectively. Both of them are non-dimensionalized by the chord from dimensional
ZLE and ZTE. ∆ZTE ≥ 0 is the thickness of the trailing edge tip. For those airfoils with
sharp trailing edges, ∆ZTE = 0.

Consequently, the upper and lower surfaces of an airfoil are:

ζu(ψ) = CN1
N2
(ψ)Aᵀ

uB(ψ) + (1− ψ)ζLE + ψζTE,u

ζl(ψ) = CN1
N2
(ψ)Aᵀ

l B(ψ) + (1− ψ)ζLE + ψζTE,l

(5)

where the subscript (·)u and (·)l represent the upper and lower surfaces of an airfoil,
respectively.

The first and the last Bernstein polynomials’ coefficients have a physical interpretation.
The first term A0 is relevant to the radius of curvature of the leading edge, whilst the
last, An, can be formulated from the trailing edge boat-tail angle β, and both the vertical
location of leading and trailing edge. Those properties enable the intuitiveness of the CST
parameterization method and are beneficial to establish the morphing leading and trailing
edge functionality that will be shown in the following sections.

RLE

c
= lim

ψ→0+

(
1 + ζ ′(ψ)2

)3/2

|ζ ′′(ψ)| =
A2

0
2

tan(β) = lim
ψ→1−

−ζ ′(ψ) = An + ζLE − ζTE

(6)

where RLE is the dimensional radius of leading edge curvature; ζ ′(ψ) and ζ ′′(ψ) are first
and second derivatives of CST formulation with respect to non-dimensional coordinate
ψ, respectively.

2.2.2. CST Coefficient Identification

The parameterization procedure starts with the identification of the Bernstein poly-
nomials’ coefficients Ai for both lower and upper surfaces, which can be evaluated by
various techniques, e.g., curve fitting, and gradient-based and genetic optimization [17],
to minimize the error from the CST airfoil representation and the already available one that
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is represented by points or as a CAD file. In this work, curve fitting is employed, and a
least-square solution is obtained by solving an over-determined linear system.

The identification of the CST parameters consists of projecting the existing airfoil
into CST space. Most of the airfoils are represented by the coordinates of points. The
airfoil is first translated by putting the leading edge point on the vertical axis of the
current coordinate system. Then the dimensional coordinates of an input airfoil are non-
dimensionalized by chord length. This procedure is a bijective transformation from x− z
domain where x ∈ [xLE, xTE] to ψ− ζ domain where ψ ∈ [0, 1] by setting ψ = (x− xLE)/c.

After transformation of the coordinates, denote
{

ψj
}

1≤j≤l ∈ [0, 1] as distinct points

with a total number of l, such that 0 ≤ ψ1 < · · · < ψl ≤ 1,
{

ψj, ζ j
}

1≤j≤l depicts the
coordinates of a set of points on the upper or lower surface of an input airfoil. Generally,
the order of polynomials is less than the number of points, i.e., n ≤ l. The coefficient
identification problem is to find a suitable set of Ai that minimizes the sum of the square of

deviations from the data ζ j to ζ(ψj), i.e., min
A

l+1
∑

j=1

∣∣ζ j − ζ
(
ψj
)∣∣2, which is equivalent to solve

the over-determined linear system [18]:

T(ψ)A = f (ψ) (7)

where

T(ψ) =


CN1

N2
(ψ1)K0,n(1− ψ1)

n CN1
N2
(ψ1)K1,nψ1(1− ψ1)

n−1 · · · CN1
N2
(ψ1)Kn,nψn

1

CN1
N2
(ψ2)K0,n(1− ψ2)

n CN1
N2
(ψ2)K1,nψ2(1− ψ2)

n−1 · · · CN1
N2
(ψ2)Kn,nψn

2
...

...
. . .

...
CN1

N2
(ψl)K0,n(1− ψl)

n CN1
N2
(ψl)K1,nψl(1− ψ2)

n−1 · · · CN1
N2
(ψl)Kn,nψn

l

 (8)

is a Bernstein–Vandermonde matrix [19] with a size of l × (n + 1), and

f (ψ) =


ζ1 − (1− ψ1)ζLE − ψ1ζTE
ζ2 − (1− ψ2)ζLE − ψ2ζTE

...
ζl − (1− ψl)ζLE − ψlζTE

 (9)

2.2.3. Morphing Leading and Trailing Edge Algorithm

Many of the the morphing concepts applied to transport aircraft are now trying to
improve existing aircraft by retrofitting the leading edge [20], the trailing edge [21,22],
or the upper surface [23], without changing the main bearing structure [24]. This can be
explained from both an aerodynamic and a structural point of view. On the one hand,
the aerodynamic performance is more sensitive to the geometric variation at the leading
and trailing edges. The stagnation point, where the local velocity turns to zero and the
static pressure shows the highest value, is located at the leading edge. Additionally, when
the airfoil approaches the stall angle, the separation of flow starts on the upper surface of
the leading edge. Besides, the laminar-to-turbulent flow transition point and the shock
wave are located on the upper surface [25]. On the other hand, the wing-box of a fix-wing
aircraft is the primary load-carrying structure. Designers intend to introduce the morphing
system while keeping the overall static and dynamic performance of structure [26].

The distinction between standard aerodynamic shape optimization and morphing air-
foil optimization is obvious. In the morphing airfoil optimization, the morphing structure
designed to form morphing shape should be considered during the shape optimization.
In the preliminary morphing optimization framework, the feasible morphing should be
defined based on certain morphing mechanisms, or at least the behavior of the skin that is
part of the morphing mechanisms. The skin length L(ψ) is also useful in representing the
kinematics of a morphing skin. For the passive non-stretched skin, the skin length L(ψ)
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should maintain a constant value. For those actuated surfaces, morphing skin coupled
with a sliding system and the advanced flexible morphing skin [27], the variation of skin
length ∆L(ψ) can be released to a particular value [8].

This paper adopts a feasible morphing airfoil parameterization method aimed at pro-
viding local deformation, skin length control, and in the meantime maintaining invariance
of wing-box region. The feasible morphing airfoil generation algorithm based on the CST
parameterization method is shown in Figure 3, including an inverse fitting and a single-
value optimization problem. The former guarantees the generated airfoil satisfying the
wing-box constraint, and the latter provides length control of the skin. Here, the parameters
in the CST airfoil parameterization method are divided into three categories based on the
aerodynamic performance index, skin length constraint, and wing-box constraint.

Baseline 

airfoil

Aerodynamic

design variables

Initial

chord, �

Wing-box

inverse fitting

Skin length

calculation

Deformed

airfoil

Adjusting

chord, �

∆� ���
Yes

No

Figure 3. Morphing algorithm for maintaining the wing-box and the length of the skin.

For example, consider an airfoil shown in Figure 2. The chord-wise position xLE plays
a key role in keeping the constant skin length when leading edge is morphing. In addition,
design variables driven by the aerodynamic optimizer are the leading edge radii of upper
and lower skin (RLE,u, RLE,l), vertical position (zLE), and a zero or one CST coefficient that
peaks near the front spar (Au,0 and Al,0). Regarding the trailing edge morphing, the chord
length is determined in order to provide skin length control. The parameters exposed to
the aerodynamic optimization problem are the boat-tail angle β, vertical position zTE of
trailing edge, and several CST coefficients with peaks located in the trailing edge (Au,i and
Al,i for i = 7, 8). In the nested single value optimization problem, a convergence tolerance
of 1× 10−6c is adopted.

The remaining CST coefficients are obtained by solving the inverse fitting problem
Equation (7) so that the curves always attach the wing-box. Let ψb =

{
ψj, ζ j

}
j∈Ωb

be the

points in the subset space of airfoil Ω , where subscript (·)b stands for box. The morphing
part of airfoil Ω is indicated by subscript (·)m. In other words, the chord-wise coordinate
of distinct points ψb is located from ψfront to ψrear, where (·)front and (·)rear represent front
and rear spars of the wing-box. Those locations of wing-box points are known to the
designer as morphing always starting from a baseline airfoil. Meanwhile, the coefficient
vector A is partitioned into A =

(
Aᵀ

b Aᵀ
p
)ᵀ, in which the subsets ψb and ψp represent

box and perturbed aerodynamically driven terms, respectively. Consequently, the inverse
fitting problem to solve is adjusted to[

Tb(ψb) Tp(ψb)
Tb(ψm) Tp(ψm)

]{
Ab
Ap

}
=

{
f (ψb)
f (ψm)

}
(10)

The coefficients with regard to the wing-box constraints Ab are solved by evaluating
the first row:

Tb(ψb)Ab = f (ψb)− Tp(ψb)Ap (11)

An example of a deformed RAE 2822 airfoil is shown in Figure 4. In this case, the mor-
phing shape is obtained in a sequential way. Firstly, the intermediate airfoil with a morph-
ing trailing edge is generated by changing the morphing trailing edge aerodynamic design
parameters and taking the baseline airfoil as a reference with wing-box of ψ ∈ [0, ψrear]. The
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length of upper skin is kept constant through solving a nested single value optimization
problem. As a result, the chord length slightly decreases. Then, the obtained intermediate
airfoil with morphing trailing edge is taken as the reference airfoil, and the leading edge
morphing is achieved by perturbing the leading edge aerodynamic design variables. Now,
the wing-box region is ψ ∈ [ψfront, 1], and the wing-box constraint is preserved by re-
evaluating the subset of CST coefficients by solving an inverse fitting problem. Meanwhile,
the chord-wise coordinate of leading edge point xLE varies to keep the length of leading
edge skin constant.

Figure 4. RAE 2822 with morphing leading and trailing edges.

2.3. Mesh Deformation

A hybrid mesh deformation strategy, which consists of the deformation of the surface
mesh by a radial basis function (RBF) tool and the deformation of the surrounding volume
mesh by linear elasticity formulation, is adopted in this work. The first stage is surface
mesh deformation. However, the mesh mapping from the baseline CST airfoil to the
morphed CST airfoil is not straightforward, since the mesh grid points and the CST airfoil
may not always coincide with each other. An auxiliary function is required for surface
mesh mapping, and the idea is to construct an RBF interpolation of the displacement on a
set of boundary nodes.

Assume we have the undeformed baseline CST airfoil Ωu, and the corresponding the
morphed CST airfoil Ωm. There are points with coordinates

{
xu

k
}

k∈W on the corresponding
undeformed surface mesh, whereW is the set of surface mesh nodes indexes on the surface
S to be designed. Meanwhile, the corresponding mesh point coordinates on the deformed
surface Sm are

{
xm

k
}

k∈W . The surface mesh mapping problem is, given the baseline CST
airfoil Ωu and the corresponding morphed CST airfoil Ωm, computing a mapping function
G such that the surface mesh nodes on the morphed surface xm

k can be found through a

linear mapping xu
k
G−→ xm

k .
The mapping function is constructed from the pair of points from baseline CST

airfoil Ωu to morphed CST airfoil Ωm. There are two sets of points: {xu
t }t∈V on the Ωu,

and {xm
t }t∈V on Ωm, where V is the space such that ∀ti ∈ V point xu

ti
and xm

ti
share the

same arc length measured from the origin (i.e., leading edge point).
For convenience, two displacement fields from baseline CST airfoil Ωu and surface

mesh nodes on S to morphed CST airfoil Ωm and surface mesh nodes Sm are introduced:

vt = xm
t − xu

t t ∈ V(Ω)

wt = xm
k − xu

k k ∈ W(S)
(12)
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The displacement interpolation space can be generated from the generic RBF with
first-order polynomial correction [28]:

s(x) =
N

∑
i=1

γiφ(‖x− xi‖) + h(x) (13)

where, s is a scalar value, φ weighed by coefficient γi is the non-negative radial interaction
function defined on the positive real axis, x is evaluation point, and xi are source points that
also be called centers with a total number of source points of N. Here, in the displacement
interpolation problem, the source points are xu

t . A first-order polynomial h is usually
added for resolving the ill condition of the interpolation matrix. In a two-dimensional x− z
space, the linear polynomial has the form of h(x) = β0 + β1x + β2z, where x = (x, z)ᵀ ‖ · ‖
denotes the Euclidean distance, which is the standard metric to represent the straight-line
distance. The radial basis fitting exists if the weights γ = (γ1, · · · , γN)

ᵀ and the coefficients
of the polynomials correction β = (β1, β2)

ᵀ can be evaluated such that the desired values
gi are obtained at source points:

s(xu
ti
) = gi i = 1, · · · , N (14)

and γ also have to satisfy the orthogonality conditions as:

N

∑
i=1

γi =
N

∑
i=1

γixu
ti
=

N

∑
i=1

γizu
ti
= 0 (15)

After collecting the desired values in vector g = (g1, · · · , gN)
ᵀ, the above radial basis

fitting problem can be formulated in a linear system:[
M Pᵀ

P 0

]{
γ
β

}
=

{
g
0

}
(16)

where M is the interpolation matrix defined as

Mij = φ
(∥∥∥xu

ti
− xu

tj

∥∥∥), 1 ≤ i, j ≤ N

and P is a constraint matrix that consists of the first-order polynomial terms at the positions
of source points.

P =

[
1 1 · · · 1

xu
t1

xu
t2
· · · xu

tN

]
(17)

The coefficient vector γ and β can be solved as follows:{
γ
β

}
=

[
M−1 −M−1PᵀMPPM−1

MPPM−1

]
g (18)

where MP =
(
PM−1Pᵀ

)−1.
Now the scalar value at arbitrary points x can be evaluated by right-multiplying

coefficient vector γ and β by an interpolation recover matrix Ar, which takes the form

Ar =
{

φ
(∥∥∥x− xu

t1

∥∥∥) φ
(∥∥∥x− xu

t2

∥∥∥) · · · φ
(∥∥∥xu

tN

∥∥∥) 1 xᵀ
}

(19)

In a compact form, it yields
s(x) = Hg

where H = Ar

{
γ
β

}
.
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In this paper, the Wendland C4 function is selected as the kernel of RBF [29]:

φ(r) =
{ (

35r2 + 18r + 3
)
(1− r)2 0 < r < rmax

0 rmax < r
(20)

where rmax is chosen based on the maximum distance dmax between two adjacent mesh
nodes such that rmax = 2dmax.

The displacement field w can be interpolated through vector v by right-multiplying
matrix H. Subsequently, the coordinates xm

k on the deformed surface mesh can be resolved
by xm

k = w + xu
k .

In the second stage, the volume mesh is morphed using the equation of linear elas-
ticity [30]. The new coordinates of the surface nodes are imported as an external file. The
linear elasticity mesh deformation shows the efficiency and robustness, and can keep the
topology of the volume mesh. When a large mesh deformation is required, the input
displacements are divided into several sub-load steps, and the linear elastic problem is
solved subsequently. In order to preserve the high resolution of the boundary layer of the
volume mesh while propagating the mesh deformation, Young’s modulus of each mesh
cell is set as inversely proportional to the cell volume. In other words, the smaller the cell
volume, the larger the modulus, and vise versa.

The mesh deformation algorithm is summarized below:

• The construction of the RBF interpolation matrix H by using the points xu
t on baseline

CST airfoil and the mesh points on the corresponding undeformed surface xu
k ;

• The generation of the displacement field by evaluating vt = xm
t − xu

t , in which xm
t on

the morphed CST airfoil, sharing the same normalized arc length with the xu
t ;

• The projection of displacement field v from CST airfoil surface Ω to surface mesh
S through matrix H, yielding w = Hv, then mesh points on the morphed surface
xm

k = w + xu
k are finally obtained;

• The propagation of the displacement on the surface to the entire volume mesh through
solving the linear elastic deformation problem.

The application of the mesh deformation algorithm to an airfoil with morphing
leading and trailing edges is demonstrated in Figure 5. The presented method proved to be
efficient and robust in the preliminary test, and can be naturally extended to aero-structural
coupling when the internal morphing mechanisms are available. However, the only flaw
in this method is the negative effects on the orthogonality of the boundary layer mesh. The
authors have compared the result calculated on the deformed mesh with the one obtained
from the rebuilt mesh, and the deviation on the drag is acceptable.

(a) (b)

Figure 5. Mesh deformations of airfoil with morphing leading and trailing edges. (a) Undeformed RAE 2822 mesh. (b)
Morphing RAE 2822 mesh.
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2.4. Flow and Adjoint Solver

Both flow and adjoint problems are solved in SU2 (Version 6.20), an open-source CFD
solver based on a finite volume method (FVM) formulation [31]. Compressible RANS
equations govern the flow around the airfoil, and the turbulence model adopted to close
the RANS equation is the Spalart–Allmaras (S–A) one-equation model [32].

Two adjoint approaches, the continuous [33] and discrete approach, have been imple-
mented in SU2 [34]. The former is a problem-based solver by evaluating adjoint through
boundary surface integral with the frozen turbulent viscosity assumptions; the latter is
a pure code-based adjoint solver by implementing algorithmic differentiation. Readers
interested in those adjoint approaches for CFD can refer to [35]. In this paper, the sensitivity
is provided by continuous adjoint method.

For numerical settings of the flow and adjoint solver, the Jameson–Schmidt–Turkel
(JST) non-conservative central scheme is adapted for the discretization of both the flow and
adjoint convective fluxes. A Venkatakrishnan slope limiter is used with a coefficient of 0.3.
The spatial gradient of the flow and adjoint is approximated by means of the Green–Gauss
approach. An implicit Euler scheme is used for integration, and the flexible generalized
minimum residual (FGMRES) linear solver with incomplete lower upper factorization
(ILU) linear preconditioner was chosen.

2.5. Gradient Evaluation

The gradient with respect to the morphing airfoil design variables is obtained through
sensitivities vector right multiplying by the geometric sensitivities. The geometric sen-
sitivities matrix establishes the link between the morphing airfoil design variables and
the movement of mesh nodes on the surface to be designed. For the morphing leading
edge, the design variables are leading edge vertical position zLE, leading edge radius
RLE, and 2× ml extra CST weighting coefficients {Ai}i=1, ··· ,ml on each surface. For the
morphing trailing airfoil, the design variables are trailing edge vertical position zTE, boat
tail angle β, and extra subset of CST weighting coefficients {Ai}i=n−1, ··· ,n−mt with a total
number of 2×mt. In general, the design variables can be written in a general and compact
form α = (α1, · · · αm)

ᵀ.
Assume applying an infinitesimal perturbation of a design variable ∆αj; the gradient

of the function of interest f can be established by evaluating the surface integral on the
surface S being designed [36]:

d f
dαj
≈ − ∑

i∈W

{
∂ f
∂S

}
i
si

nᵀ
i uij

∆αj
(21)

where W is the index set of mesh nodes on the surface S to be designed,
{

∂ f
∂S

}
i

is

the surface sensitivity at the mesh node with index i ∈ W , si is the area (length for 2D
flow) of the control volume that surrounds node i, ni is unit normal vector, and uij is the
displacement of node i after introducing the infinitesimal perturbation of design variable
∆αj. In this paper, the products of surface sensitivities and s are called sensitivities. Note
that for the continuous adjoint solver, the normal direction points to inside the airfoil;
hence, a positive surface sensitivity indicates that an inward perturbation of the surface
leads to an increment of the objective function. However, the definition of sign convention
in geometric sensitivity is the opposite to that of surface sensitivity. Hence, a minus sign is
required in Equation (21).

Moreover, the displacement uij is obtained through finite-difference by employing
small perturbations for the design variable ∆αj. The computational cost of generating the
geometric sensitivities is negligible compared with the flow solver.
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Consequently, the gradient evaluation in this optimization framework yields

d f
dα1
d f
dα2

...
d f

dαm

︸ ︷︷ ︸
Gradients

= −


nᵀ1 u11
∆α1

nᵀ2 u21
∆α1

· · · nᵀN uN1
∆α1

nᵀ1 u12
∆α2

nᵀ2 u22
∆α2

· · · nᵀN uN2
∆α2

...
...

. . .
...

nᵀ1 u1m
∆αm

nᵀ2 u2m
∆αm

· · · nᵀN uNm
∆αm


︸ ︷︷ ︸

Geometric Sensitivities



∂ f
∂S1

s1

∂ f
∂S2

s2

...
∂ f

∂SN
sN

︸ ︷︷ ︸
Sensitivities

(22)

3. Results and Discussion

The optimization framework described in the preceding section was applied to RAE
2822 airfoil in transonic, viscous flow, aiming at minimizing the drag for cruising at a
constant lift coefficient of 0.725. The free-stream Mach number was 0.729, and the Reynolds
number was 6.5× 106. For the constraints, the maximum allowable volume variation was
adapted by introducing an inflatable term kA to control the shape deformation space and
prevent unrealistic morphing shapes in the meantime. The general optimization problem
is presented as follows:

min
α

Cd

subject to ψb ∈ [ψfront, ψrear]

|∆Area/Area0| ≤ kA

Cl ≡ 0.725

|∆LLE| = 0∣∣∣∆LTE,UpperSkin

∣∣∣ = 0∣∣∆LTE,LowerSkin
∣∣/c = 0.02

(23)

where ψb ∈ [ψfront, ψrear] indicates the wing-box region, Area0 is the volume of baseline
airfoil, and ∆Area is the variation of volume after morphing. The last three constraints
introduce the skin length control, where ∆LLE = 0 and ∆LTE,UpperSkin limit the skin length
of the entire leading edge and the upper skin of the trailing edge, respectively. While the
lower skin length of trailing edge is allowed to lengthen or shorten about 2% of the chord,
this can be achieved by the presence of specific sliding systems, hyper-elastic material,
or lattice structure.

An O-type-mesh adapted from the SU2 test cases is used in this paper with a distance
to the far-field of 100 chord lengths. The hybrid mesh for the current simulation is created
with structural quadrilateral mesh near the airfoil, where 108 points are distributed along
the upper surface and 85 points along the lower surface with a total number of 192, and an
unstructured triangular grid in the other field with total 22,842 cells. The initial wall-
normal grid points are located at 1.0× 10−5 for a chord length, the corresponding y+ ≈ 1
in wall units.

The baseline airfoil was first simulated on the compressible RANS with the S–A
turbulence model. The flow solver automatically used a simple trim algorithm by adjusting
the angle of attack (AoA) to achieve the target lift coefficient. The drag coefficient of the
baseline airfoil is 129.38 counts (1 count = 1.0 × 10−4), and the corresponding AoA is
2.286 degrees.

The RAE 2822 airfoil was then identified and projected from coordinates to CST design
space, by means of the CST coefficient identification method with Bernstein polynomial
order of 10.

The optimizations were performed using the gradient-based fmincon from MATLAB
by choosing the active-set algorithm, which uses a sequential quadratic programming (SQP)
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technology and solves a quadratic programming (QP) sub-problem at each major iteration.
The optimizer updates the Hessian matrix at each iteration utilizing the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) formula and then carries out a line search. A maximum line
search step length of 0.02 was employed to control the magnitude of the design variables
and avoid non-physical deformation of the airfoil. The optimization was terminated when
the stopping criteria (step or function changing is less than tolerance of 1.0× 10−6) were
satisfied, or the maximum iteration limit of 50 was reached.

In the following subsections, the gradient verification is shown first. Subsequently,
three optimization cases are shown: morphing only the leading edge, then the trailing
edge, and finally, the leading and trailing edges.

3.1. Sensitivities Verification

The gradients obtained with the method provided in this paper are compared with
those computed with forward-difference. Different finite-difference steps have been tested,
while decreasing from a step size of 1.0× 10−3 of chord length until the finite-difference
gradients converged. In the results shown in this subsection, the reference gradients were
computed using a finite-difference step size of 1.0× 10−7.

Surface sensitivities, which are the variations of the objective function with respect to
the infinitesimal deformation along the normal direction of surface nodes, are projected
to the feasible morphing airfoil geometry parameterization design space through the
geometric sensitivities matrix to obtain gradients.

Before demonstrating the gradients, it is worthwhile showing the geometric sensi-
tivities projection matrix. Geometric sensitivities, also known as design velocities, are
computed through forward finite differences. A step of 1.0× 10−5 was used. The prelimi-
nary test indicates that the geometric sensitivities are insensitive to the size of the finite
difference step.

Figure 6 provides the geometric sensitivities for an airfoil of which wing-box locating
ψb ∈ [0.1, 0.7] with respect to Ru, Rl and zLE for leading edge morphing, zTE, β and two
extra CST coefficients A8 and A9 on upper and lower surface for the trailing edge morphing.
Note that arrows with outward displacement on the airfoil indicate positive geometric
sensitivities, negative for inward. A scale factor has been applied to the magnitude of
each geometric sensitivity for a better illustration. Theoretically, the morphing leading
and trailing edge algorithm ensures the perturbation appears only in the design region.
However, a small error is observed in the non-morphing domain. This error is due to the
residual that is introduced in solving the over-determined equation. The magnitude of
residual is 1.0× 10−5 times smaller than the required value of geometric sensitivity, which
is considered as acceptable.

The geometric sensitivities at the morphing leading edge region shown in Figure 6a–c
have the same order of magnitude. On the contrary, the magnitudes of geometric sensitivi-
ties for the morphing trailing edge, from Figure 6d–i , show inconformity. The impact of
zTE is 200 to 300 times larger than other parameters. This result suggests that gradients are
highly sensitive to the vertical displacement of the trailing edge, which may amplify the
error of adjoint results.

The sensitivities on the surface nodes provided by continuous adjoint and gradients
comparison are displayed in Figure 7. It is not surprising that a discontinuity of sensitivity
at the tip of the trailing edge on the upper surface is present, as shown in Figure 7a, which
leads to the gradient inaccuracy at the gradient concerning the design variable for trailing
edge morphing. Several authors [34,37] also observed this phenomenon, mainly due to
the assumption of smooth surface in continuous adjoint method and the presence of the
sharp trailing in this case. Readers who are interested this problem are prompted to refer
to [33,38] for details.

Fortunately, except for discrepancies for design variables at the trailing edge, no sig-
nificant problem has been found. The gradients with respect to the design variables of
leading edge show good agreement with the results from finite differences. Although the
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numerically exact gradient information was not obtained, the gradients still can provide
sufficient accuracy and lead the optimizer to find optimized results.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Geometric sensitivities of morphing leading and trailing edges. Geometric sensitivities
of morphing leading edge with respect to Ru, Rl, and zLE, whose amplitudes have been multiplied
by a factor of 20 for better demonstration. The amplitude of zTE has been multiplied by a factor
of 10, and the magnitudes of β, Au8, Al8, Au9, and Al9 have been multiplied by a factor of 100. (a)
Ru × 20. (b) Rl × 20. (c) Zle × 20. (d) Zte × 10. (e) β× 100. (f) Au8 × 100. (g) Al8 × 100. (h) Au9 × 100.
(i) Al9 × 100.

(a)

Figure 7. Cont.
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(c)

Figure 7. Adjoint surface sensitivity and a comparison of the projected gradient with results
obtained from finite difference on RAE 2822 with drag as the objective function. (a) Surface sensitivity.
(b) Gradient. (c) A zoom of gradient.

3.2. Minimization of Drag by Morphing Leading Edge

The first case involves the optimization shape design of morphing leading edge (mLE)
to improve the aerodynamic performance in the cruise stage in terms of drag coefficient
at a constant lift coefficient. The wing-box region starts from 10% of the chord to trailing
edge, ensuring the morphing only occurs in the front 10% of the airfoil. In this case,
the aerodynamic design variables are vertical position and the upper and lower skin radius
of the leading edge. Chord-wise position of leading edge point and the remaining subset of
CST coefficients are automatically determined through the morphing algorithm proposed
in Section 2.2.3.

Optimization starts from baseline airfoil and obtains the optimal solution after 10
major iterations. Optimization runs in parallel on a hexagon-core processor with frequency
3.2 GHz. It costs around 20 min for one iteration, including solving both flow and adjoint
problem. The optimizer may invoke the flow solver several times between each iteration
to evaluate the objective function with new design variables. The convergence history is
presented in Figure 8a. The drag coefficient converges to 108.74 counts, with 16% drag
reduction, while keeping a constant lift coefficient by adjusting the angle of attack from
the initial 2.29 degrees to 2.20 degrees. An aerodynamic efficiency improvement of 19% is
achieved by evaluating the change of lift to drag ratio. The vertical displacement zTE varies
from 0 to −0.0048 m, and the corresponding deflection is 2.81 degrees. The upper surface
leading edge radius of the optimized airfoil is around 3.11 times that in the baseline airfoil,
varying from 0.0086 m to 0.0269 m. The lower skin leading edge radius of optimized airfoil
decreases from 0.0087 m to 0.0062 m. Figure 8c compares the optimized mLE shape with
the baseline airfoil. Increment of leading edge radius on the upper skin leads to a flatter
upper leading edge surface.

A comparison of the Mach contour for both baseline and optimized airfoil with mLE is
displayed in Figure 9; the strong shock wave at around 50% is eliminated and replaced by
a smoother shock wave recovery. In the meanwhile, the strongest shock wave appears near
the leading edge. Those phenomena in the Mach contour also affect the pressure coefficient
distribution in Figure 8b. A stronger sucking force is generated in the leading edge, and the
pressure gradient at half chord is alleviated. The pitching moment increases consequently.
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Figure 8. Comparison of results for the RAE 2822 optimization using a morphing leading edge.
(a) Convergence history. (b) Cp distribution. (c) Airfoil shape.
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Figure 9. Mach contours for baseline and optimized RAE 2822 by using a morphing leading edge.
(a) Baseline airfoil. (b) Optimized airfoil with a morphing leading edge.

3.3. Minimization of Drag by Morphing Trailing Edge

The second application minimizes drag coefficient using a morphing trailing edge
(mTE) locating at rear 30% of the chord. Design variables are vertical position, boat tail
angle of the trailing edge and two extra CST coefficients.

The same as the mLE case, we start the optimization from baseline airfoil. An opti-
mized solution is obtained after 21 major iterations, which shows more difficulty finding
optimal design than the previous case. The drag coefficient decreases to 120.21 counts,
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with a 7% drag reduction. The AoA in the optimized airfoil changes to 1.65 degrees to keep
a lift coefficient of 0.725.

Figure 10 provides the comparisons of pressure coefficient distribution and the shape
between baseline and optimized airfoil. The boat tail angle of the optimized mTE is
16.4 degrees, 2 times of which at baseline airfoil. Consequently, increased camber near
the trailing edge is achieved. A higher pressure difference between upper and lower at
the trailing edge surface is observed, as shown in Figure 10a. A smaller angle of attack
results in a lower pressure difference in the leading edge region. The shock wave and the
resulting pressure discontinuity slightly moves from 50.0% to 51.6% of the chord length,
and a gentler pressure drop after the shock wave is achieved.

(a) (b)

Figure 10. Comparison of results for the RAE 2822 optimization using a morphing trailing edge.
(a) Cp distribution. (b) Airfoil shape.

3.4. Minimization of Drag by Morphing Both Leading and Trailing Edge

Our goal in this subsection is to investigate the potential of efficient improvement at
the cruise stage by using both morphing leading and trailing edge (mLETE). Two initial
airfoils are chosen—one is the baseline airfoil; the other is the optimized airfoil with mLE.

3.4.1. Starting from Baseline

Starting from the baseline airfoil, after seven iterations, an optimized airfoil with
mLETE is obtained with a drag coefficient of 116.82 counts, with an around 9.7% drag
reduction. The current angle of attack is 1.09 degrees, which is smaller than the initial angle
of 2.286 degrees. Pressure coefficient distribution, morphing leading, and trialing shape of
the optimized airfoil are compared with the baseline in Figure 11. Significant deformations
are achieved; vertical displacement of leading edge zLE is −0.01146 m and that of trailing
edge zTE is −0.0098 m; the corresponding dropping angles are about 6.5 and 1.9 degrees,
respectively. The leading edge radii of both upper and lower surfaces decrease to half of
those values in baseline airfoil, which are the lower bound of those design variables. As the
dropping leading and trailing edges increase the camber, the angle of attack decreases from
2.286 to 1.094 degrees in order to keep a constant lift. This phenomenon is similar to the
previous mTE case.
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(a)

(b) (c)

Figure 11. Comparison of results for the RAE 2822 optimization using morphing leading and
trailing edges. (a) Cp distribution. (b) Leading edge shape. (c) Trailing edge shape.

However, the drag reduction achieved is lower than that achieved by using only the
mLE. A possible interpretation could be that the optimization finds a local minimal starting
from the baseline airfoil due to the pitfall of the gradient-based optimizer.

3.4.2. Starting from Optimized mLE

Another optimization case has been conducted, taking the optimized airfoil with
mLE as initial. The drag coefficient converges to 105.97 counts, a corresponding reduction
of 18.1%, which is larger than the optimization result that starts from the baseline. The
shapes of baseline and optimized airfoil with morphing leading and trailing edge and the
corresponding pressure coefficient distributions on the surface are compared in Figure 12.
Similarly to the initial airfoil, the optimization results in a thicker leading edge by enlarging
the upper leading edge radius. The leading edge slight drops around 4.3 degrees. The chord
decreases from 1 to 0.99689 m, and the chord-wise position of leading edge point moves
around 0.142% of chord length—primarily to satisfy the constant skin length constraints.
The trailing edge moves upward, and the corresponding deflection angle is −1.09 degrees.
Additionally, the boat tail angle is enlarged, and hence, the camber near the trailing edge
increases, resulting in a local lift increment at after 30% of the chord. An analogical pressure
coefficient distribution is obtained in the front 50% comparing with the pressure coefficient
distribution only using mLE in Figure 8b, and two smooth pressure recoveries replace the
pressure drop around 50% chord on the upper surface. Thus a lower shock wave drag
is achieved.
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(a)

(b) (c)

Figure 12. Comparison of results for the RAE 2822 optimization using morphing leading and trailing
edges, starting from the optimized morphing leading edge case. (a) Cp distribution. (b) Leading edge
shape. (c) Trailing edge shape.

The optimization results are summarized in Table 1. The moment coefficient Cm is
presented here for completeness, although it was not included in the optimization problem.

Table 1. Forces and corresponding angles of attack for baseline and optimized morphing airfoils at a
constant lift coefficient of 0.725.

Name Cd (Counts) AoA (Degrees)

Baseline 129.38 56.0 0.09383 2.286
mLE 108.74 66.7 0.08383 2.197
mTE 120.21 60.3 0.12183 1.654

mLETE 105.97 68.4 0.09843 2.162

3.5. Verification

The number of points on the airfoil is around 192, which is sufficient for lift and drag
calculations. However, the optimum results for mLE show a complicated internal structure
of the supersonic region. Thus, we generated finer computational meshes and simulated
for baseline and the optimum airfoil with mLETE.

Table 2 illustrates the drag coefficient when Cl ≡ 0.725, and the drag is represented in
counts. Cd f is the friction drag component; Cdp is the drag induced by the pressure differ-
ence. This study confirms that the original mesh is sufficient for lift and drag. Figure 13
demonstrates the flow with original mesh and finer mesh; the supersonic regions are
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marked by Mach contour with solid black lines. A finer mesh is more conducive to
showing the internal pattern of the supersonic region.

Table 2. Result verification with finer meshes.

Name Mesh AOA
(Degrees) Cd (Counts) Cdf (Counts) Cdp

(Counts)

Baseline 192 × 100 2.286 129.38 57.00 72.38
Baseline 300 × 150 2.248 126.88 56.31 70.57
Baseline 400 × 200 2.202 125.39 56.52 68.87

mLETE 192 × 100 2.162 105.97 57.69 48.29
mLETE 300 × 150 2.193 105.50 54.35 51.15
mLETE 400 × 200 2.148 103.70 54.88 48.82

(a) (b)

(c) (d)

Figure 13. Flow structure with original mesh (192 × 100) and finer mesh (400 × 200). (a) Baseline
mesh 192 × 100. (b) Baseline mesh 400 × 200. (c) mLETE mesh 192 × 100. (d) mLETE mesh 400 × 200.

3.6. Mechanism of Drag Reduction

Table 3 presents the drag breakdown, in which δ(·) is the change of the component
with respect to that of baseline airfoil. By comparing the contribution of drag reduction
of friction and pressure drag, we understand that the latter contributes the most drag
reduction and the former has a slightly adverse effect. Note that, although the data in
Table 3 are obtained based on original mesh, the finer meshes are used for illustrating the
lambda shock pattern in Figure 14.



Appl. Sci. 2021, 11, 1929 21 of 24

Table 3. Drag breakdown (counts).

Name Cdf ∆Cdf Cdp ∆Cdp Cd ∆Cd

Baseline 57.00 72.38 129.38
mLE 57.46 0.46 51.29 −20.63 108.74 −20.63
mTE 57.95 0.95 62.26 −9.16 120.21 −9.16

mLETE 57.69 0.69 48.29 −23.40 105.97 −23.40

(a) (b)

(c) (d)

Figure 14. Mach contour of baseline and optimized airfoils; please notice the lambda shock in the
supersonic region and separation points. (a) Mach flow. (b) Leading edge. (c) Separation point 1.
(d) Separation point 2.

Figure 14 demonstrates the region of the supersonic flow of baseline and optimized
airfoils. There are two types of supersonic region shape: a single hump shape with a
strong shock at around 55% chord that belongs to baseline and optimized mTE airfoil;
a three-hump-like shape and lambda shock patterns for optimized mLE and mLETE. That
phenomenon suggests the mechanisms behind the drag reduction of using mLE and mTE
are different.

The optimized mTE is more like an improvement of supercritical airfoil, with a
relatively flat top and a larger positive camber on the rear 25 percent of the airfoil. A flatter
upper skin leads to a sluggish acceleration of the flow speed, extending the chord-wise
length of the supersonic region. Furthermore, the extent of the supersonic flow is closer to
the surface, the local supersonic Mach number is lower, and the terminating shock wave
is weaker, thereby creating less drag. Reference [39] also reported that mTE was able to
improve supercritical airfoil . Similar trends can be seen by comparing the Cp distributions
for the optimized airfoil with baseline airfoil in Figure 10.

One interesting finding is the appearance of the lambda shock patterns, which indi-
cates the interaction between shock and boundary layers. As illustrated in Figure 14a, there
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are two lambda shocks and one normal shock at the end. The maximum Mach number is
Mach = 1.41, which is observable on around 5% of the leading edge. The resulting first
shock is much stronger than subsequent shocks, and produces a lower Mach number in
the mainstream behind it. Figure 14b–d gives a close view of the supersonic region of
optimized mLETE airfoil close to the boundary layer. In these figures, the solid, thin black
line and the solid, thin purple line are the baseline and optimized mLETE airfoil; the pos-
sible separation zones are indicated by arrows. After passing zone A, the mainstream
slows down until zone B, then accelerates again. The flow goes through the multi-stage
acceleration and deceleration, and the terminating shock at end is weaker. A possible
explanation for these results may be the larger disturbance of slope and curvature at the
top of leading edge, as shown in Figure 15, in which the black dashed line represents
baseline airfoil, whereas the red solid line represents optimized mLETE airfoil. Moreover,
the similarity is observable by comparing the Cp distribution, which is shown in Figure 8b,
with that of an airfoil under an incompressible flow field.
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Figure 15. Slope and curvature of baseline and optimized mLETE airfoils. (a) Slope; (b) curvature.

4. Conclusions

A gradient-based aerodynamic shape optimization framework was established in this
work, through coupling with a feasible morphing airfoil geometry parameterization. The
parameterization was developed to introduce local shape changes, preserve the attachment
of shape at the wing-box region, and provide skin length control during optimization.
The presented optimization framework was then applied to a single point optimization
problem, aimed at reducing the drag coefficient of a transonic RAE 2822 in viscous flow at
the cruise stage using mLE and mTE. The main contributions are summarized as follows:

1. We provided the setup of a gradient-based aerodynamic optimization framework
that is able to combine two main tools: the CST parameterization of the airfoil and
the open-source code SU2 as a CFD engine. The framework projects the gradient
already presented by SU2 to the CST domain, allowing the pure analytical calculation
of the gradient of the relevant aerodynamic quantities with respect to few CST design
variables. Thus, the optimization becomes efficient when the gradients are available.

2. The optimization results show that a maximum drag reduction of 18.1% was achieved
using mLETE. In comparison, the optimization obtained a 7% drag reduction using
only mTE and 16% for mLE.

3. Compared with the mTE case, mLE is more suitable for eliminating the pressure drag.
4. The mechanisms of drag reduction using mLE and the trailing edge are different.

The optimized mTE creates a relatively flat top, slows down the flow acceleration,
extends the supersonic region along the surface, and terminates a weaker shock.
The optimized mLE shows a larger curvature at the top, resulting in a maximum



Appl. Sci. 2021, 11, 1929 23 of 24

Mach appearing at the leading edge. The successional multi-stage acceleration and
deceleration lead to a weaker shock at the end.

The feasible morphing shape introduced in the paper does not include details about
the morphing mechanism and the internal structures. The introduction of these components
could further restrain the design space and limit the morphing capabilities, consequently
limiting the improvement of aerodynamic performance.

This paper concerns only two-dimensional aerodynamic optimization of a morphing
airfoil under steady flow. Different optimization results may be obtained if the unsteadiness
and the consequent shock wave movement are considered. The authors encourage the
development and implementation of the adjoint method for gradient evaluation when
considering the flow unsteadiness.
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