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Abstract
This study introduces the conic section arc elements in 2D and 2.5D finite element
method (FEM). Elements are obtained by deforming an edge in a standard triangular
element through a coordinate transformation. This allows to completely eliminate the
geometrical error in structures composed of circular, elliptical, hyperbolic and parabolic
arcs. The element order is defined independently of the geometrical description of the
boundary, allowing the use of simple meshers. Previously available FEM codes can be
straightforwardly modified to introduce the conic section boundaries.

1 | INTRODUCTION

Finite element method (FEM) is nowadays among the most
popular numerical techniques for the solution of Maxwell's
equations, and its applications comprise guided wave problems
and full‐wave 3Dcomponents and antennas [1, 2]. In the 2D case
or 2.5D case [3], the method is based on a 2D mesh which is
typically a collection of triangles. Even if a triangular mesh is
much more flexible than a rectangular mesh, typical of finite
differences [4], due to the straight edges of the mesh, the
boundaries of the geometry under analysis are approximated by
piecewise straight lines, leading, in some cases, to a significant
geometrical error. A fine description of the geometry often re-
quires an exceedingly densemesh and an unnecessary increase of
the degrees of freedom. In common applications, curved lines
in the geometry are very often circular or elliptical arcs, for which
to the authors' knowledge there is no simple and exact repre-
sentation in 2D FEM literature. Curved boundaries are usually
approximated by isoparametric elements [2, 5, 6] or in the general
frame of isogeometric analysis [7, 8]. An exact representation of
circles can be obtained by rational B‐splines [7, 9, 10], but these
require a complex implementation since control points and
relative weights must be added and defined outside the element.
All these techniques define new discretizations of Maxwell's
equations. On the contrary, the method presented here defines

an exact transformation of Maxwell's equations into Maxwell's
equations themselves with altered permittivity and permeability
tensors. Such new equations can be solved numerically with any
discretization applicable to a triangular grid, such as FEM, finite
integration technique (FIT) [11, 12] or finite volume technique
(FV) [13]. More specifically, we define a general transformation
that converts straight segments into an arbitrary conic section
arcs (circular, elliptical, hyperbolic and parabolic). In a previously
developed code, the only modification required is the intro-
duction of an anisotropic material, defined by the trans-
formation, only in the triangles with a curved edge. This ensures
that all numerical properties of the technique used are preserved.
A further useful aspect of the proposed technique is the

independence of the degree of approximation from the
geometrical representation. Although isoparametric elements
can provide a good approximation of an arbitrary curved side
or surface in 2D and 3D, we believe that the technique we
propose can be very useful in practical applications, although
limited to 2D and 2.5D, because of three main reasons:

• The independency of the degree of approximation of the
field with respect to the geometrical description;

• The possibility to reuse old code with triangular meshes
having straight sides and introduce curved edges by a simple
change of material properties;
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• The possibility to develop new numerical codes, such as
FEM, FIT of FV, for triangular meshes with straight edges,
since curved edges can be implemented a posteriori with the
proposed technique.

All these three aspects represent the main novelty and
originality of the proposed technique and are not shared with
isoparametric representations. For instance, p‐adaptivity can be
easily introduced because the geometrical representation is not
dependent on the degree of approximation. As compared to
the isogeometric approaches, that can exactly represent conic
sections [7], an advantage of the proposed technique is the
simplicity of the implementation. One can easily implement it
in different 2D or 2.5D techniques such as for example [14] by
introducing a suitable anisotropic material. Although this study
focuses on 2D and 2.5D FEM, the method can potentially be
applied also to 3D geometries, a nontrivial extension that is
currently under study.
The technique we discuss is limited to the case in which the

curved side is a conic section. This is, however, by far the most
common case in practice and the usefulness of the technique
will be demonstrated by rather a large set of examples in 2D
and 2.5D, in particular some critical components such as
narrow‐band microwave bandpass filters with rounded corners
or cylindrical posts, substrate integrated waveguide (SIW)
components and a low‐pass waffle iron filter with partial height
round posts analysed by 2.5D FEM.
The study is organized as follows: in Section 2 we define

the coordinate transformation and the corresponding Jacobian.
Section 3 is a collection of results: we start with modes
computation for circular and elliptical waveguide, then we
analyse narrow‐band filters in which circular arcs are part of
the geometry, then show an application to SIW filters and
finally we show an example of application to 2.5D FEM, a
waffle iron filter with round teeth. Finally, Section 4 presents
some conclusions. Some demonstrations relative to the coor-
dinate transformation are shown in Appendix.

2 | COORDINATE TRANSFORMATIONS

The effect of general coordinate transformations on Maxwell's
equations is well known, and their applications have been
proposed for example for cloaking [15], antenna pattern
manipulation [16] and geometry deformation for efficient
analysis of elliptical structures [17, 18], to cite just a few.
Often, these approaches are labelled ‘transformation optics’
[19] or ‘transformation electromagnetics’ [20]. In our case,
coordinate transformations are used to establish an equiva-
lence between the solutions of Maxwell's equation in a
meshed geometry with curved triangle edges (in the form of
conic section arcs) and a geometry with piecewise straight
triangle edges. As it is customary in all cited studies, this
happens by introducing in the transformed triangle a suitable
anisotropic material.
Let us assume to have a starting, or ‘original’, system of

coordinates (x0, y0, z0) in which one of the edges of the

element is a curved arc in plane x0y0 and a second, or
‘transformed’ system of coordinates (x, y, z) in which the
triangle has three straight edges in plane xy. Let the trans-
formation then be:

x¼ xðx0; y0Þ ð1Þ

y¼ yðx0; y0Þ ð2Þ

z¼ z0 ð3Þ

with an associated Jacobian (in matrix form)

�J¼
∂r
∂r0

� �

¼

∂x
∂x0

∂x
∂y0

0

∂y
∂x0

∂y
∂y0

0

0 0 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼

Jxx Jxy 0
Jyx Jyy 0
0 0 1

2

4

3

5: ð4Þ

A solution of Maxwell's equations e0 and h0 for a given
problem in the original coordinate frame x0, y0, z0, with material
parameters characterized by tensors �ϵ0 and �μ0, is linked to the
solution e and h in the transformed frame (x, y, z) by:

e0 ¼ �JT ⋅ e ð5Þ

h0 ¼ �JT ⋅ h: ð6Þ

providing that the material properties in the transformed frame
are set to:

�ϵr ¼
�J ⋅ �ϵ0r ⋅ �JT

det �J
ð7Þ

�μr ¼ �J ⋅ �μ0r ⋅ �JT

det �J:
ð8Þ

In order to describe the transformation, we make a con-
stant reference to Figure 1, where the relevant parameters are
shown. In the original coordinate system the triangle is defined
by points r′i, i = 1, 2, 3 and it has a curved edge, opposite to
vertex r03. In the transformed coordinate system, the triangle is
defined by points ri, i = 1, 2, 3 and all its edges are straight.
Moreover, r′i = ri for every i. We associate to the triangle in the
transformed domain a set of barycentric coordinates ζi, i = 1,
2, 3, such that r = r1ζ1 + r2ζ2 + r3ζ3. The arc between points r1
and r2 belongs to a conical section. In the figure
rm ¼ 1

2 ðr1 þ r2Þ is the midpoint between r1 and r2, rt is the
intersection of the two lines tangent to the conic section and
passing for r1 and r2 and rc is the intersection between the
conic section and the line joining rm to rt.
The inverse transformation that maps continuously points

in the triangle with all straight edges to points in the triangle
with a curved edge is:

r0 ¼
r − 2ðrm − ξrtÞζ1ζ2
1 − 2ð1 − ξÞζ1ζ2

ð9Þ
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in which ξ is a strictly positive parameter identifying point rc on
the segment rm, rt in the form:

rc ¼
1

1þ ξ
rm þ

ξ
1þ ξ

rt: ð10Þ

The transformation maps segment r1, r2 to a chosen conic
section. In order to compute the parameters of the trans-
formation rt and ξ we can use the following simple procedure.
At first, one should have the conic section defined in an im-
plicit matrix form as:

½x0 y0 1�½C�
x0

y0

1

2

4

3

5¼ 0 ð11Þ

where [C] is a symmetric matrix that contains the coefficients
of the polynomial representing the conic section [21].

½C� ¼
cxx cxy

�
2 cx1=2

cxy
�
2 cyy cy1

�
2

cx1=2 cy1
�
2 c11

2

4

3

5: ð12Þ

Let' us now introduce the compact notation:

⟨a; b⟩C ¼ ½ax ay 1�½C�
bx
by
1

2

4

3

5; ‖a‖2C ¼ ⟨a; a⟩C ;

defining a pseudo scalar product and a norm1. Point rt is ob-
tained by solving the following two by two system of linear
equations [21]:

⟨r1; rt⟩C ¼ 0; ð13Þ

⟨r2; rt⟩C ¼ 0; ð14Þ

Then, finally

ξ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−12⟨r1; r2⟩C
rtk k

2
C

s

: ð15Þ

It can be easily verified that the transformation is the
identity along edges r1, r3 and r2, r3. Note also that two adja-
cent triangles have the common edge curved in a consistent
way. In the Appendix, we show a demonstration of these
properties and of the transformation of segment r1, r2 to a
conic section arc.
We now define the 2 � 2 matrix ½∂r

0

∂ζi
�. From Equation (9),

its elements are given column wise by:

∂r0

∂ζ1
¼
r1 − r3
d
þ 2ζ2

rð1 − ξÞ − rm þ ξrt
d2

ð16Þ

∂r0

∂ζ2
¼
r2 − r3
d
þ 2ζ1

rð1 − ξÞ − rm þ ξrt
d2

ð17Þ

where d = 1 − 2(1 − ξ)ζ1ζ2. Similarly we define the 2 � 2
matrix ∂r

∂ζi

h i
whose elements are given column wise by:

∂r
∂ζ1
¼ r1 − r3 ð18Þ

∂r
∂ζ2
¼ r2 − r3: ð19Þ

We have that, letting �Jtt be the upper 2 � 2 submatrix
of the Jacobian relative to x, y coordinates in Equation (22),
that is,

�Jtt ¼
Jxx Jxy
Jyx Jyy

� �

ð20Þ

one finds

�J−1tt ¼
∂r0

∂ζi

� �
∂r
∂ζi

� �−1

ð21Þ

F I GURE 1 Triangles with one curved edge, concave (a) and convex
(b), with its mapped parent with straight edges. Relevant geometrical
parameters for the two possible cases. rm is the midpoint of the edge r1, r2.
rt is the intersection of the two lines tangent to the conic section and
passing through r1 and r2. rc is the intersection of the segment rt, rm with
the conic section

1
Note that ‖:‖2C is indefinite, as for example, Minkowski norm [22].
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and finally

Jtt ¼
∂r
∂ζi

� �
∂r0

∂ζi

� �−1

: ð22Þ

2.1 | Examples for circle and ellipse

For a more straightforward application of the above formulas,
we consider two very common cases that can appear in prac-
tical applications: the circle and the ellipse.
We first consider a circle centred at r0 and having a radius

R. We have:

½C� ¼

1
�
R2 0 −x0

�
R2

0 1
�
R2 −y0

�
R2

−x0
�
R2 −y0

�
R2 x20

�
R2 þ y20

�
R2 − 1

2

6
4

3

7
5 ð23Þ

and from Equations (13) and (14), with some simplifications,

x1 − x0 y1 − y0
x2 − x0 y2 − y0

� �
xt
yt

� �

¼

¼
ðx1 − x0Þx0 þ ðy1 − y0Þy0 þ R

2

ðx2 − x0Þx0 þ ðy2 − y0Þy0 þ R
2

� �

:

ð24Þ

Having obtained rt, one can use Equation (15) to find ξ.
Now the parameters of the transformation are completely
defined.
A second case, although less common in application, is

represented by the ellipse. We limit the expression to an
ellipse centred at r0 with semiaxes a and b along x and y,
respectively and no rotation (the case of a rotated ellipse
can be easily obtained by introducing the rotation matrix of
the rotated coordinate system). For this case we have:

½C� ¼

1
�
a2 0 −x0=a2

0 1
.
b2 −y0

.
b2

−x0
�
a2 −y0

.
b2 x20

.
a2 þ y20

.
b2 − 1

2

6
6
6
4

3

7
7
7
5
ð25Þ

and from Equations (13) and (14):

ðx1 − x0Þ
�
a2 ðy1 − y0Þ

.
b2

ðx2 − x0Þ
�
a2 ðy2 − y0Þ

.
b2

2

4

3

5 xt
yt

� �

¼

¼
ðx1 − x0Þx0

.
a2 þ ðy1 − y0Þy0

.
b2 þ 1

ðx2 − x0Þx0
.
a2 þ ðy2 − y0Þy0

.
b2 þ 1

2

4

3

5:

ð26Þ

Also in this case rt is computed in closed form and ξ is
obtained from Equation (15).

2.2 | Material definition

The implementation in FEM codes is straightforward. For the
anisotropic case, one should use Equations (7) and (8) directly
with the Jacobian defined by Equation (22). For the common
case for which ϵ0r, μ0r are piecewise uniform scalars, letting
ϵr = ϵ0rΛ, μr = μ0rΛ, we have:

Λ ¼
1
det J

J2xx þ J
2
xy Jxx Jyx þ Jyy Jxy 0

Jxx Jyx þ JyyJxy J2yy þ J
2
yx 0

0 0 1

2

6
4

3

7
5 ð27Þ

where det J = JxxJyy − JxyJyx. Letting finally,

Λ ¼
Λxx Λxy 0
Λyx Λyy 0
0 0 Λzz

2

4

3

5 ð28Þ

one gets

Λ−1 ¼

Λyy −Λxy 0
−Λyx Λxx 0
0 0 Λ−1

zz

2

6
4

3

7
5: ð29Þ

It is noted that the transformation only affects the triangles
for which one edge is curved, leaving the rest of the mesh (and
of the material) unaltered. The implementation is simple, since
2D meshers usually provide circular arc segments information
such as radius and centre location or elliptical arcs defined by
semiaxes, centre location and rotation (see e.g. Matlab pde‐
toolboxTM). Existing simple triangular meshes solving a spe-
cific problem can be adapted to the implementation of curved
elements by a simple modification of the material and the use
of numerical quadrature over triangles. Some results are pre-
sented in the next section showing the excellent performance
of the elements in the analysis of some critical components in
2D, such as the narrow band H‐plane filters and in 2.5D [3], a
low‐pass filter with rounded partial‐height posts.

3 | RESULTS

As a first example, we show the results obtained in the
computation by FEM of circular waveguide modes and ellip-
tical waveguide modes. We first note that since the coordinate
transformation is in xy plane only, no z component of the field
is produced by Equations (5) and (6), so transverse electric
modes (TE modes) are still TE and transverse magnetic modes
(TM modes) are still TM. The waveguides, together with the
meshes used, are shown in Figure 2. Details of the weak form
solved by FEM can be found in several books [1]. Table 1
shows results attained via second‐order scalar elements with
the technique proposed and with standard isoparametric

4 - CODECASA ET AL.



elements for the waveguide in Figure 2a. Error is computed
w.r.t. the analytical solution. Integrals relative to the anisotropic
material are computed by standard quadrature over triangles.
The comparison in Table 1 shows the effect of geometrical
error for a rather coarse mesh. As the mesh density increases,
the performance of isoparametric elements tends to coincide
with that of the technique discussed. Similar behaviour is
found for the elliptical waveguide in Figure 2b. The results
obtained with isoparametric elements and with our technique
are shown in Table 2. Also in this case there is small difference
in the performance, enlightening the effect of geometrical
error.
An analysis relative to the effect of numerical integration is

shown in Figure 3. We computed the error in the wavenumber
of the first three TE modes as a function of the number of
quadrature points in the triangle. The figure clearly shows that
the quadrature rule has no effect on the final result providing it
is not too low. The rule used corresponds to 7 points for rule 5
and 48 points for rule 15.
The second example is shown in Figure 4, in which a

metallic full‐height post is placed in a WR75 rectangular

waveguide [23]. The analysis has been carried out using first‐
order edge elements and the magnetic field formulation
of FEM [3]. The figure shows the convergence of parameter
|S11| in dB (20 log10|S11|) at 13 GHz by varying the number
of segments approximating the circular post. The number of
segments is the result of mesh refinement or mesh generation
with some maximum edge size, therefore when the number of
segments is increased a denser mesh is consequently generated.
The figure represents therefore the combined effect of mesh
refinement and geometrical approximation. It is clear that
the exact geometrical representation is a drastic accuracy
improvement. Even when a rather large number of segments

F I GURE 2 Circular waveguide of unit radius and mesh used to
compute the modes in Table 1, elliptical waveguide of axial ratio 3 and
mesh used to compute the modes in Table 2. Points used for isoparametric
mapping are shown too as asterisks

TABLE 1 Normalized wavenumber for the first five TE and TM
modes obtained with the mesh in Figure 2a. Circular waveguide of the unit
radius

TE exact Isoparametric (error) This work (error)

1.8412 1.8418 (0.0308%) 1.8417 (0.0282%)

1.8412 1.8418 (0.0308%) 1.8417 (0.0282%)

3.0542 3.0617 (0.2431%) 3.0616 (0.2416%)

3.0542 3.0625 (0.2721%) 3.0624 (0.2683%)

3.8317 3.8532 (0.5619%) 3.8531 (0.5579%)

TM exact Isoparametric (error) This work (error)

2.4048 2.4064 (0.0662%) 2.4064 (0.0638%)

3.8317 3.8447 (0.3380%) 3.8445 (0.3343%)

3.8317 3.8447 (0.3380%) 3.8445 (0.3343%)

5.1356 5.2148 (1.5416%) 5.2145 (1.5363%)

5.1356 5.2430 (2.0908%) 5.2433 (2.0967%)

Note: Comparison between exact results, isoparametric elements of degree 2 and exact
circular arcs.

TABLE 2 Normalized wavenumber for the first five TE and TM
modes obtained with the mesh in Figure 2b

TE exact Isoparametric (error) This work (error)

1.8805 1.8811 (0.0302%) 1.8808 (0.0154%)

3.4572 3.4595 (0.0647%) 3.4589 (0.0476%)

5.0100 5.0179 (0.1577%) 5.0170 (0.1415%)

5.1497 5.1557 (0.1183%) 5.1556 (0.1164%)

6.2316 6.2491 (0.2797%) 6.2489 (0.2766%)

TM exact Isoparametric (error) This work (error)

5.2890 5.2969 (0.1509%) 5.2967 (0.1454%)

6.4308 6.4501 (0.2996%) 6.4498 (0.2944%)

7.6540 7.6929 (0.5084%) 7.6926 (0.5044%)

8.9408 9.0228 (0.9180%) 9.0227 (0.9167%)

9.9637 10.0617 (0.9834%) 10.0610 (0.9760%)

Note: Elliptical waveguide of axial ratio 3. Comparison between exact results,
isoparametric elements of degree 2 and exact elliptical arcs. Eigenvalues are computed
for a major semiaxis of length 1.

F I GURE 3 Relative error in the computation of the wavenumber of
the first three TE modes for curved edges. When the quadrature rule is
larger than four (corresponding to six points) the results are no longer
dependent on the rule
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are used to represent the circle, there is still a rather significant
impact on the computed S‐parameters. The analysis clearly
shows that a very densemesh is not necessary, since it only acts in
the sense of decreasing the geometrical error. When critical
components are analysed, such as narrow‐band waveguide fil-
ters, the impact of the geometrical error in the final frequency
response is not negligible, as it is shown in the next examples.
The figure also shows the very small difference in the computed
S‐parameters between exact circular arcs and the corre-
sponding isoparametric approximation. The difference shown
tends to vanish quickly as the number of segments to describe
the circle increases. This aspect should be taken into account
in view of potential applications: isoparametric elements
behave very well when the mesh is not coarse, so one should
not expect significantly different performances using the
proposed technique. But the possibility to use an arbitrary
degree of approximation for the field with no change in the
mesh definition seems attractive and leads to a simple imple-
mentation in numerical FEM codes.
Starting from the previous result, the impact of exact

geometrical description on a narrow‐band filter with sym-
metrically placed full‐height circular metallic posts is consid-
ered. In order to better appreciate the effect of an accurate
geometrical description of the posts, we used two meshes for
the analysis, a coarse mesh and a dense mesh, shown in
Figure 5. The coarse mesh is composed of 1783 triangles and
the dense mesh of 7418 triangles. The S‐parameters have been
computed for the coarse mesh case with straight and curved
edges and for the dense mesh with straight edges. Vector el-
ements of second order have been used in the analysis. The
results are shown in Figure 6, together with reference data in
[24] computed with a different method based on equivalent
sources. The use of circular arc elements greatly improves
the agreement with [24] and represents a large speed up factor.
For comparison, the analysis with the coarse mesh took
only 0.25 s/freq (using straight or curved edges), whereas

the analysis with the dense mesh and straight edges took
1.2 s/freq. Note that the use of a denser mesh improves the
agreement with reference data as expected, but not as much as
what obtained by curved edges in the coarse mesh, especially in
the level of reflection coefficient. Curved edges represent
therefore a major improvement for the very little cost of filling
up the matrix with a suitable material. Results obtained with
the isoparametric elements overlap with those obtained by the
proposed technique and are not shown in the figure.
A further example is shown in Figure 7, in which a four‐

cavity filter has been realized using symmetrical irises with
rounded edges as a result of milling a mould [25] (an iris is
shown in the inset for clarity). Also in this case, accurate results
are obtained with a rather coarse mesh (shown in the figure)
thanks to the exact representation of the geometry obtained by
circular arc elements. Again, the use of standard triangles, as
those plotted in the inset of the figure (labelled ‘straight
edges’), leads to significant loss of accuracy.
Results for a filter with full‐height dielectric posts are

shown in Figure 8. The filter has been analysed with FEM
using standard triangles (straight edges) and curved triangles
and both curves are compared with the results in [26] obtained
by an accurate hybrid mode‐matching. Also in this case, the
introduction of an exact representation of the geometry

F I GURE 4 Metallic post inWR75 rectangularwaveguide,a=19.05mm,
d = 6.4 mm. Convergence of |S11| as a function of the number of segments
used to describe the circular post

F I GURE 5 Two meshes used for the analysis of the filter in [24]

F I GURE 6 Filter with full‐height metallic round posts designed in
[24]. Comparison between curved elements and straight elements. The
meshes used for the analysis are shown in Figure 5
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improves considerably the agreement with the reference re-
sults. In this case, both convex and concave curvature elements
are present and the continuity of the transformation across
different triangles is exploited. Also in this case, the analysis
with isoparametric elements does not lead to significant dif-
ferences in the computed S‐parameters.
An application for which exact geometrical representation

of circular arcs is very important is the SIW technology,
because small radius circular posts are often used both to build
cheaply the rectangular waveguide walls and to introduce
scattering elements in the device topology. As an example, a
two‐resonator filter in SIW has been designed and analysed by
BI‐RME in [27]. The same filter has been analysed and the
results are shown in Figure 9. The figure depicts the mesh used
in the analysis, together with a closeup in proximity of the thin

inner input and output posts. Note that the circle is repre-
sented by eight segments (which is the minimum number of
segments in Matlab mesher) and this allows to keep the mesh
density to a very reasonable size. For this case, the effect of the
curvature of the posts is clearly seen in the S‐parameters
shown in Figure 9. Despite the simple structure, we can
observe the usual right shift and a small change in the S11 level.
These effects are mainly due to the central posts, whereas the
lateral posts representing the SIW waveguide have a negligible
effect on the scattering parameters. Thanks to the use of
curved elements, the analysis took only 0.2 s/freq.

F I GURE 7 Filter with symmetrical irises with round edges designed in
[25]. Comparison between curved .elements and straight elements. A detail
of the mesh used for the analysis is shown

F I GURE 8 Filter with full‐height dielectric round posts designed in
[26]. Comparison between curved elements edges and straight elements
edges. The mesh used for the analysis is shown

F I GURE 9 Filter in the SIW technology analysed in [27] by BI‐RME.
In the inset of the figure the mesh used is shown, together with a closeup of
the mesh in proximity of the thin input and output centred posts

F I GURE 1 0 Waffle iron filter proposed in [28]. A section of partial
height circular posts is shown in the figure. Effect of exact geometrical
representation
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Finally, the technique proposed was used also in the frame of
2.5D FEM [3]. The effect of curved boundaries was tested for
the waffle‐iron filter proposed in [28] and analysed in [3] by 2.5D
FEM. The results are shown in Figure 10. Also in this case, the
benefit of curved elements in the S‐parameters computation is
clearly seen in the plotted curves. A closer agreement with
reference data is found in the passband and a small frequency
shift is observed with respect to the case of straight segments.

4 | CONCLUSIONS

A simple technique to implement conic section arc elements in
2D FEM and 2.5D FEM has been introduced by the use of a
coordinate transformation. A suitable artificial anisotropic ma-
terial represents in an equivalent form the conic section arc in the
mesh. The implementation therefore only requires a modifica-
tion of the FEM matrix filling, since, unlike isoparametric ele-
ments, the element order is completely independent of the
geometrical shape. Several examples demonstrate the benefits of
exact geometrical representation in critical components such as
the passband and low‐pass filters using circular posts or rounded
corners. The proposed approach can represent a simple and
powerful alternative to introduce curved elements, although
presently limited to the case of 2D triangular meshes.
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APPENDIX
We nowdemonstrate that the transformation Equation (9) maps
the segment r1, r2 to the conic section arc in Figure 1 if parameter
ξ is chosen according to Equation (15). At first, we demonstrate
that point rc is on the conic section if Equation (15) holds.

A.1 | Demonstration of (15)

The conic section is defined by:

r0k k2C ¼ 0: ð30Þ

Since rc belongs to the conic:

rck k
2
C ¼ 0 ð31Þ

from which, recalling Equation (10):

1
ð1þ ξÞ2

rmk k
2
C þ

ξ
ð1þ ξÞ2

⟨rm; rt⟩C

þ
ξ2

ð1þ ξÞ2
rtk k

2
C þ

ξ
ð1þ ξÞ2

⟨rt; rm⟩C ¼ 0:

Thus, since rm ¼ 1
2 ðr1 þ r2Þ, recalling Equations (13) and

(14), it follows:

rmk k
2
C þ ξ2 rtk k2C ¼ 0: ð32Þ

Also, since r1 and r2 are on the conic section,
r1k k

2
C ¼ r2k k

2
C ¼ 0, so that:

rmk k
2
C ¼

1
2

⟨r1; r2⟩

and

ξ2 ¼ −
1
2

⟨r1; r2⟩C
rtk k

2
C
:

A.2 | Demonstration of the mapping from a
straight segment to a conic section arc

Let's consider a generic point on the segment r1, r2, so that
r = r1ζ1 + r2ζ2 with ζ1 = 1 − ζ2. We now demonstrate that r0,

defined by Equation (9), is on the conic section arc, that is
r0k k2C ¼ 0. From Equation (9) we have:

d2 r0k k2C ¼ r1ð1 − ζ2Þ þ r2ζ2 − 2ð1 − ζ2Þζ2ðrm − ξrtÞk k
2
C

ð33Þ

where d = 1 − 2(1 − ζ2)ζ2(1 − ξ) is not 0. The right hand term
of Equation (33) can be rewritten as:

r1ð1 − ζ2Þ þ r2ζ2 − 2ð1 − ζ2Þζ2ðrm − ξrtÞk k
2
C

¼ r1ð1 − ζ2Þ
2
þ r2ζ22 þ 2ð1 − ζ2Þζ2ξrt

�
�

�
�2
C

¼ 2ζ22ð1 − ζ2Þ
2⟨r1; r2⟩C þ 4ζ22ð1 − ζ2Þ

2ξ2 rtk k2C

¼ 4ζ2ð1 − ζ2Þ
2 1
2
⟨r1; r2⟩C þ ξ2 rtk k2CÞ

�

and since from Equation (15):

ξ2 ¼ −
1
2

⟨r1; r2⟩C
rtk k

2
C

it follows from Equation (33)

d2 r0k k2C ¼ 0

and therefore r0k k2C ¼ 0.

A.3 | Demonstration of continuity across
triangles

It is easy to demonstrate continuity across triangles. At first
we show that for edges r1, r3 and r2, r3 the transformation
Equation (9) is the identity. Since for those edges, we have
either ζ1 = 0 or ζ2 = 0, we have by substitution r0 = r.
Considering a curved common edge between two adjacent

triangles, since for both triangles rm, rt and rc are the same, a
point belonging to the straight common edge is mapped to the
same point on the common curved edge by the transformation
of each triangle, since such a transformation depends only on
the simplex coordinates ζ1 = 1 − ζ2 and ζ2 which are
consistent across the common edge for both triangles. The
transformation is therefore continuous also across triangles
sharing a common curved edge.
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