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Abstract
Given the inherent complexity of financial markets, a wide area of research in the
field of mathematical finance is devoted to develop accurate models for the pricing
of contingent claims. Focusing on the stochastic volatility approach (i.e. we assume
to describe asset volatility as an additional stochastic process), it appears desirable to
introduce reliable dynamics in order to take into account the presence of several assets
involved in the definition of multi-asset payoffs. In this article we deal with the multi
asset Wishart Affine Stochastic Correlation model, that makes use of Wishart process
to describe the stochastic variance covariance matrix of assets return. The resulting
parametrization turns out to be a genuine multi-asset extension of the Heston model:
each asset is exactly described by a single instance of the Heston dynamics while the
joint behaviour is enriched by cross-assets and cross-variances stochastic correlation,
all wrapped in an affine modeling. In this framework, we propose a fast and accurate
calibration procedure, and two Monte Carlo simulation schemes.

Keywords Wishart process · Calibration · Monte Carlo · Multi assets

JEL Classification C02 · C63 · G12 · G13

1 Introduction

A Wishart process is a matrix-valued continuous time stochastic process with a
marginal Wishart distribution, i.e., a generalization to multiple dimensions of the chi-
squared distribution, or, in the case of non-integer degrees of freedom, of the gamma
distribution. While the introduction of Wishart-based Stochastic Volatility models in

B Daniele Marazzina
daniele.marazzina@polimi.it

Gaetano La Bua
gaetano.labua@polimi.it

1 Department of Mathematics, Politecnico di Milano, 32 p.zza Leonardo da Vinci, 20133 Milan, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10287-021-00388-7&domain=pdf
http://orcid.org/0000-0001-6107-9822


G. La Bua

finance is fully motivated by the need to describe the multidimensional structure of
asset variances (seeLaBua andMarazzina (2019) and references therein), in this article
our goal is to exploit the Wishart process in a multi assets framework. More precisely,
we deal with the Wishart Affine Stochastic Correlation model (WASC), introduced in
Da Fonseca et al. (2007) with the purpose of reproducing well-knownmulti-asset styl-
ized facts in a tractable way. WASC model makes use of Wishart process to describe
the stochastic variance covariance matrix of asset returns.

In our analysiswe focus on the so-calledWishart processes introduced inBru (1991)
as a matrix generalization of square-root processes. A remarkable feature is that the
analytical tractability is fully preserved since these processes belong to the class of
affine processes. Given the strict connection with the well-known CIR processes,
Wishart processes have been used to define multi-factor (Da Fonseca et al. 2008; La
Bua and Marazzina 2019) and multi-asset (Da Fonseca et al. 2007) extensions of the
classic Heston model, which is one of the most known and used models in finance,
see for example (Goudenege et al. 2019; Yolcu-Okur et al. 2018).

Despite the analytical tractability (LaBua andMarazzina 2019), the implementation
of Wishart-based models poses non-trivial challenges from a numerical point of view.
In this article we extend the results presented in La Bua and Marazzina (2019) for
the single asset Wishart Multidimensional Stochastic Volatility model (WMSV) to the
WASC one.More precisely, we deal with themodel calibration problem, presenting an
innovative and efficient methodology to calibrate WASC parameters to market data.
The algorithm exploits the close link existing between the Heston model (Heston
1993) and marginal WASC dynamics. Considering the single-asset case, in La Bua
and Marazzina (2019) we show that, for an appropriate choice of parameters, both
Heston (Heston 1993) and the Bi-Heston (Christoffersen et al. 2009) models may
provide a reliable approximation ofWMSV. In this article, for the multi-asset case, we
extend this approximating technique making use of the distributional law of diagonal
elements of Wishart process to connect the WASC calibration problem to the Heston
one. We provide the analytical form of the gradient of calibration problem objective
function with respect to Wishart-based parameters allowing for a further reduction in
the computational burden.

Additionally, we propose model approximations that permit us to introduce two
numerical schemes for Monte Carlo simulations. It is well known that a standard
discretization (e.g. Euler scheme) is unfeasible in theWishart-based framework, since
we also need to take into account the evolution of non diagonal elements of theWishart
matrix �(t) to determine the dependence structure and satisfy the positive semi-
definiteness constraint for the Wishart process. Therefore, as a first algorithm, we
propose an adapted version of the scalar full truncated Euler. Secondly, we extend the
Gaussian variable approximation scheme presented in LaBua andMarazzina (2019) to
theWASCmodel. Extensive numerical results to compare the two simulation schemes
are provided.

The article is organized as follows. In Sect. 2 we present the Wishart process
and its basic properties, while in Sect. 3 we deal with the WASC model. Finally
the calibration procedure is described in Sect. 4, while the Monte Carlo simulation
schemes are presented in Sect. 5. In both cases, numerical results are presented.
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2 Definition of Wishart process and basic properties

In this section, we introduce the Wishart process. We refer to La Bua and Marazzina
(2019) for details.

Definition 1 (Wishart process) LetW (t) be a d × d Brownian motion (i.e. a matrix of
d × d independent scalar Brownian motions) and S+

d (R) the set of real d × d positive
semidefinite matrices. We define the Wishart process as the solution on S+

d (R) of the
following stochastic differential equation (SDE):

d�(t) = (��� + M�(t) + �(t)M�)dt + √
�(t) dW (t) Q + Q� dW�(t)

√
�(t),

�(0) = �0 ∈ S+
d (R) (1)

with �, Q, M ∈ Md(R) (the set of real d × d square matrices).

As in LaBua andMarazzina (2019), in order to embedmean-reversion and stationarity,
we consider matrix M to have only eigenvalues with negative real part. Moreover, we
relate the deterministic part of the drift in (1), ���, to the expected long-term value
of the process, �∞, by the equation

− ��� = M�∞ + �∞M�. (2)

As shown in La Bua and Marazzina (2019), if we set d = 1 in (1), we end up with a
scalar CIR process defined by the SDE

dv(t) = κ(θ − v(t))dt + η
√

v(t)dwv(t), v(0) = v0, (3)

with κ , θ , and η strictly positive parameters, v0 ≥ 0 and wv(t) a scalar Brownian
motion. ThereforeWishart processes can be considered asmultidimensional extension
of a scalar CIR process. Moreover, a Wishart process entails a non-trivial dependence
structure among its elements, since we have

d
[
�i j (t),�kl(t)

] =
(
�ik(t)Q

∗
jl + �il(t)Q

∗
jk + � jk(t)Q

∗
il + � jl(t)Q

∗
ik

)
dt, (4)

where the notation [·, ·] refers as usual to the quadratic covariation of two stochastic
processes, �i j (t) indicates the element in the i-th row and j−th column of �(t), and
Q∗ = Q�Q.

Existence and uniqueness conditions of the solution of the Wishart process SDE
are given by the following results.

Proposition 1 (Proposition 2.1 in La Bua andMarazzina (2019)) Let X(t) be a generic
affine process with continuous trajectories defined in S+

d (R) by the following SDE

X(t) = X(0) +
∫ t

0
(DX + L [X(s)]) ds

+
∫ t

0

(√
X(s) dW (s) CX + C�

X dW�(s)
√
X(s)

)
, (5)
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where X(0), DX ∈ S+
d (R), CX ∈ Md(R), L : S+

d (R) → S+
d (R) is a linear trans-

formation. Such process admits a unique weak solution in S+
d (R) if

(a) DX − (d − 1)C�
X CX ∈ S+

d (R),
(b) ∀ P1, P2 ∈ S+

d (R) s.t. Tr [P1P2] = 0 ⇒ Tr [L(P1)P2] ≥ 0, where Tr [·] is the
trace of a square matrix (i.e., the sum of the elements on the main diagonal).

If X(0) is in the set of real positive definite matrices S++
d (R) and condition a) is

replaced by the stronger requirement

(c) DX − (d + 1)C�
X CX ∈ S+

d (R),

then there exist a unique strong solution to (5) in S++
d (R).

As stated in La Bua andMarazzina (2019), we can obtain theWishart SDE (1) from
(5) by setting DX = ���, CX = Q, and L [P0] = MP0 + P0M�. Moreover, if we
assume a more restrictive parametrization for the deterministic part of the drift

��� = βQ�Q, (6)

conditions (a) and (c) of Proposition 1 are satisfied as soon as

β ≥ d − 1, (7)

β ≥ d + 1, (8)

respectively, where the real positive parameter β plays the role of Feller’s condition
in the univariate case. Additionally if condition a) is not met the whole process is not
well defined. For the rest of the paper we consider a Wishart process defined by (1)
and (6) as usually done in financial literature. Notice that a significant constraint has
thus to be imposed on parameter β. In the case d = 2, for example, we must require
β ≥ 1. As shown in La Bua and Marazzina (2019), this condition is not usually met
when we perform a straight calibration of Wishart-based pricing models to market
prices of plain vanilla options, while it does not seem to be a real limitation, according
to our knowledge, when a maximum likelihood or a moments estimation is considered
(Alfonsi et al. 2016; Boloorforoosh et al. 2020; Da Fonseca et al. 2014; Gourieroux
and Sufana 2010). Given our interest in exploiting the model for pricing purposes, we
rely to the calibration on plain vanilla options, and therefore to the implied volatility
surface, analyzing the impact of Conditions (7, 8) in our numerical results. In La Bua
and Marazzina (2020) we show how this impact can be smoothed adding a local
volatility component, i.e., exploiting a stochastic-local volatility hybrid model.

2.1 Distribution ofWishart process and related results

In this section we deal with the analogy between Wishart and CIR processes. In fact,
as shown in La Bua and Marazzina (2019), exploiting the affine nature of the Wishart
process, we have that its characteristic function is an exponential affine transformation
of the initial state as shown in the following Proposition:

123



On the application of Wishart process to the pricing…

Proposition 2 (Proposition 2.2 in La Bua and Marazzina (2019)) Let � be a real
symmetric d × d matrix, t ≥ 0 and T − t = τ > 0. The (conditional) characteristic
function of the Wishart process defined by (1) and (6) is

φ�(�, τ) = E
[
exp (ιTr [��(T )]) | �(t)

]

= exp (Tr [A�(�, τ)�(t)] + b�(�, τ)) (9)

where ι is the imaginary unit (i.e. ι = √−1) and matrix A�(�, τ) and scalar function
b�(�, τ) are such that

Tr [A�(�, τ)�(t)] = Tr
[
ι� (Id − 2ι�(τ)�)−1 
(τ)

]
,

b�(�, τ) = −β

2
Tr

[
log

(
(Id − 2ι�(τ)�) exp

(
τM�))

− τM
]
,

Id being the d-dimensional identity matrix. The additional matrix functions appearing
in the above equations are given by


(τ) = exp(τM)�(t) exp(τM�),

�(τ) =
τ∫

0

exp (uM) Q�Q exp
(
uM�)

du.

As a consequence of the analytical tractability ofWishart process and of the knowl-
edge of its characteristic function, we are able to present an additional result regarding
the distribution of diagonal elements of the Wishart process (a similar result for the
trace of the Wishart process has been obtained in La Bua and Marazzina 2019, Corol-
lary 2.3).

Corollary 1 (Distribution of elements on the main diagonal of Wishart process) Let
�i (t) = �i i (t) be the i-th element on the main diagonal of �(t) and Fχ2(x; ν, δ) the
cumulative distribution function of a non-central chi-square random variable with ν

degrees of freedom and non-centrality parameter δ. Then, for a fixed T > t , we have:

Pr [�i (T ) ≤ υ|�(t)] = Fχ2

(
υ

ϑi
, β, δi

)
(10)

where δi = γi/ϑi with 
(τ) = (γi j )1≤i, j≤d and �(τ) = (ϑi j )1≤i, j≤d . For ease of
notation, we also set γi = γi i and ϑi = ϑi i .
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Proof We use the fact that exp
(
Tr

[
log(G)

]) = det [G] for any matrix invertible
matrix1 G to write

exp (b�(�, τ)) = det
[
(Id − 2i�(τ)�) exp

(
τM�)]− β

2
exp

(
β

2
Tr [M] τ

)

= det [Id − 2i�(τ)�]−
β
2 ,

and (9) becomes

φ�(�, τ) = det [Id − 2ι�(τ)�]−
β
2 exp

(
Tr

[
ι� (Id − 2ι�(τ)�)−1 
(τ)

])
. (11)

Let λ be a real variable and edi = (1k=�=i )1≤k,�≤d , then by setting �i = λedi , the
characteristic function of �i (T ) is

φ�i (λ, τ ) = φ� (�i , τ ) = (1 − 2ιλϑi )
− β

2 exp

(
ιλγi

1 − 2ιλϑi

)
(12)

from which (10) follows by the definition of non-central chi-square distribution. �

An alternative way to obtain (10) is to recognize that (11) is the characteristic

function associated to the non-central Wishart distribution with scale matrix �(τ)

and non-centrality matrix 
(τ) and apply results in Kourouklis and Moschopoulos
(1985). For the sake of completeness, we point out that an analogous claim is shown
in Da Fonseca and Grasselli (2011). Our formulation, however, gives a direct inter-
pretation of parameters involved in the distribution of �i (T ) in terms of matrices
describing the Wishart process. As we will see, this turns out to be particularly useful
for computational purposes.

An important consequence of (10) is that we can define an exact mapping between
�i (T ) and a CIR process:

Proposition 3 (CIR process mapping�i (T )) Let v(t) be a CIR process defined by (3).
For a fixed T > t , it holds that (conditionally on v(t) and�(t) respectively) v(T ) and
�i (T ) share the same distribution provided that

v(t) = �i (t), (13)

κ = −1

t
log

(
γi

v(t)

)
, (14)

η = 2

√
ϑiκ(

1 − e−κt
) , (15)

θ = βη2

4κ
, (16)

1 Here we exploit the invertibility of (Id − 2i�(τ)�) exp
(
τM�)

which is given by the invertibility of

both Id − 2i�(τ)� (see the proof of Proposition 2.2 in La Bua and Marazzina (2019)) and exp
(
τM�)

(by definition of matrix exponential).
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where γi and ϑi have been introduced in Corollary 1.

Proof The correspondence of the distributions relies on the properties of the CIR
process. We refer to Cox et al. (1985) for details. �


3 The wishart affine stochastic correlationmodel

With the purpose of reproducing well-known multi-asset stylized facts in a tractable
way, in Da Fonseca et al. (2007) the authors introduce the Wishart Affine Stochastic
Correlationmodel (WASC) thatmakes use ofWishart process to describe the stochastic
variance covariance matrix of asset returns. The model proposes the following joint
dynamics for a vector of forward asset prices:

df(t) = diag [f(t)]
√

�(t) db(t), f(0) ∈ R
d+, (17)

where diag [·] is the operator that transforms a d-dimensional column vector into a
d × d diagonal matrix. In (17) b(t) is a d-vector Brownian motion such that

b(t) =
√
1 − r�r z(t) + W (t) r (18)

with z(t) another d-vector Brownian motion independent on W (t) and r ∈ [−1, 1]d
such that r�r ≤ 1. Here r can be interpreted as the vector of coefficients meant to drive
the linear correlation between the shocks on asset returns and shocks on variance-
covariance matrix �(t). The choice of the correlation structure (18) represents the
major improvement with respect to the model in Gourieroux and Sufana (2004) and
aims at accommodating realistic single asset volatility skews still preserving the affinity
of the model. Remarkably, the resulting WASC dynamics (17) allows for stochastic
correlation among asset returns in a tractable framework where each asset is enriched
with a stochastic volatility behavior consistent with the effects observed on plain
vanilla markets. Let the i-th forward asset price at time t be denoted by fi (t) =
fi (0)eyi (t), t ≥ 0. The peculiarities of the model can be fully appreciated by referring
to the individual, or scalar, dynamics of asset returns yi :

dyi (t) = −1

2

d∑

j=1

s2i j (t)dt +
d∑

j=1

si j (t)db j (t)

= −1

2
�i (t) +

d∑

j=1

si j (t)db j (t), i = 1, ..., d (19)

where Ŝ(t) = Ŝ(t)� = (
si j

)
1≤i, j≤d is the unique positive semi-definite square root

of �(t). We also use the notation �i (t) = �i i (t) to denote the i-th diagonal element
of Wishart process. By straightforward computations, from (19) we can compute the
quadratic covariation of two given assets:
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d [yk(t), y�(t)] = d

⎡

⎣
d∑

j=1

sk j (t)db j (t),
d∑

j=1

s� j (t)db j (t)

⎤

⎦ = �k�(t)dt (20)

that highlights the role of Wishart process, used to describe the stochastic evolution
of the asset returns variance covariance matrix. Furthermore, we can explicitly define
the cross-asset correlation matrix Cy(t) as

Cy(t) = (
ρi j (t)

)
1≤i, j≤d =

(
�i j (t)√

�i (t)� j (t)

)

1≤i, j≤d

. (21)

By exploiting the properties of Wishart process, it can be shown that Cy(t) is a well-
defined correlation matrix (i.e. Cy(t) is positive semi-definite and each ρi j (t) ∈
[−1, 1]) as soon as condition (7) is satisfied and provided that �i j (t) �= 0 for
i, j = 1, ..., d. Indeed, if β ≥ d − 1, �(t) is positive semi-definite and Cy(t) admits
the decomposition

Cy(t) = D−1�(t)D−1 = D−1 Ŝ(t)Ŝ(t)D−1 = LL�,

where D = √
diag [�(t)]. To show that each element ρi j (t) is bounded in [−1, 1] we

use the following theorem that applies for Wishart distributed matrices:

Theorem 1 (Theorem 2.4.2 in Kollo and von Rosen (2006)) Let XW ∈ S+
d (R) ∼

Wd(β,�,
), i.e. XW is a d ×d symmetric matrix that follows a non-central Wishart
distribution with degrees of freedom β, scale � and non-centrality matrix 
. Then for
a n × d matrix B, we have that Y = BXW B� ∼ Wn(β, B�B�, B
B�).

If we set XW = �(t) and B =
[
edi , e

d
j

]�
for some admissible i and j (with edi the i-th

element of the standard basis of Rd ), the previous theorem shows that the resulting

matrix B�(t)B� =
[

�i (t) �i j (t)
�i j (t) � j (t)

]
is a well-defined 2 × 2 Wishart process and

then it holds that �2
i j (t) ≤ �i� j . This proves that each element ρi j (t) defined in (21)

is bounded in [−1, 1].
By combining (19) and (20) with Proposition 3, and fixing a time horizon T , we

can represent the (T -specific) WASC dynamics as the following 2d system of scalar
SDEs (for i = 1, ..., d)

dyi (t) = −1

2
�i (t)dt + √

�i (t)dw
y
i (t), (22)

d�i (t) = κi (θi − �i (t))dt + ηi
√

�i (t)dw�
i (t), (23)

where the parameters κi , θi and ηi are given, respectively, in (14), (15) and (16). Here
the correlation structure among Brownian motions w =[
w�
1 , w�

2 , ..., w�
d , w

y
1 , w

y
2 , ..., w

y
d

]�
is described by means of the stochastic block

matrix
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C(t) =
[
C�(t) C�

�y(t)
C�y(t) Cy(t)

]
, (24)

where the submatrices, other than Cy already introduced in (21), will be described in
the following. Interestingly, from (22) and (23) we have that, for any T > 0, the scalar
dynamics of each asset is consistent with a standard Heston model driven by the i-th
diagonal element of �(t). This assures that the behaviour induced by WASC in terms
of reconstructed implied volatility surfaces is in line with the documented findings of
traditional one factor stochastic volatility models. Consistently with Heston model,
the asset specific returns-volatility correlation is constant: following Da Fonseca et al.
(2007), we have

Corrt [dyi (t), d�i (t)] = ρi dt = Tr [QRi ]√
Q∗

i i

dt, (25)

where Ri is the matrix with r on the i-th row and zero elsewhere. We can even
generalize the previous result by explicitly deriving the correlation between the i-th
log-asset and a generic diagonal element of �(t): we, indeed, have that (as shown in
Da Fonseca et al. (2007)) the covariation between asset returns and volatility terms is
given by

d
[
yi (t),� j (t)

] = 2�i j (t)Tr
[
R j Q

]
dt . (26)

By combining (26) and (20) and exploiting (4), we get the generic element of matrix
C�y(t) as

Corrt
[
dyi (t), d� j (t)

] = 2�i j (t)Tr
[
R j Q

]

√
�i (t)

√
4� j (t)Q∗

j j

dt

= Tr
[
R j Q

]

√
Q∗

j j

�i j (t)√
�i (t)

√
� j (t)

dt = ρ jρi j (t)dt . (27)

In the last equality of (27), we introduce a new representation of such correlations
that can be seen, quite fascinatingly, as the product of the (constant) proper, or scalar,
j-th asset-volatility correlation and the cross-asset correlation between i-th and j-th
assets. This result highlights the peculiar dependence structure inherent in the WASC
model and could help in gaining more insights on parameters impact on correlation
surfaces in the spirit of the study carried out in Da Fonseca et al. (2007).
Further, using (4), it follows that the elements of C�(t) have the form

Corrt
[
d�i (t), d� j (t)

] = 4�i j (t)Q∗
i j

4
√

�i (t)� j (t)
√
Q∗

i i Q
∗
j j

dt = Q∗
i j√

Q∗
i i Q

∗
j j

ρi j (t)dt . (28)

From (21), (27) and (28),we have that the stochastic evolution of (24) is fully described
by processes ρi j (t). Let us consider, for example, the case d = 2: matrix C(t) then
reads as
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C(t) =

⎡

⎢⎢
⎣

1 q12ρ12(t) ρ1 ρ1ρ12(t)
q12ρ12(t) 1 ρ2ρ12(t) ρ2

ρ1 ρ2ρ12(t) 1 ρ12(t)
ρ1ρ12(t) ρ2 ρ12(t) 1

⎤

⎥⎥
⎦

where qi j = Q∗
i j√

Q∗
i i Q

∗
j j

. This representation highlights the peculiar dependence structure

induced in the WASC model and could provide useful insights on the role of Q and r
in determining the relation among state variables.

3.1 A restricted version of themodel

In this section we consider a restricted, more intuitive, specification of WASC model:
we assume matrix M to be diagonal and with negative entries. This setting leads
to a very interesting dynamics for the diagonal elements of Wishart process. From
Proposition 3, if M is diagonal, direct computation gives

κi = −2Mii , ηi = 2
√
Q∗

i i ,

for all T > 0. An immediate consequence is that the asset instantaneous variances are
now described by time-independent CIR processes, in the sense that the parameters
involved are no longer function of the time horizon considered.

In our opinion the resulting parametrization turns out to be the most genuine multi-
asset extension of theHestonmodel: each asset is exactly described by a single instance
of theHeston dynamics while the joint behaviour is enriched by cross-assets and cross-
variances stochastic correlation, allwrapped in an affine framework.As far aswe know,
there are no alternative settings that can reach a comparable degree of flexibility. The
exact Heston representation of asset dynamics also helps in understanding the role
and the impact of WASC parameters, that in the general formulation appear somehow
unclear. In particular, it is worthwhile to point out that the pricing of single-asset
European claims is only affected by the corresponding diagonal element of�0. To see
this, it suffices to notice that for λ = λiedi , the matrix A y(τ ) in (31) has a non-null i-th
diagonal element and zeros elsewhere. This peculiarity is in line with the asymptotic
analysis provided in Da Fonseca and Grasselli (2011) where the i-th implied volatility
approximation for short time to maturity is found to be2

σ 2
imp,i = �i i + (r1Q1i + r2Q2i )m f + 1

2

4
(
Q2

1i + Q2
2i

) − 7(r1Q1i + r2Q2i )
2

6�i i
m2

f ,

with m f = log
(

K
fi (0)

)
denoting the log-forward moneyness. Consequently, the

off-diagonal entries of �0 can be used to match multi-asset stylized facts without
compromising the shape of individual volatility surfaces. This represents an addi-
tional degree of freedom that in the general WASC model we would not have. A

2 Without loss of generality only the case d = 2 is considered.

123



On the application of Wishart process to the pricing…

possible calibration strategy could be to set the off-diagonal entries of �0 in order to
match a predefined initial cross-asset correlation matrix. Alternatively, provided that
liquid multi-asset derivatives are traded, we could try to fit the implied correlation
market evidences. In order to further develop this point, we now study the impact of
�12 on the price of Best-Of put options which payoff is

(K − max [S1(T ), S2(T )])+ , (29)

Si (t) being the asset price at time t, t ≥ 0. Let πW A be the following set of WASC
parameters:

β = 1.1, �0 =
[
0.04 0
0 0.04

]
, M =

[−0.7 0
0 −1.2

]
, Q =

[
0.3 0.3
0.2 0.3

]
,

r =
[−0.6
−0.1

]
,

that are meant to describe realistic market scenarios and allowing for a well defined
Wishart process. Figure 1 shows the implied correlation profiles corresponding to
different values of �12, where the implied correlation is defined to be the value of
parameter ρ such that the WASC price equals the one obtained in a two-assets Black-
Scholes setting, i.e.

PBS
Best−O f (σ

W A
imp,1(K , T ), σW A

imp,2(K , T ), ρ, K , T ) = PW A
Best−O f (πW A, K , T ). (30)

Here σW A
imp,i (K , T ) is the Black-Scholes implied volatility corresponding to the option

written on the i-th asset with strike K and maturity T whose price is computed with
WASCmodel. By exploiting the affinity of themodel, Best-Of put options are priced by
numerically computing a bi-dimensional inverse Fourier transform.We refer the reader
to Da Fonseca et al. (2007) where this pricing methodology is developed for Best-
Of contracts. From the numerical results, it is evident that the off-diagonal Wishart
element plays a significant role in modelling the implied correlation skew: we observe
an increase in implied correlation levels for higher values of�1,2. This, in turn, induces
an increase in option prices consistently with the fact that Best-Of put options are long
correlation products that benefit from lower assets returns dispersion.

3.2 WASC Characteristic function

The chosen correlation structure (18) assures the affinity ofWASCmodel. This means,
once more, that we can express the (joint) characteristic function of the asset returns
vector y(T ) as an exponential affine transformation of state variables y(t) and �(t)
as recalled in the following Proposition:

Proposition 4 (Joint characteristic function of log-prices in WASC) Let the log-
forward prices vector y(t) be described by (19) and λ be an auxiliary vector-valued
variable λ = [λ1, ..., λd ]�. Then for T > t , the WASC (conditional) characteristic
function of y(T ) admits the following closed formula representation
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Fig. 1 Best-Of put options implied correlation skew for different values of �12. Other parameters used:
f1(0) = f2(0) = 100, T = 1 and r = 0%

φW A
y (λ, τ ) = E

[
exp (ι 〈λ, y(T )〉) |y(t)]

= exp
(
ι 〈λ, y(t)〉 + Tr

[
Ay(τ )�(t)

] + by(τ )
)
, (31)

with the deterministic matrix Ay(τ ) and the scalar function by(τ ) given by

Ay(τ ) = A22(τ )−1 A21(τ ),

by(τ ) = −β

2
Tr

[
log(A22(τ )) + τ(M + ιλQ�R�)

]
,

and
[
A11(τ ) A12(τ )

A21(τ ) A22(τ )

]
= exp

(
τ

[
M + ιQ�rλ� −2Q�Q

− 1
2

(
λλ� + ι diag [λ]

) −(M + ιQ�rλ�)�
])

.

Proof See Da Fonseca et al. (2007). �

Thanks to Proposition 4, we are able to price both plain vanilla and multi-asset options
(if transform-based techniques are applicable3) in a comprehensive framework. In
particular, we price options on the i-th asset as a basket option with degenerate weights
vector edi , such that λ = λiedi . Furthermore, the knowledge of the joint characteristic
function of asset returns vector allows to make use of bounds techniques as those
developed inCaldana et al. (2016) for basket options.Despite the analytical tractability,
several numerical issues arise when we try to calibrate WASC model to market data
by exploiting (31). Not only, indeed, we have to evaluate functions of matrix argument
for each computation of the characteristic function (as in the WMSV case), but, even
worse, we are required to perform d different plain vanilla pricing (one for each asset)

3 We refer here to those cases inwhich transformed payoff functions are available and evaluation of (inverse)
transforms are numerically feasible.
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for a single parameters set. This is due to the lack of liquid multi-asset derivatives
that force us to calibrate model parameters to the individual market implied volatility
surfaces. As reported in Da Fonseca and Grasselli (2011), such a naive algorithm can
take up to 15 minutes in the simplest case d = 2. This is, clearly, not feasible for real
market applications. Therefore in the next section we propose an accurate and fast
calibration procedure.

4 A new calibration procedure

In this section we present an innovative and efficient methodology to calibrate WASC
parameters that exploits the close link existing between Heston model and marginal
WASC dynamics. The proposed algorithm is firstly tested in a simplified framework
and then applied to market data. The results obtained also highlight the impact of
parameter β on model accuracy in reproducing market volatility smiles.

Let us consider a WASC parameters set πW A (with cardinality NW A) and fix a
maturity T . For the generic i-th asset described by (19) we can define a function
gH−W A
i that maps WASC parameters to those of a scalar Heston dynamics. In other

words, we set gH−W A
i : RNW ASC ×R>0 → R

5 such that gH−W A
i (πW A, T ) = π i,H =

[v0,i , κi , θi , ηi , ρi ]� as defined in (13)–(16) alongwith the assets-volatility correlation
(25). Consequently, for calibration purposes, we can replace the cumbersome WASC
characteristic function with the simpler Heston one (see La Bua and Marazzina 2019,
AppendixA.1). Furthermore, we can compute analytically the gradient of the objective
function with respect to WASC parameters. In Appendix A we show how to compute
explicitly the matrix J H−W A

i,T (πW A) = ∇gH−W A
i ∈ R

NW A×5, i.e. the Jacobian matrix

of function hW A
i with elements:

j H−W A
q,r = ∂gH−W A

i,r (πW A, T )

∂πW A,q
. (32)

Then, the Jacobian matrix of r̃i,T (πW A) (the residuals vector composed of options
with maturity T written on the i-th asset) can be written as

JW A
i,T (πW A) = J H−W A

i,T (πW A)J H
i (gH−W A

i (πW A, T )) (33)

where the second matrix in the right-hand side of (33) is known thanks to Cui et al.
(2017) (see also La Bua and Marazzina 2019, Appendix A.2). To obtain the over-
all Jacobian matrix JW A, we simply need to compute (33) for each maturity and
asset taken into account and aggregate the resulting matrices. Notice the relationship
between (La Bua and Marazzina 2019, Equation (43)) and Equation (32). Finally,
similarly to La Bua and Marazzina (2019), the gradient of the calibration problem
objective function is given by ∇ fobj = JW Ar̃(πW A).

The calibration algorithmsodefined avoids the computation ofWASCcharacteristic
function and significantly reduces the issues due to the possible presence of multiple
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minima. Given that we rely on the law identity in Proposition 3 rather than on some
approximation, the routine does not require any further step.

4.1 A simplified calibration exercise

The accuracy of the proposed algorithm is illustrated by considering the following
numerical experiment: let us suppose that a fictitious two-assets market is perfectly
described by the WASC parameters reported in the first column of Table 1. Even if
simplified, the data outline realistic market environments: they represent the calibrated
parameters set (truncated at the first significant decimal digit) found in Da Fonseca
and Grasselli (2011) for the couple of indices EuroStoxx50-DAX. We construct a
full implied volatility surface for each asset assuming to have options with maturities
T = [0.25, 0.5, 1, 3] and 41 equally spaced strikes ranging from 0.5 to 1.5 (initial
asset values are set for simplicity equal to 1). Each of the resulting surfaces consists of
164 options. The goal is to implement the proposed algorithm in order to find a suitable
parameters set that reproduces the supposed market data. Hopefully, we expect the
calibrated parameters to be reasonably close to the original ones (accuracy) and to
experience a limited dependency on the initial guess (robustness). For this test we set
the starting values of the optimization routine as shown in the second columnofTable 1.
The choice is meant to assess the robustness of the algorithm in the case in which the
initial guess is very far from the optimal set. Indeed, not only the discrepancy is mixed
- some values are overestimated, others underestimated - but the distance between
initial guess and optimal values is substantial: the smallest gap, defined as percentage
difference, is equal to 35.29%. The mistaken initialization of the problem and the high
dimensionality of the parameters space make the calibration task more challenging
and could potentially lead to suboptimal outcomes. Notwithstanding, the proposed
algorithm is able to produce results very close to the original values: the norm of the
errors between true prices and calibrated ones is 2.2069 × 10−7. Most remarkably,
the procedure takes only 3.56 seconds using Matlab Mex files, on a laptop PC with
an Intel Core i7 CPU and 8 GB RAM. By considering parallelization and porting
to more efficient languages we can obtain a further speedup. It is worthwhile also
noting that in realistic applications, the calibration problem is somehow facilitated
thanks to the availability of previous optimal sets that act as efficient guesses. In the
lights of all these evidences, we believe that the proposed methodology represents a
highly efficient tool for the calibration of WASC model. This is particularly true if
we intend to increase the number of assets involved with the subsequent growth of
dimensionality.

4.2 Calibration tomarket data

We now want to validate the procedure with realistic market data. Despite the general
applicability of the algorithm, we focus our attention on the restricted specification
of the model introduced in Sect. 3.1. With this in mind, we select a basket of market
quoted instruments composed of 201 European call options written on EuroStoxx50
index and 182 on DAX index. The set of derivatives on the DAX is the same set
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Table 1 Results for the calibration exercise described in Sect. 4.1

Parameter True values Initial guess Calibrated values

β 0.7 1 0.6951

�11(0) 0.04 0.1 0.0402

�12(0) 0.03 0 0.0349

�22(0) 0.04 0.1 0.0399

M11 − 0.7 −2 − 0.6791

M12 − 0.3 −1 − 0.2476

M21 − 0.05 −1 − 0.0836

M22 − 1.2 −2 − 1.1417

Q11 0.3 0.1 0.2756

Q12 0.3 0 0.3201

Q21 0.2 0 0.2187

Q22 0.3 0.1 0.2976

r1 − 0.6 0 − 0.6490

r2 − 0.1 0 − 0.0912

used in La Bua and Marazzina (2019). We further set, for simplicity, interest rates and
dividends to zero. Thanks to the efficiency of the new calibration algorithm,we are able
to calibrate model parameters in less than 3 seconds. The outputs of the optimization
routine are shown in the leftmost columnof Table 2.Given that, as illustrated above, the
off-diagonal element of �0 does not impact the pricing of univariate call options, we
set its value such that the initial correlation among the two indices equal the one-year
historical one (that is found to be 0.9715).4

The most interesting result is that β is lower than 1. This is coherent with the
evidences in Da Fonseca andGrasselli (2011) where similar results are found. Figure 2
shows the calibrated model implied volatility skews for the two indices with respect to
maturities of one month, one year and three years. The model succeeds in reproducing
the shape of market volatility surfaces but the mispricing is not negligible for short
term far-from-the-money options. This is particularly true for the EuroStoxx50 index
as highlighted from the fact that the error in volatility terms is roughly 3 times higher
than the error made for the DAX.

Additionally, we can compare the evidences from the calibration of the WASC
model against the Wishart Multidimensional Stochastic Volatility model (WMSV, La
Bua andMarazzina 2019), as well as theHeston (1993) andChristoffersen et al. (2009)
models, calibrated to the same basket of DAX options. Table 3 shows the calibrated
initial variance of asset returns along with the Mean Squared Error with respect to
both price and implied volatility for the four models. Consistently, the estimates of
initial variance are in strict agreement: all the models agree on the initial volatility.
Moreover, w.r.t. the accuracy of the calibration, the two multi-factor models, i.e.,
the WMSV and the Bi-Heston, tend to perform quite similarly (although errors for
WMSV are slightly smaller) and substantially outperform the simpler Heston and

4 We simply consider the historical value as a target correlation level defined by model user.
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Table 2 Calibration on
February, 3 2016 with the
WASC over a full set of
EuroStoxx50 and DAX indices
European call options

Parameter β ≥ 0 β ≥ 1 β ≥ 3

β 0.8577 1.0389 3.0110

�11(0) 0.0697 0.0554 0.0556

�12(0) 0.0765 0.0654 0.0643

�22(0) 0.0890 0.0817 0.0788

M11 −1.9763 −0.4626 −0.6740

M22 −1.1605 −0.7311 −0.8590

Q11 0.4422 0.1977 0.1259

Q12 0.1448 0.0893 0.0920

Q21 0.1075 0.0004 0.0440

Q22 0.3843 0.2787 0.1529

r1 −0.5145 −0.4888 −0.4706

r2 −0.5247 −0.5262 −0.8490

Error Price 2.67E-06 3.58E-06 7.66E-06

Error Price 2.97E-06 3.16E-06 6.11E-06

Error Vol 2.62E-04 3.25E-04 5.20E-04

Error Vol 9.88E-05 1.53E-04 8.33E-04

Time (s) 2.81 0.88 0.92

As in Da Fonseca and Grasselli (2011) Error Price stands for the Mean
Squared Error (MSE) in price normalized by the forward price and
Error Vol denotes the MSE in implied volatility. For each column, the
first Error Price value refers to the EuroStoxx50 indexwhile the second
one to the DAX index. The same applies for the Error Vol values. In all
cases we set �12(0) so that the initial value of cross-asset correlation
is equal to 0.9715 (the one year historical correlation computed with
daily market data)

Table 3 Comparison of calibration outputs on DAX index

WMSV Bi-Heston Heston WASC

Initial Variance Tr [�0] v0,1 + v0,2 �12 v0

Calibrated Value 0.0866 0.0868 0.0842 0.0890

Error Price 2.45E-06 2.83E-06 2.95E-06 2.97E-06

Error Vol 2.85E-05 3.56E-05 1.07E-04 9.88E-05

The Initial Variance row specifies the initial variance of asset returns in the corresponding model

WASC dynamics. In particular, by comparing the error of WMSV andWASCmodels,
the outperformance of the former is clearly evident. This is not surprisingly since
we contrast a multi-factor volatility setting (WMSV) with the WASC single-asset
dynamics that, as developed in Sect. 3, is equivalent to 1-factor parametrization. It is
important to remark, however, that the models are meant to address rather different
tasks (i.e. single-asset and multi-asset modelling).

Moving back to the multi-asset calibration in Table 2, some fix is required in order
to enforce the existence and uniqueness condition for matrix process �(t). First of

123



On the application of Wishart process to the pricing…

-1 -0.5 0 0.5
log-moneyness

0.15

0.2

0.25

0.3

0.35

0.4

0.45
im

pl
ie

d 
vo

la
til

ity
Mkt 1M
Model 1M
Mkt 1Y
Model 1Y
Mkt 3Y
Model 3Y

-1 -0.5 0 0.5
log-moneyness

0.15

0.2

0.25

0.3

0.35

0.4

0.45

im
pl

ie
d 

vo
la

til
ity

Mkt 1M
Model 1M
Mkt 1Y
Model 1Y
Mkt 3Y
Model 3Y

Fig. 2 Calibration results for WASC. Resulting value for parameter β is 0.8577. Comparison with market
implied volatility for EuroStoxx50 (left) and DAX (right) indices for selected tenors
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Fig. 3 Simulated trajectories of cross-asset correlation ρ12(t) for t ∈ [0, 1] generated with calibrated
parameters obtained imposing β ≥ 1. Left panel: �12 = 0.0654. Right panel: �12 = 0
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Fig. 4 Simulated trajectories of cross-asset correlation ρ12(t) for t ∈ [0, 1] generated with calibrated
parameters obtained imposing β ≥ 3. Left panel: �12 = 0.0643. Right panel: �12 = 0
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all, we tackle the calibration problem imposing β ≥ 1. Results are exhibited in the
second column of Table 2. Even if the loss in accuracy seems to be somehow limited
(the error measure are just slightly higher than in the unconstrained setting), a relevant
issue arises: in Fig. 3 we report simulated trajectories ofWASC cross-asset correlation
obtained with the resulting parameters set. The fact that β satisfies condition (7) effec-
tively ensures ρ12(t) to lie in the range [−1, 1]. However, the fact that the parameter
is just slightly above the threshold (β = 1) makes the boundary of S+

2 (R) very likely
to be attained. Very often, then the absolute value of correlation is stuck at 1. We can
also experience sudden changes in correlation from +1 to −1 (or viceversa) in a very
restricted time frame (even on a daily basis). In order to study the dependence of the
observed phenomenon on the initial value of correlation, in the rightmost panel of
Fig. 3 we also consider the case �12 = 0 that produces a similar erratic correlation
dynamics.

Given the intent to apply WASC model to describe the joint behaviour of asset
prices, this represents a major issue. To tackle the problem, we decide to enforce the
positive definiteness condition for �(t), given by (8), that in our setting equals to set
β ≥ 3. Calibrated parameters are collected in the rightmost column of Table 2. The
corresponding cross-asset correlationdynamics is depicted inFig. 4: the trajectories are
now much more meaningful. Further, as a consequence of the fact that �(t) is defined
on the interior of S+

2 (R), ρ1,2(t) is bounded in (−1,+1). Nonetheless, the stronger
condition enforced has a severe impact on the ability of the model to reproduce single-
asset market evidences. Reconstructed volatility skews are shown in Fig. 5. Significant
discrepancies now emerge for far-from-the-money options. In particular, in the very
short-end of the volatility term structure the error with respect to market volatilities
can be as high as 11.87% (in-the-money options on EuroStoxx50) and 10.80% (out-of-
the-money options on DAX). Disappointingly, we face a non trivial trade-off between
plain vanilla pricing accuracy and realistic modellization of cross-asset correlation.
A possible solution to mitigate the problem could be to set β equal to some value in
the range (1, 3]. This alternative, however, would require to couple the plain vanilla
analysis with adequate market evidences on multi-asset derivatives.

5 Simulation schemes for theWASC

This section is devoted to present simulation algorithms specifically devised forWASC
model. As far as we know, indeed, there are no previous attempts in literature to deal
with the discretization of prices trajectories (17). In particular, our task is to develop an
efficient, yet accurate, scheme to discretize the system of SDEs (22)–(23). It is evident
that a standard discretization (e.g. via Euler scheme) is unfeasible, since we also need
to take into account the evolution of non diagonal elements of �(t) to determine
the dependence structure and satisfy the positive semi-definiteness constraint for the
Wishart process.
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Fig. 5 Calibration results for WASC. Resulting value for parameter β is 3.011. Comparison with market
implied volatility for EuroStoxx50 (left) and DAX (right) indices for selected tenors

As a first algorithm, we implement an adapted version of the scalar full truncated
Euler (TE) scheme that reads as

ŷ(t + �) = −1

2
Vec

[
�̂+(t)

]
� +

√
�̂+(t)

(√
1 − r�r z̃ + W̃ r

) √
�

�̂(t + �) = �̂(t) +
(
βQ�Q + M�̂+(t) + �̂+(t)M�)

� +
√

�̂+(t)W̃ Q
√

�

+ Q�W̃�
√

�̂+(t)
√

�

with z̃ and W̃ , respectively, d-dimensional vector and square matrix of independent
standard gaussian random variables. Here Vec [·] is the operator that extracts the ele-
ments on the main diagonal of a square matrix into a column vector, while �̂+ is the
positive part of matrix �̂.

As a second algorithm, we deal with the Wishart process sampling scheme devel-
oped in Ahdida and Alfonsi (2013): that is, we consider as given an entire discretized
path of �(t) over the time grid 0 = t0 < t1 < ... < tMT = T with time step �. In this
waywe are only left with the problem of sampling the log-prices trajectories. Themost
challenging task here is to embed the correlation structure (24) in the discretization
of (22). In standard cases, we would compute the Cholesky decomposition of matrix
C(t) such that

[
w�
1 , w�

2 , ..., w�
d , w

y
1 , w

y
2 , ..., w

y
d

]�

= LC (t)
[
w∗
1, w

∗
2, ..., w

∗
d , w

∗
d+1, w

∗
d+2, ..., w

∗
2d

]�
, (34)

where LC (t) = (
�i, j (t)

)
1≤i≤d,1≤ j≤i is the lower triangular matrix that satisfies

C(t) = LC (t)L�
C (t) and w∗ = [

w∗
1, w

∗
2, ..., w

∗
d , w

∗
d+1, w

∗
d+2, ..., w

∗
2d

]� is a vector
of independent Brownian motions. By exploiting (34), we can rewrite (22) as
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dyi (t) = −1

2
�i (t)dt + √

�i (t)
d+i∑

j=1

�d+i, j (t)dw∗
j (t), (35)

that can be discretized by generating 2d independent gaussian random variables.
Unfortunately, in our setting this is not readily doable as a consequence of the mechan-
ics of Wishart sampling algorithm. In other words, we do not have a direct “access”
to the discretized paths of w�

1 , w
�
2 ,..., w�

d .
The simple idea underlying the new simulation scheme is to exploit the auxiliary

scalar dynamics of �i (t) to get an approximation of w�
i (t + �) − w�

i (t). Let �̂(t)

and �̂(t + �) be the realizations of the trajectory of Wishart process for two adjacent
points on the time grid computed by means of the exact scheme in Ahdida and Alfonsi
(2013). The discretized version of (1), that reads

�̂(t + �) − �̂(t) ≈ κi

(
θi − �̂(t)

)
� + ηi

√
�̂(t)w̃i , (36)

can now be used to approximate the gaussian variable w̃i . Let w̃�i be the result of

(36), for a sufficiently small time interval, w̃� = [
w̃�1, w̃�2 , ..., w̃�d

]� represents an

approximation of a vector of gaussian variables with correlation matrix Ĉ�(t) (i.e. the
realization at time t of matrix C�). Further, let L̂�(t) be the lower triangular matrix
obtained from the Cholesky decomposition of Ĉ�(t), then

w̃∗
� = L̂−1

� (t)w̃�

is composed of d approximated independent gaussian random variables. By sampling
an additional randomvector ŵ∗

y fromN (0d ,�Id) (the d-variate gaussian distribution)
and setting

ŵ∗ =
[
w̃∗

�

ŵ∗
y

]

we can finally approximate (35) as

ŷi (t + �) = ŷi (t) − 1

2
�̂i (t)� +

√
�̂i (t)

d+i∑

j=1

�̂d+i, j (t)ŵ
∗
j (t) (37)

where L̂C (t) results from the factorization of Ĉ(t). If Ĉ(t) turns out not to be positive
definite, we take its positive part, Ĉ+(t), (defined as the matrix obtained from the
spectral decomposition of Ĉ(t)with negative eigenvalues replaced by zeros) and apply
the extended Cholesky decomposition described in Golub and Van Loan (2012). The
complete algorithm is exhibited inAlgorithm1, andwe refer to it asGaussianVariables
Approximation (GVA) scheme for WASC model. Notice that this algorithm can be
considered as an extension of the GVA algorithm for the WMSV case developed in
La Bua and Marazzina (2019).
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Algorithm 1 The Gaussian Variables Approximation (GVA) scheme for the WASC
1: for each asset i , i = 1, ..., d do
2: Given a time horizon T , compute parameters κi , θi , ηi and ρi as given in Proposition 3
3: end for
4: for each simulation trial n, n = 1, ..., N do
5: Initialize �̂(0) = �0
6: Initialize ŷ(0) = log (f(0))
7: for each time-step tm , m = 0, ..., MT − 1 do
8: Compute correlation matrix Ĉ (tm ) as given by (24)
9: Compute L̂C (t) from Cholesky decomposition of Ĉ (tm ) or, in alternative, from the extended

Cholesky decomposition of Ĉ+(t)
10: Sample the Wishart process for a time step of � with initial state �̂ (tm )

using the scheme in Ahdida and Alfonsi (2013)
11: Approximate the d gaussian random variables w̃ by means of (36)
12: Compute w̃∗

� = L̂−1
� (t)w̃�

13: Sample ŵ∗
y fromN (0d ,�Id )

14: Discretize (35) by means of (37)
15: end for
16: end for

5.1 Numerical results

Even if these new schemes would apply to the general specification of the model, here
we suppose to deal with the reduced model presented in Sect. 3.1 (i.e. we consider
matrix M to be diagonal). In particular, we develop an extensive numerical investi-
gation based on the parameters set calibrated to market data enforcing the condition
β ≥ 3 and shown in the rightmost column of Table 2. Considering 5× 105 simulation
paths, we price European call options written on any of the 2 assets with maturity
T = 1 and moneyness in the range {70%, 100%, 130%}. For the sake of simplicity,
we assume interest rates and dividends equal to zero and f1(0) = f2(0) = 100.
The asterisk in the following tables means that the corresponding reference value lies
outside of the 95% confidence interval.

In the context of plain vanilla options, results in Tables 4, 5, 6, 7 show that both
schemes allow for accurate price estimates as the size of the time step is sufficiently
small. More in detail, the TE scheme is found to outperform the GVA scheme when
the time grid is coarse (10, 20 and 50 steps per year), while for smaller mesh widths
the two approaches tend to perform similarly. With this setting and taking into account
option prices for both assets, the absolute mean percentage error is respectively equal
to 0.232% for the GVA scheme and to 0.275% for the TE scheme. It is worthwhile to
remark, though, that the GVA scheme systematically requires a finer time discretiza-
tion to produce reliable estimates (true prices lying in the 95% confidence interval)
compared to the simpler TE scheme. This is due to the fact that the approximation
exploited in (36) seems to be adequate only for very small time intervals. From a com-
putational point of view, the TE scheme greatly outperforms the GVA scheme with the
latter that results 110%− 130% slower than the former as exhibited in Table 8. When
implementing the GVA scheme, indeed, at each time step we are asked to perform the
Cholesky factorization of the 2d-dimensionalmatrix Ĉ(t)with a considerable increase
in the computational burden.
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Table 4 Plain vanilla option written on Asset 1, TE scheme

Strike Reference No. of MC Confidence Interval Error
Value time steps estimates (95%)

K = 70 30.8462 10 30.8737 30.8198–30.9276 −0.09%

20 30.8160 30.7625–30.8696 0.10%

50 30.8513 30.7978–30.9048 −0.02%

100 30.8318 30.7783–30.8853 0.05%

200 30.8249 30.7715–30.8783 0.07%

K = 100 8.3780 10 8.4584∗ 8.4256–8.4912 −0.96%

20 8.4073 8.3749–8.4398 −0.35%

50 8.3973 8.3649–8.4296 −0.23%

100 8.3668 8.3344–8.3992 0.13%

200 8.3705 8.3381–8.4028 0.09%

K = 130 0.5467 10 0.5869∗ 0.5786 − 0.5951 −7.34%

20 0.5696∗ 0.5616–0.5775 −4.17%

50 0.5573∗ 0.5495–0.5652 −1.94%

100 0.5470 0.5391–0.5549 −0.05%

200 0.5523 0.5444–0.5602 −1.01%

Table 5 Plain vanilla option written on Asset 1, GVA scheme

Strike Reference No. of MC Confidence Interval Error
Value time steps estimates (95%)

K = 70 30.8462 10 30.3028* 30.2511–30.3545 1.76%

20 30.5859* 30.5333–30.6384 0.84%

50 30.7412* 30.6881–30.7943 0.34%

100 30.8328 30.7796–30.8860 0.04%

200 30.8521 30.7987–30.9055 −0.02%

K = 100 8.3780 10 7.8458* 7.8151–7.8766 6.35%

20 8.1059* 8.0744–8.1375 3.25%

50 8.2812* 8.2491–8.3132 1.16%

100 8.3399* 8.3078–8.3720 0.45%

200 8.3799 8.3476–8.4122 −0.02%

K = 130 0.5467 10 0.4424* 0.4355–0.4494 19.08%

20 0.4895* 0.4822–0.4968 10.47%

50 0.5240* 0.5164–0.5316 4.16%

100 0.5368* 0.5291–0.5445 1.82%

200 0.5454 0.5375–0.5532 0.25%
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Table 6 Plain vanilla option written on Asset 2, TE scheme

Strike Reference No. of MC Confidence Interval Error
Value time steps estimates (95%)

K = 70 31.5397 10 31.5774 31.5190–31.6359 −0.12%

20 31.4685* 31.4104–31.5266 0.23%

50 31.5378 31.4798–31.5958 0.01%

100 31.5116 31.4537–31.5695 0.09%

200 31.5149 31.457–31.5728 0.08%

K = 100 9.6689 10 9.7750* 9.7402–9.8097 −1.10%

20 9.6683 9.6339–9.7027 0.01%

50 9.6837 9.6493–9.7181 −0.15%

100 9.6558 9.6215–9.6901 0.14%

200 9.6603 9.6260–9.6946 0.09%

K = 130 0.6072 10 0.6643* 0.6570–0.6717 −9.41%

20 0.6234* 0.6164–0.6303 −2.66%

50 0.6173* 0.6105–0.6242 −1.67%

100 0.6117 0.6049–0.6185 −0.74%

200 0.6091 0.6023 −0.6158 −0.31%

Table 7 Plain vanilla option written on Asset 2, GVA scheme

Strike Reference No. of MC Confidence Interval Error
Value time steps estimates (95%)

K = 70 31.5397 10 30.7237* 30.6679–30.7794 2.59%

20 31.1076* 31.0509–31.1644 1.37%

50 31.3530* 31.2956–31.4104 0.59%

100 31.5186 31.461–31.5762 0.07%

200 31.5372 31.4794–31.5950 0.01%

K = 100 9.6689 10 8.8934* 8.8612–8.9256 8.02%

20 9.2535* 9.2203–9.2868 4.30%

50 9.4986* 9.4648–9.5325 1.76%

100 9.6168* 9.5827–9.6508 0.54%

200 9.6496 9.6154–9.6838 0.20%

K = 130 0.6072 10 0.4325* 0.4270–0.4381 28.76%

20 0.5132* 0.5071–0.5193 15.48%

50 0.5688* 0.5623–0.5753 6.32%

100 0.5863* 0.5797–0.5929 3.44%

200 0.6018 0.5951–0.6085 0.89%
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Table 8 Computational time as
function of the number of time
steps. The number of simulated
paths is fixed to 5 × 105

Time steps 10 20 50 100 200

TE (s) 5.48 10.74 25.84 53.56 104.08

GVA (s) 11.66 23.48 59.68 119.74 244.54

Results refer to the implementation on a laptop PC with an Intel Core
i7 CPU and 8 GB RAM via Matlab MEX files

Table 9 Asian option with monthly monitoring

TE GVA

Confidence Interval Confidence Interval
Ms Value (95%) Value (95%)

5 × 105 simulations

1 11.6163 11.5731–11.6595 10.6334 10.5937–10.6732

5 11.5223 11.4799–11.5646 11.2828 11.2412–11.3244

10 11.4814 11.4392–11.5236 11.3440 11.3022–11.3859

15 11.4659 11.4238–11.5079 11.4115 11.3695–11.4534

20 11.4441 11.4020–11.4861 11.4318 11.3898–11.4739

5 × 106 simulations

1 11.6414 11.6277–11.6551 10.6233 10.6108–10.6359

5 11.4852 11.4718–11.4985 11.2837 11.2705–11.2969

10 11.4711 11.4578–11.4845 11.3663 11.3530–11.3795

15 11.4545 11.4412–11.4678 11.4281 11.4104–11.4373

20 11.4456 11.4323–11.4589 11.4481 11.4306–11.4669

The time step is � = �M/Ms = 1
12Ms

We now compare the two simulation schemes pricing an Asian option with payoff
in T = 1 equal to

(
1

12

12∑

i=1

f1(0)e
y1(i�M ) + 1

12

12∑

i=1

f2(0)e
y2(i�M ) − K

)+
,

with �M = 1
12 , i.e., we are considering an Asian option with monthly monitoring,

and K = 200 (all the other parameters as above). In Table 9 we compare the two
simulation schemes: results confirm that the TE scheme outperforms the GVA when
the time grid is coarse.

Nonetheless, the GVA scheme proposed embeds the inherent advantage to imple-
ment the exact sampling of Wishart process thanks to the algorithm in Ahdida and
Alfonsi (2013). This feature is of great importance in all the cases in which we need
to estimate the (conditional) moments of the distribution of the elements of �(t). The
ability to consistently deal with the discretization of Wishart process is, indeed, the
main reason that led us to develop the new scheme. To better highlight this advantage,
in Table 10 we exploit the two simulation algorithms to compute the absolute value
of the real part of the joint characteristic function
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Table 10 Absolute value of the real part of the joint characteristic function (38): 5 × 105 simulations,
parameters as in Eq.(39)

Reference No. of TE GVA
Value time steps Confidence Interval Confidence Interval

a = 0

0.9835 10 0.9828–0.9832 * 0.9834–0.9835

20 0.9833–0.9834 * 0.9834–0.9835

50 0.9834–0.9835 0.9834–0.9835

100 0.9834–0.9835 0.9834–0.9835

200 0.9835–0.9836 0.9834–0.9835

a = 0.1

0.8204 10 0.8209–0.8212 * 0.8206–0.8209 *

20 0.8206–0.8209 * 0.8203–0.8206

50 0.8204–0.8207 0.8203–0.8206

100 0.8203–0.8206 0.8202–0.8205

200 0.8203–0.8206 0.8203–0.8206

a = 0.5

0.7561 10 0.7549–0.7546 * 0.7546–0.7543 *

20 0.7555–0.7552 * 0.7554–0.7551 *

50 0.7560–0.7557 * 0.7559–0.7556 *

100 0.7561–0.7558 0.7562–0.7558

200 0.7560–0.7559 0.7561–0.7558

a = 1

0.0065 10 0.0040–0.0051 * 0.0009–0.0019 *

20 0.0049–0.0060 * 0.0030–0.0041 *

50 0.0056–0.0067 0.0047–0.0058 *

100 0.0057–0.0067 0.0055–0.0065

200 0.0057–0.0068 0.0056–0.0066

|Reφ(�X ,�V , T )| = ∣∣ReE
[
exp (ι 〈�X ,X(T )〉 + ιTr [�V�(T )])

]∣∣ , (38)

setting

X(T ) =
[
log( f1(T ))

log( f2(T ))

]
, �X =

[
0
a

]
, �V =

[
1 0.5
0.5 1

]
, (39)

varying the parameter a. Notice that a closed form solution for this characteristic
function is provided in Da Fonseca and Grasselli (2011). For large values of a, e.g.,
a = 1, the TE scheme outperforms the GVA one, exactly as in the option pricing cases
above described. However, the opposite happens for small values of a, i.e., when the
contribution of the simulation of the Wishart process is more important w.r.t. the log-
asset value. Moreover, when a = 0, i.e., we only need to simulate the Wishart process
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�(T ), the GVA scheme performance is independent on the number of the time steps,
since it is an exact simulation scheme, as shown in Ahdida and Alfonsi (2013).

6 Concluding remarks

The matrix structure of Wishart-based stochastic volatility models provides a remark-
able degree of flexibility in describing the evolution of asset(s) volatility. Realistic
implementations, though, require the development of specific numerical techniques
in order to deal with the inherent level of complexity. In this article we have shown,
leveraging on a thorough analysis of distributional properties ofWishart process, some
possible solutions intended to make this class of model more suitable for real market
applications. Accordingly, we hope that our contribution will increase the interest of
researchers and practitioners towards matrix-variate stochastic volatility dynamics.
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Appendix A Jacobianmatrix of WASC-Heston parameters mapping

Let gH−W A
i (πW A, T ) be the mapping presented in Sect. 4 between the WASC and

Heston model parameters corresponding to the i-th basket component. Here we show
the elements of matrix J H−W A

i,T (πW A) defined by (32). For the sake of simplicity, and
without loss of generality, we consider d = 2. By direct computation the following
holds for i, j, k = 1, 2:

∂v0,i

∂� j,k
= 1i= j=k,

∂κi

∂� j,k
= 1

t

(
− 1

γi

∂γi

∂� j,k
+ 1

� j,k
1i= j=k

)
,

∂κi

∂Mj,k
= − 1

γi t

∂γi

∂Mj,k
,

∂ηi

∂� j,k
= 2ϑi

(
1 − (1 + κi t)e−κi t

)

ηi
(
1 − e−κi t

)
∂κi

∂� j,k
,

∂ηi

∂Mj,k
= 2κi

ηi
(
1 − e−κi t

)
∂ϑi

∂Mj,k
+ 1 − (1 + κi t)e−κi t

1 − e−κi t
ϑi

∂κi

∂Mj,k
,

∂ηi

∂Q j,k
= 2κi

ηi
(
1 − e−κi t

)
∂ϑi

∂Q j,k
,

∂θi

∂� j,k
= βηi

4κ2
i

(
2κi

∂ηi

∂� j,k
− ηi

∂κi

∂� j,k

)
,

∂θi

∂β
= η2i

4κi
,
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∂θi

∂Mj,k
= βηi

4κ2
i

(
2κi

∂ηi

∂Mj,k
− ηi

∂κi

∂Mj,k

)
,

∂θi

∂Q j,k
= βηi

2κi

∂ηi

∂Q j,k
,

∂ρ1

∂Q1,1
= Q2,1(Q2,1r1 − Q1,1r2)

(Q2
1,1 + Q2

2,1)
3/2

,
∂ρ1

∂Q2,1
= Q1,1(Q1,1r2 − Q2,1r1)

(Q2
1,1 + Q2

2,1)
3/2

,

∂ρ2

∂Q1,2
= Q2,2(Q2,2r1 − Q1,2r2)

(Q2
1,2 + Q2

2,2)
3/2

,
∂ρ2

∂Q2,2
= Q1,2(Q1,2r2 − Q2,2r1)

(Q2
1,2 + Q2

2,2)
3/2

,

∂ρi

∂r j
= Q j,i√

Q2
1,i + Q2

2,i

.

The unspecified elements of J H−W A are equal to zero.
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