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Abstract—The Kalman filter is a commonly used algorithm
for predicting the state variables of a system. It is based on
the model of the system and some measurements (observed over
time), which are characterized by their own uncertainty.

This paper defines a possibilistic Kalman filter, whose main
feature is to predict the values of the state variables and the
associated uncertainty, also when uncertainty contributions of
non-random nature are present. This possibilistic Kalman filter
is defined in the mathematical framework of the possibility
theory and employes Random-Fuzzy variables and the related
mathematics, since these variables can properly represent mea-
surement results together with the associated uncertainty. A
comparison with the available methods is provided, as well as a
final validation.

Index Terms—Measurement Uncertainty; Possibility distribu-
tions; Random-Fuzzy Variables; Random contributions; System-
atic contributions; Kalman filter.

I. INTRODUCTION

In the last two decades, the possibility theory has been pro-

posed in the literature for the representation and propagation

of measurement uncertainty [1]–[6].

Possibility theory represents an effective alternative to the

use of probability theory, when both random and systematic

contributions to uncertainty are present in the measurement

procedure [7]. This is also proved by the various applications

available in the literature [8]–[13].

Within this new mathematical framework, measurement

results are represented by Random-Fuzzy variables, which

are briefly recalled in next Sect. II. Therefore, methods and

algorithms aimed at fully exploiting the advantages provided

by the Random-Fuzzy variables in expressing measurement

uncertainty should be capable of processing them. The Kalman

Filter makes no exception and the possibilistic version pro-

posed in this paper, aimed at processing all kinds of uncer-

tainty contributions, is based on these variables.

The Kalman filter (KF) is a well-known algorithm for

predicting the state variables of a system [14]. In its classical

formulation it represents model uncertainy and measurement

uncertainty as normal, unbiased probability distributions [14].

Many different modifications of the KF can be found in the

literature to deal with different representations of uncertainty.

The Schmidt KF [15] provides an attempt to take into ac-
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count also systematic uncertainty contributions, as also done

with the possibilistic KFs defined in [16] and in this paper.

Other contributions can also be found in the literature, to

include systematic effects in the Kalman filter, as, for instance

[17]–[19]. Both [17] and [18] do not consider explicitly the

propagation of the systematic uncertainty contributions, but

propose a method to estimate the systematic error affecting

the measurement results and compensate for it. On the other

hand, [19] proposes to include the systematic error (which

is unknown, but bounded) into Bayesian inference and KF.

This approach is completely based on probability and appears

to be quite complex, since it considers all different possible

probability density functions (pdfs) over the given interval,

with all possible different mean values.

A few possibilistic KF have also been defined in the

literature [20], [21] but, at the Authors’ knowledge, all of

them consider uncertainty in a sort of semantic way [16], as

typical of the fuzzy applications, and not as a well specified

concept in metrology, as recommended by [22], [23]. Since

uncertainty, in metrology, must be considered according to the

definition given by [23], this paper is hence aimed at proposing

a possibilistic KF, whose definition is perfectly framed within

the present Standards [22], [23].

To validate this proposal, an example is considered, where

the velocity of a vehicle, along with its associated measure-

ment uncertainty, has to be estimated, with a Kalman filter.

This example is described in Sect. III.

Five different approaches to the KF are applied and com-

pared with each other: two probabilistic approaches (the

classical KF and the Schmidt KF [15]), two possibilistic

approaches (the possibilistic Kalman filter proposed in [16]

and a refinement of it, proposed in this paper) and a hybrid

KF, which combines the classical KF and the possibilistic

KF defined in this paper, for the random and systematic

uncertainty contributions respectively.

This last version has been considered, as shown in Sect.

IV, to validate the proposed possibilistic KF by processing the

systematic and random contributions to uncertainty separately,

according to their natural mathematical representation [2], [3].

Under these conditions, the highest accuracy is achieved, as

shown in Sect. IV, at the cost of a higher computational

burden that, at present, makes the hybrid KF suitable only

as a reference method.

The five approaches will be compared, in the following,

both from the theoretical point of view and with the considered

simple example. Since the classical KF and the Schmidt KF

have been already proposed in the literature since long ago,
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and the possibilistic Kalman filter has been already experi-

mentally validated in [16], all comparisons in this paper will

be based on simulated data, in order to ensure homogeneous

conditions.

II. A SHORT MATHEMATICAL REVIEW

This section recalls the Random-Fuzzy variables (RFVs)

very briefly, since they will be used in the following. For more

details, the Readers are addressed to the available numerous

contributions in the literature.

Since an RFV is defined by two possibility distributions

(PDs), it is necessary to first recall a PD. A possibility

distribution r(x) is a function:

r(x) : ℜ → [0, 1]

where

max r(x) = 1

which represents the normalization condition. In other words,

the maximum value of a PD is always 1, as can be seen in

the examples in Fig. 1. Furthermore, if one considers the cuts

of the PD at given levels α (with 0 ≤ α ≤ 1), closed intervals

are obtained, denoted by α-cuts. As an example, the pink lines

in Fig. 1 show the α-cuts of the PDs at level α = 0.2.

From the same figure, it can be also noted that, except

for the rectangular PD in the upper plot (for which the α-

cuts are all equal to each other for every level α), as the α
value decreases, the corresponding α-cut becomes wider. In

particular, the α-cut at level α∗ contains all α-cuts for levels

α > α∗. From the mathematical point of view, it can be stated

that the α-cuts are nested intervals1. [1], [24]. Furthermore,

from the metrological point of view, a PD can be considered

a mathematical representation of a measurement result and

every α-cut can be assimilated to a coverage interval with

coverage probability 1− α [1].

To represent a measurement result, a PD should be built

from the available metrological information [2], [25]. For

example, the rectangular PD shown in Fig. 1 (a) is generally

employed to represent total ignorance [1], [24], [26] which

means that we know that the measured value falls in the given

interval ([4.9 5.1] for the given figure) but we do not know

where and we do not have any other additional information

about this distribution.

On the other hand, when some additional information is

available, this should be properly used to build the PD. In

many practical cases, it may happen, for instance, that it is

known how the measurement results distribute over the given

interval, i.e. a pdf is given. In this situation, the PD can be

obtained from the given pdf by applying a suitable probability-

possibility transformation [1], [24], [26], [27], which mantains

the same coverage intervals at the same coverage probability.

As an example, plots (b), (c) and (d) in Fig. 1 show the PDs

built, respectively, from a uniform pdf, a normal pdf and a

triangular pdf.

Possibility distributions can be combined according to many

1Because of this property, the PDs can be dealt within the mathematical
possibility theory [1]
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Fig. 1. Example of PDs defined over interval [4.9, 5.1] and confidence
intervals at a specific level α.

different fuzzy operators [1]. Therefore, by choosing the

proper fuzzy operator in combining two PDs (i.e the min t-
norm), it is possible to mathematically model the combination

of measurement results which physically combine in a system-

atic way [1], [2]. On the other hand, by choosing other fuzzy

operators (i.e. the Frank t-norm or the Dombi t-norm), it is
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possible to approximate the combination of two measurement

results which physically combine in a random way [1].

The same measurement result however can be affected by

both random and systematic contributions to uncertainty. In

order to distinguish them and propagate them correctly, fuzzy

variables of type 2 should be used, in particular the Random-

Fuzzy variables [1], [7], [26], as shown in Fig. 2.

An RFV is made of two PDs, an internal and an external

one, so that it can represent a measurement result affected

by both random and systematic contributions to uncertainty

[1]. In particular, the systematic contributions are included

in the internal PD (green line in Fig. 2), while the random

contributions are included in one random PD that, when

combined with the internal PD, provides the external PD (pink

line in Fig. 2).
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Fig. 2. Example of RFV.

III. THE CONSIDERED EXAMPLE

A simple example is considered, in which a vehicle is

moving at a velocity vref(t), according to the impressed

acceleration aref(t), as shown in Fig. 3.
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Fig. 3. Reference values of velocity (blue line) and acceleration (red line)
over time.

A Kalman filter is used to estimate velocity and acceleration

of the vehicle.

Eq. (1) shows the state equations of the model:

• vk and ak are velocity and acceleration of the vehicle at

time k;

• wv
k and wa

k are the standard deviation of the noise in

velocity and acceleration respectively at time k;

• τ is the time period within two successive measurements

vk = vk−1 + τ · ak−1 + wv
k

ak = ak−1 + wa
k

(1)

Fig. 4 shows the alternation of the prediction and assimila-

tion steps in the classical KF.

Fig. 4. Prediction and assimilation steps alternation in the classical Kalman
filter.

For the considered example, the state vector is xk =
[

vk
ak

]

; the state-transition matrix, denoted with Ak−1 in

Fig. 4, is constant Ak = A =

[

1 τ
0 1

]

; the control-input

matrix, denoted with Bk in Fig. 4 is zero; the transformation

matrix, denoted with Hk in Fig. 4, is: Hk = H =

[

1 0
0 1

]

and

the measurement vector is: yk =

[

vmk

amk

]

.

As shown in Fig. 4, two matrices have to be defined: the

covariance matrix Qk, which considers the process noise,

and the covariance matrix Rk, which considers the measure-

ment noise, that is the uncertainty associated to the mea-

sured values. Therefore, it is: Qk =

[

w2
k v 0
0 w2

k a

]

and

Rk =

[

u2
k v 0
0 u2

k a

]

, where uk v is the standard uncertainty

associated to the measured values of velocity and uk a is

the standard uncertainty associated to the measured values of

acceleration.

The following assumptions are done, as far as the initial

values of the state variables and their associated uncertainty

values are considered.

• It is supposed that Qk and Rk do not vary with k, i. e.

Qk = Q =

[

w2
v 0
0 w2

a

]

and Rk = R =

[

u2
v 0
0 u2

a

]

.

• The initial velocity of the vehicle is assumed to be a

normal distribution with mean equal to the first measured

value of velocity (vm1) and standard deviation 0.003m/s.
Therefore: v0 = vm1 m/s and wv = 0.003 m/s. This

last value has been chosen by considering the accuracy
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of a GPS, which is quite accurate compared to the

speedometer of the vehicle, and it is directly retrieved

from the official GPS website [28].

• The initial acceleration is assumed to be a normal distri-

bution centered at the first measured value of acceleration

(am1) obtained from the accelerometer, with a standard

deviation of 0.0005 m/s2, due to some kind of noise

either due to the circuit or due to the driver applying

force on the accelerator. Therefore: a0 = am1 m/s2 and

wa = 0.0005 m/s2.

On the other side, at every step k, as far as measurements

are concerned, the uncertainty contributions affecting the mea-

sured values must be also considered. It has been assumed

that the measured values are affected by both random and

systematic uncertainty contributions. In particular, as far as

the velocity is concerned, typical accuracy values have been

assumed for the on-board sensor, which are generally one

or two orders of magnitude less accurate than a GPS-based

speedometer:

• The random contribution is supposed to be normally

distributed, with a standard deviation uv
ran = 0.16 m/s.

• A systematic error is also supposed to be present, with

an estimated value evsys = 0.3 m/s. But this value is

supposed to be unknown, so that a systematic contribution

is modeled, laying in the interval ±bsys = ±0.32 m/s
(which include the true systematic error evsys).

On the other hand, as far as the acceleration is concerned,

it is supposed that no systematic contributions affect the

measurement procedure, while a typical random contribution

is considered which is supposed to be normally distributed,

with a standard deviation ua
ran = 0.005m/s2 that is one order

of magnitude less accurate than the model.

For the Kalman filter algorithm, five different methods are

exploited in this paper, in order to show a comparison between

the different obtained results and to draw some conclusions

about the performance of the different methods. Sect. III-A

shows the results provided by the classical Kalman filter (KF)

and Sect.III-B shows the results provided by the Schmidt KF,

both of which are defined on a probability framework. On the

other hand, Secs. III-C and III-D show the results provided

by possibilistic KFs: the possibilistic KF defined in [16] is

applied in Sect. III-C, while a refinement of it is considered

in Sect. III-D. In Sect. IV, the obtained results are compared

with those provided by an hybrid KF, employed to validate

the results provided by the possibilistic KF, as anticipated in

the Introduction.

A. Classical Kalman filter

In the first simulation, the classical Kalman filter, as shown

in Fig. 4, is applied, where, according to the above assump-

tions (Sect. III), at k = 0 it is:

• xa0 =

[

vm1

am1

]

;

• Pa
0 = Q.

As far as the measurements are concerned, the value of

the measured velocity vk is simulated, at every step k, as

a random extraction from a normal distribution with mean

value vref(k)+evsys and standard deviation uv
ran. The standard

uncertainty value associated to the measured value vk is uv,

which must take into account for both random and systematic

uncertainty contributions. As suggested by the GUM [22]:

uv =

√

(uv
ran)

2
+

(

uv
sys

)2

where uv
sys is the standard deviation of the pdf associated to

the considered systematic contribution. When the GUM [22]

is followed and probability theory is employed for uncertainty

evaluation, it is a common practice to assign a uniform distri-

bution over the interval of possible variation of the systematic

contribution. Under this assumption, it is: uv
sys =

bsys√
3
m/s.

Similarly, the simulated measured acceleration ak at every

step k is a random extraction from a normal distribution with

mean value aref(k) and standard deviation ua
ran. Since only

random contributions are supposed to affect the acceleration

measurement procedure, the standard deviation associated to

ak is ua
ran.

At every step, the prediction of the state vector is obtained

(Eq. (1) in the upper part of Fig. 4) and the covariance matrix

associated to the state vector is evaluated (Eq. (2) in the upper

part of Fig. 4). This covariance matrix has a crucial role in the

evaluation of the gain matrix Kk (Eqs. (1) and (2) in the lower

box of Fig. 4), which is then used to evaluate the a posteriori

value of the state vector (Eq. (3) in the lower box of Fig. 4).

INITIAL ESTIMATE

xa0 , Pa
0 , Q, R = uy

PREDICTION

x
f
k = A · xak−1

P
f
k = APa

k−1AT + Q

EVALUATION OF THE KALMAN GAIN MATRIX

Kk = P
f
kHT

k

(

HkP
f
kHT

k + R
)−1

CORRECTION OF THE PREDICTED

STATES AND COVARIANCE MATRIX

xa
k = x

f
k + Kk(yk − Hx

f
k)

Pa
k = (I − KkHk)P

f
k

Fig. 5. Classical Kalman filter algorithm.

The applied algorithm for the classical KF is therefore

summarized in Fig. 5, while the results of the simulation are

reported in Fig. 6 and 7.

The blue line in Fig. 6 represents the difference between

the predicted velocity and vref . This difference is of course

not constant but, after a transition of about 250 iterations

(i. e. 250 s, since one iteration is done every 1 s) oscillates

around the value esys, as expected, because of the presence

of the systematic error in the measurements. On the other

hand, the red lines represent the evaluated uncertainty interval.
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In particular, for each iteration k, the provided interval is

the ±3σk interval [22], where σk is the standard uncertainty

associated to the a posteriori value of the velocity at step k,

that can be retrieved from the values in the main diagonal

of matrix Pa
k. It can be clearly seen that the difference

between the predicted velocity and vref(t) is always outside

the obtained uncertainty bounds. So, even if the classical

Kalman filter can predict quite well the velocity of the vehicle

(at steady state), it can be concluded that it underestimates

the measurement uncertainty and therefore it is not suitable

when also systematic contributions to uncertainty are present.

Furthermore, the convergence time is quite high.

Fig. 7 shows the results obtained for the acceleration and

the blue and red lines have the same meaning as in Fig. 6. In

this case, since only random contributions affect the measured

values, the ±3σ uncertainty intervals contain the measured

values except, of course, when the acceleration has a sudden

variation.

B. Schmidt Kalman filter

The Schmidt Kalman filter has been proposed in [15], as a

variation of the classical KF, to consider also the systematic

uncertainty contributions. The Schmidt Kalman algorithm is

summarized in Fig. 8.

It considers the systematic contribution as an additional

state variable. So, the systematic contributions are modeled

as a separate matrix of states and the corresponding noise

covariance matrix. Therefore, new matrices, in addition to

the ones defined in the classical KF have to be defined for

modeling the systematic contribution:

• HB =

[

1
0

]

• B = uv
sys

2 = 0.322/3

• Da
0 =

[

0
0

]

where B is the variance of the systematic contribution and

D is the cross covariance matrix between the random and

systematic errors. It is a zero matrix because the systematic

and random errors are independent in the considered example.

The Readers are addressed to [15] for further details.

The initial values of xa0 , Q and Pa
0 are the same as in Sect.

III-A.
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Fig. 6. Difference in the reference and predicted velocity values (blue line)
provided by the classical Kalman filter, together with the predicted uncertainty
interval (red lines).
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Fig. 7. Difference in the reference and predicted acceleration values (blue
line) provided by the classical Kalman filter, together with the predicted
uncertainty interval (red lines).

INITIAL ESTIMATE

xa0 , Pa
0 , Q, R, Da

0 , B

PREDICTION

x
f
k = A · xak−1

P
f
k = APa

k−1AT + Q

D
f
k = A · Da

k−1

EVALUATION OF THE KALMAN GAIN MATRIX

Kk = (Pf
kHT

k + D
f
kHT

B)(HkP
f
kHT

k +

HBD
fT
k HT

k + HkD
f
kHT

b + HBBHT
B + R)−1

CORRECTION OF THE PREDICTED

STATES AND COVARIANCE MATRIX

xa
k = x

f
k + Kk(yk − Hx

f
k)

Pa
k = (I − KkHk)P

f
k − KkHBD

fT
k

Da
k = D

f
k − Kk(HkD

f
k + HBB)

Fig. 8. Schmidt Kalman filter algorithm.

Also the simulated measured values vk of velocity are

obtained as in Sect. III-A but, in this case, the associated

standard uncertainty value is uv
ran, because in the Schmidt

Kalman filter, the systematic uncertainty is propagated as a

separate matrix.

The simulated measured values of acceleration ak and the

associated standard deviation are also obtained as in Sect.

III-A.

The results of the simulations are reported in Fig. 9 and 10,

where the blue and the red lines have the same meaning as in

Figs. 6 and 7.

The results obtained for the acceleration are pretty much the

same as in the previous case in Sect. III-A, while a difference

can be seen in the velocity.

The Schmidt Kalman filter is aimed at considering sys-

tematic uncertainty contributions and indeed the uncertainty

intervals are significantly larger than those obtained in Sect.

III-A, but they do not yet contain the actual velocity of the

vehicle. Therefore, even if the Scmidt KF provides a better
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Fig. 9. Difference in the reference and predicted velocity values (blue line)
provided by the Schmidt Kalman filter, together with the predicted uncertainty
interval (red lines).
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Fig. 10. Difference in the reference and predicted acceleration values (blue
line) provided by the Schmidt Kalman filter, together with the predicted
uncertainty interval (red lines).

estimation of the measurement uncertainty in the presence of

systematic contributions than the classical KF, uncertainty is

still underestimated.

C. The possibilistic Kalman filter

INITIAL ESTIMATE

X
a
0 , QPOS

PREDICTION

X
f
k = A · Xa

k−1 + QPOS

EVALUATION OF THE COVARIANCE MATRIX C
X

f

k

C
X

f

k

= C
ext

X
f

k

EVALUATION OF THE KALMAN GAIN MATRIX

KPOS
k = Kext

k = C
X

f

k

HT
k (HkC

X
f

k

HT
k + cYext

k
)−1

CORRECTION OF THE PREDICTED STATES

Xa
k = X

f
k + KPOS

k (Yk − HX
f
k)

Fig. 11. Possibilistic Kalman filter algorithm defined in [16].

This section considers the application of the possibilistic

Kalman filter defined in [16], with the aim to consider also

the presence of systematic contributions to uncertainty.

The basic equations of this algorithm defined in [16] are

given in Fig. 112. All variables in the state vectors are RFVs

and the iterations are performed using RFV mathematics [1],

[2], [29], so that both random and systematic contributions

can be mathematically represented and combined according

to their different nature [1], [2]. Furthermore:

• as for the matrix which considers the model uncertainties

(matrix Q in the classical Kalman filter), according to the

assumptions reported in Sect. III, we define a vector of

RFVs QPOS where:

– the element related to velocity is an RFV in which

there is no internal PD and the random PD is

obtained by transforming [1] a zero mean normal pdf

with standard deviation wv in the possibility domain;

– the element related to acceleration is an RFV in

which there is no internal PD and the random PD is

obtained by transforming [1] a zero mean normal pdf

with standard deviation wa in the possibility domain;

• as for the initial state vector Xa
0 , it is assumed that

– the initial velocity is an RFV in which there is

no internal PD and the random PD is obtained by

transforming [1] a normal pdf with mean equal to the

first measured value for velocity (vm1) and standard

deviation wv in the possibility domain;

– the initial acceleration is an RFV in which there is

no internal PD and the random PD is obtained by

transforming [1] a normal pdf with mean equal to

the first measured value for acceleration (am1) and

standard deviation wa in the possibility domain;

• as for the measured values, for every step k, the RFV

associated to the simulated measured velocity is centered

on vk (obtained as in Sect. III-A) and

– the internal PD is a rectangular PD with width ±bsys
around vk;

– the random PD is obtained by transforming [1] a

zero mean normal pdf, with standard deviation uv
ran

in the possibility domain.

On the other hand, the RFV associated to the simulated

measured acceleration is centered on ak (obtained as in

Sect. III-A) and:

– the internal PD is nil;

– the random PD is obtained by transforming [1] a

normal pdf, with mean ak and standard deviation

ua
ran in the possibility domain.

The obtained results are shown in Figs. 12 and 13. In the

possibilistic approach, the difference between the predicted

velocity/acceleration and the corresponding reference values

are RFVs3. Therefore, the blue lines in Fig. 12 and 13

represent the mean values of these RFVs. On the other hand,

the red lines represent, for every iteration k, the width of the

α-cut at level α = 0.01 of the predicted velocity/acceleration

respectively, i. e. the confidence level at coverage probability

2The Readers are addressed to [16] for more details.
3Since the predicted velocity and acceleration are RFVs.
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Difference between predicted and reference velocities.

Uncertainty limits associated to the predictions.

Fig. 12. Difference in the reference and predicted velocity values (blue line)
provided by the possibilistic Kalman filter defined in [16], together with the
predicted uncertainty interval (red lines).
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Difference between predicted and reference accelerations.

Uncertainty limits associated to the predictions.

Fig. 13. Difference in the reference and predicted acceleration values (blue
line) provided by the possibilistic Kalman filter defined in [16], together with
the predicted uncertainty interval (red lines).

99%.

With respect to the results provided by the classical KF

and Schmidt KF, which both underestimate the measurement

uncertainty, the possibilistic KF is able to consider correctly

also the systematic contribution, so that the provided con-

fidence intervals always include the systematic error esys.

Furthermore, the time of convergence of the possibilistic KF

is 117 iterations.

However, Fig. 12 also shows a problem in the obtained

results, i.e. the non-negligible oscillations. In fact, if, after

reaching convergence, the standard deviation of the results

shown in the blue line is evaluated, a value of 88.2 ·10−3m/s
is obtained, which is much higher than the value obtained

when the results of the classical KF (29.9 · 10−3m/s) and the

Schmidt KF (26.7 · 10−3 m/s) are considered.

This result is not desirable, since the aim of a KF is a

good prediction of both the state variable and its uncertainty.

However, in this case, the prediction of the uncertainty values

is not satisfactory. The reason for these oscillations can be

attributed to the very high values taken by the gain matrix

KPOS
k .

As also summarized in Fig. 11, the gain matrix is evaluated

according to the covariance matrix C
X

f

k

. In [16], it has been

suggested that the covariance matrix is evaluated according

to the external membership function of the RFVs, so that the

overall uncertainty is taken into account. Therefore, under this

assumption: C
X

f

k

= Cext

X
f

k

and KPOS
k = Kext

k [16] (see again

Fig. 11).

D. A new definition for the possibilistic Kalman filter

In the previous Sect. III-C, it has been shown how the

possibilistic KF is able to correctly evaluate the measurement

uncertainty due to both random and systematic contributions,

but it is not as efficient in predicting the velocity values, as

proved by the oscillations in the blue line in Fig. 12. In this

section, a modified possibilistic KF is defined, in order to

maintain the advantages of the already defined possibilistic

KF but also to improve the state variable prediction.

As stated in previous Sect. III-C, the oscillations in the blue

line in Fig. 12 are due to the very high values in the gain

matrix KPOS
k , which is evaluated according to the possibilistic

covariance matrix C
X

f

k

= Cext

X
f

k

.

Since the covariance matrix is evaluated starting from the

external PDs of the RFVs representing the state variables,

its elements are quite high. In this paper, we propose to

evaluate the possibilistic Kalman gain matrix, according to the

possibilistic covariance matrix C
X

f

k

= Cran

X
f

k

. This means that

the possibilistic variances and covariances are evaluated from

the random PDs of the RFVs of the state variables. Similarly,

also the possibilistic variance of measurements Yk is evaluated

for its random PD Yran
k . In this way, since the possibilistic

variance and covariance decrease, also the elements in the

Kalman gain matrix decrease.

This choice is motivated by the fact that the Kalman gain

matrix requires only the evaluation of the amount of variation

about the measured value, and not the amount of deviation

with respect to the expected value. Since the amount of

variation about the measured value is indeed given by the

random contributions, and not by the systematic ones, the

choice of considering only the random PDs instead of the

external PDs in the evaluation of the possibilistic variances

and covariances appears to be justified.

Under this new assumption, the algorithm for the pos-

sibilistic Kalman filter is schematically represented in Fig.

14. With respect to the algorithm in Fig. 11, the different

evaluation of the covariance matrix can be readily perceived

and, consequently, the different Kalman gain matrix can be

also seen.

There is also another difference between the two algorithms

in Figs. 11 and 14, shown in the last equation. In the new

definition, the correction of the state variables is done by

considering, in the given equation, only the internal PD of

the RFV associated to the measurement value. This is more

coherent with the classical KF, in which the correction of the

state variables only depends on the value vk of the measured

velocity and not on its uncertainty. In the same way, by

processing Yint
k , all possible values of the measured velocity

caused by the presence of a systematic error are taken into

account, but the random variability about this value is not

considered in the state prediction.

The obtained results are shown in Figs. 15 and 16, where the

red and blue lines have the same meaning as in Figs. 12 and

13. Fig. 15 clearly shows that the oscillations reported in Fig.

12 have been completely eliminated. Convergence is obtained

after about 153 iterations, so convergence is slower than with

the original possibilistic Kalman filter, but the results are
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INITIAL ESTIMATE

X
a
0 , QPOS

PREDICTION

X
f
k = A · Xa

k−1 + QPOS

EVALUATION OF THE COVARIANCE MATRIX C
X

f

k

C
X

f

k

= C
ran

X
f

k

EVALUATION OF THE KALMAN GAIN MATRIX

KPOS
k = Kran

k = C
X

f

k

HT
k (HkC

X
f

k

HT
k + cYran

k
)−1

CORRECTION OF THE PREDICTED STATES

Xa
k = X

f
k + KPOS

k (Yint
k − HX

f
k)

Fig. 14. The defined possibilistic Kalman filter algorithm.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

time [s]

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

d
if
fe

re
n

c
e

 [
m

/s
]

Difference between predicted and reference velocities.

Uncertainty limits associated to the predictions.

Fig. 15. Difference in the reference and predicted velocity values (blue line)
provided by the possibilistic Kalman filter defined in this paper, together with
the predicted uncertainty interval (red lines).

really improved. If, after reaching convergence, we evaluate

the standard deviation of the results in the blue line, we obtain

a value of 22.4 ·10−3m/s, which is lower than in all previous

cases.

The good estimation of uncertainty is also confirmed, since

the predicted values of velocity are well inside the predicted
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Difference between predicted and reference accelerations.

Uncertainty limits associated to the predictions.

Fig. 16. Difference in the reference and predicted acceleration values (blue
line) provided by the possibilistic Kalman filter defined in this paper, together
with the predicted uncertainty interval (red lines).

coverage interval (red lines). The improvement, with respect

to the implementation shown in Sect. III-C is, once again, the

absence of oscillations.

It can be concluded that the defined possibilistic KF im-

proves the behavior of the possibilistic Kalman filter defined

in [16], since both predictions and uncertainty are correctly

evaluated.

IV. VALIDATION OF THE PROPOSED POSSIBILISTIC

KALMAN FILTER

In order to validate the possibilistic Kalman filter defined

in this paper, this section shows the results obtained by

employing an hybrid KF, in which the variables are partly

processed according to the theory of possibility, and partly

according to the theory of probability. In particular, the random

contributions to uncertainty have been processed according to

the classical KF equations, while the systematic contributions

to uncertainty have been modeled and processed as internal

PDs of RFVs, by applying the RFV mathematics. In this way,

the systematic contribuitions can be correctly propagated [1]–

[3]. The algorithm in this case is schematically described in

Fig. 17.

INITIAL ESTIMATE

xa0 , Pa
0 , Q, R = uy

ran, Xa int
0

PREDICTION FOR THE

RANDOM PART

x
f
k = A · xak−1

P
f
k = APa

k−1AT + Q

EVALUATION OF THE

KALMAN GAIN MATRIX

Kk =

P
f
kHT

k

(

HkP
f
kHT

k + R
)−1

CORRECTION OF THE

PREDICTED STATES AND

COVARIANCE MATRIX

xak = x
f
k + Kk(vk − Hx

f
k)

Pa
k = (I − KkHk)P

f
k

PREDICTION FOR THE

SYSTEMATIC PART

X
f int
k = Ak−1X

a int
k−1

CONSTRUCTION OF

X
a ran
k

CORRECTION OF THE

PREDICTED SYSTEM-

ATIC CONTRIBUTIONS

X
a int
k = X

f int
k +

Kk(Y
int
k − HX

f int
k )

Xa
k

Fig. 17. The employed algorithm to validate the proposed possibilistic
Kalman filter.

As far as the classical KF is concerned, the same as-

sumptions are done as in Sect. III-A except that, in this

case, the standard uncertainty associated to the simulated

measured velocity is uv
ran (and not uv), since only the random
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Difference between predicted and reference velocities.

Uncertainty limits associated to the predictions.

Fig. 18. Difference in the reference and predicted velocity values (blue line)
provided by the hybrid Kalman filter, together with the predicted uncertainty
interval (red lines).
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Difference between predicted and reference accelerations.
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Fig. 19. Difference in the reference and predicted acceleration values
(blue line) provided by the hybrid Kalman filter, together with the predicted
uncertainty interval (red lines).

contributions are now considered. As for the RFV part, it is

sufficient to consider only the initial internal PDs of velocity

and acceleration in the initial state Xa int
0 , as defined in Sect.

III-C.

The obtained results are shown in Figs. 18 and 19.

The blue line in Fig. 19 shows the differences between the

reference and the predicted accelerations and the red line gives

the evaluated uncertainty intervals.

The blue line in Fig. 18 represents the difference between

the predicted velocity (directly provided by the classical KF, at

the left side of the algorithm’s model) and vref(k). On the other

hand, the red intervals represent, for every iteration, the 99%
confidence interval of the RFV associated at the a posteriori

velocity. In order to obtain this RFV, at every iteration, it is

possible to combine the internal PD (obtained with the RFV

mathematics, at the right side of the algorithm’s model in Fig.

17) with the random PD built according to the results given

by the classical KF at the same step (obtained by applying the

probability-possibility transformation to the pdf given at the

left side of the algorithm’s model in Fig. 17). In particular, we

obtain the random PD by applying the probability-possibility

transformation [1] to the normal pdf whose mean value is the

first element in xak and whose standard deviation is given by

the element (1, 1) in the covariance matrix Pa
k.

In this case, we have convergence after about 85 iterations

and the standard deviation of the blue line in the results is

30.8 · 10−3m/s after reaching convergence.

By comparing Fig. 15 with Fig. 18, it can be immediately

seen that we have obtained very similar results, thus confirm-

ing the validity of the proposed possibilistic KF. Of course,

the application of the possibilistic KF is much more immediate

than the application of the Hybrid KF.

V. FURTHER TESTS AND COMPARISON

In order to achieve a more comprehensive validation of

the proposed possibilitic KF, the same simulations as those

reported in Sect. III and IV have been repeated by considering

the pattern shown in Fig. 20 for velocity and acceleration.
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Fig. 20. Reference values of velocity (blue line) and acceleration (red line)
over time for the new considered case.

The obtained results are quite similar to those reported in

Figs. 6, 7, 9, 10, 12, 13, 15, 16, 18 and 19 and are not reported

here for the sake of brevity.

Instead, more synthetic indexes have been extracted from

the obtained results, for a more immediate comparison of the

different considered KFs. In particular:

• Conversion time. It is the time taken to reach the 90% of

the steady-state value of the prediction.

• Steady-state error. It is the difference between the average

predicted value and the reference value, once steady state

is reached.

• Error variation. It is the standard deviation of the error

once steady state is reached.

• Uncertainty limits. It is the width of the coverage interval

that is supposed to encompass the error on the predicted

value with a 99% coverage probability, once steady-state

is reached. When the classical KF is employed, this is the

±1.96σ interval. When the possibilistic KF is employed,

this is the width of the α-cut at α = 0.01 level of the

RFV of the predicted values.

• Variation of uncertainty limits. It is the standard deviation

of the width of the interval considered above, for the

predicted values, once steady state is reached.

• Percentage of values inside the uncertainty limits. It

is the relative number of predicted values whose error

falls inside the above interval. This value should be,

theoretically, 99%. The closer it approximates this value,

the more accurate is the prediction provided by the

considered KF.

All above indexes have been computed and reported in Table

I (velocity) and Table II (acceleration) for the simulated pattern

shown in Fig. 3, and in Table III (velocity) and Table IV

(acceleration) for the simulated pattern shown in Fig. 20.
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KF Classical Schmitt Original Possibilistic Modified Possibilistic Hybrid

Convergence(s) 54 847 117 151 85

Steady-state error 0.2961 0.2968 0.3016 0.3024 0.2997

Variation of error 0.0299 0.0267 0.0847 0.0224 0.0308

Uncertainty limits ±0.0371 ±0.1871 ±0.4056 ±0.3706 ±0.3961
Variation of uncertainty limits 0 0 0.0656 0 0

Percentage inside the uncer-
tainty limits

0.34 5.14 82.36 97.38 99.92

TABLE I
SYNTHETIC INDEXES FOR VELOCITY FOR CASE 1 AS SEEN IN FIG. 3.

KF Classical Schmitt Original Possibilistic Modified Possibilistic Hybrid

Convergence(s) 10 10 3 7 9

Steady-state error -0.00009 0.00003 0.00052 0.00002 -0.00007

Variation of error 0.0012 0.0011 0.00086 0.00084 0.0011

Uncertainty limits ±0.0015 ±0.0015 ±0.0018 ±0.0028 ±0.0039
Variation of uncertainty limits 0 0 0 0 0

Percentage inside the uncer-
tainty limits

81.14 83.70 93.88 98.42 98.72

TABLE II
SYNTHETIC INDEXES FOR ACCELERATION FOR CASE 1 AS SEEN IN FIG. 3.

KF Classical Schmitt Original Possibilistic Modified Possibilistic Hybrid

Convergence(s) 54 847 117 151 85

Steady-state error 0.2969 0.3138 0.2913 0.3036 0.3032

Variation of error 0.0251 0.0316 0.0843 0.0276 0.0287

Uncertainty limits ±0.0371 ±0.1871 ±0.4056 ±0.3706 ±0.3961
Variation of uncertainty limits 0 0 0.0656 0 0

Percentage inside the uncer-
tainty limits

0.2 11.96 83.10 99.76 99.88

TABLE III
SYNTHETIC INDEXES VELOCITY FOR CASE 2 AS SEEN IN FIG. 20.

KF Classical Schmitt Original Possibilistic Modified Possibilistic Hybrid

Convergence(s) 10 10 3 7 9

Steady-state error 0.000075 0.0020 0.00062 0.00012 0.00028

Variation of error 0.0011 0.0024 0.0018 0.00096 0.0010

Uncertainty limits ±0.0015 ±0.0015 ±0.0010 ±0.0028 ±0.0039
Variation of uncertainty limits 0 0 0 0 0

Percentage inside the uncer-
tainty limits

79.40 37.72 77.88 95.96 99.18

TABLE IV
SYNTHETIC INDEXES FOR ACCELERATION FOR CASE 2 AS SEEN IN FIG. 20.

The reported data confirm that the proposed possibilistic KF

provides good results in the presence of systematic contribu-

tions to uncertainty and that the hybrid KF can be considered

as a reference method.

VI. CONCLUSIONS

This paper defines a possibilistic KF, which is an improve-

ment of the one defined in [16].

By considering a simple example, the results obtained

by applying the proposed possibilistic KF are shown and

compared with the results obtained by applying the classical

KF, the Schmidt KF and the possibilistic KF defined in [16]

to the same example.

The obtained results show that the proposed possibilistic

KF provides better results than the other available considered

methods for implementing a KF in the presence of systematic

errors. In fact, the classical and Schmidt KF fail in evaluating

uncertainty when a systematic error is present, while the

possibilistic KF proposed in [16] provides a good evaluation of

uncertainty but is very noisy in predicting the state variables.

On the other hand, the proposed possibilistic KF provides a

smooth prediction of both the state variables and uncertainty.

The validity of the proposed possibilistic KF is proved by

considering an hybrid KF which combines the classical KF

(in taking into account the random uncertainty contributions)

and RFV mathematics (for taking into account the systematic

uncertainty contributions). The obtained results are very sim-

ilar to the ones obtained with the proposed possibilistic KF,

thus showing the correctness of the proposed approach.

Even if these two last simulations provide very similar

results, it is evident the advantage in the use of the proposed

possibilistic KF, since the algorithm is simpler and a unique

mathematical approach is followed.

In conclusion, the possibilistic version of the KF proposed
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here appears to be quite promising in all applications when

systematic contributions to uncertainty cannot be neglected.

This may include model bias and the effect of uncompensated

influence quantities (such as, for instance, temperature) on

the values provided by the sensors. Even if the classical KF

is still capable of providing a good prediction of the state

variables, the proposed possibilistic KF can also provide a

good prediction of uncertainty that, in measurement appli-

cations, is as important as the predicted value of the state

variable. Indeed, measured values without uncertainty cannot

be considered valid measurement results.
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