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Abstract—Providing accurate diagnosis of diseases generally
requires complex analyses of many clinical, biological and patho-
logical variables. In this context, solutions based on machine
learning techniques achieved relevant results in specific disease
detection and classification, and can hence provide significant
clinical decision support. However, such approaches suffer from
the lack of proper means for interpreting the choices made by
the models, especially in case of deep-learning ones.

In order to improve interpretability and explainability in the
process of making qualified decisions, we designed a system that
allows for a partial opening of this black box by means of proper
investigations on the rationale behind the decisions; this can
provide improved understandings into which pre-processing steps
are crucial for better performance.

We tested our approach over artificial neural networks trained
for automatic medical diagnosis based on high-dimensional gene
expression and clinical data. Our tool analyzed the internal
processes performed by the networks during the classification
tasks in order to identify the most important elements involved
in the training process that influence the network’s decisions.

We report the results of an experimental analysis aimed at
assessing the viability of the proposed approach.

Index Terms—GradCAM, Heatmap, Hot-spot map, Convolu-
tional Neural Networks

I. INTRODUCTION

Interpreting the decision-making processes of neural net-
works can be of great help at enhancing the diagnostic
capabilities and providing direct patient- and process-specific
support to diagnosis and disease classification. However, in-
terpretability and explainability represent critical points for
approaches based on deep learning models, that achieved great
results in disease classification. In this context, the definition
of proper models summarizing the mechanisms steering neural
networks decisions can be crucial for an effective examination
of the causes of the resulting choices.

In this context, we propose a novel method based on
heatmaps and hot-spot maps for analyzing the internal pro-

cesses performed by a network during the training for a
classification task; the aim is to identify the most important
elements that will influence the network’s decisions. In par-
ticular, we use gradient visualization techniques to produce a
coarse localization map highlighting the image regions most
likely to be referred to when taking the classification decision;
the identified areas are then removed from the images in order
to check whether the classification performance changes.

We evaluate the proposed approach over different “in-
stances”, such as gene expression or other clinical data. Gene
expression represents the amount of RNA produced in a cell
under different biological states and clinical data provide both
health-related information associated with patient care and
features related to disease that are relevant and helpful to
diagnosis classification, and even, early prediction process.
Both instances consist of a set of “attributes” characterizing
each patient. The attributes can be defined as: (1) proportion
of genes in each gene expression and (2) clinical information
related to treatment, pathology and patient characteristics.

We perform pre-processing operations (i.e., dimensionality
reduction) and generate a set of 2-D images representing the
instances of all patients that suffer from a specific pathology;
in particular, we generate heatmaps and hot-spot maps to
show features proportion level and provide spatial information
among each variable, respectively.

The herein proposed method is based on a hybrid approach
that relies on data visualization techniques and visual expla-
nations for classification via a model based on Convolutional
Neural Networks (CNNs); this lead to more transparent and
explainable result process achievements.

II. RELATED WORK

Several methods were proposed to perform automatic diag-
nosis based on gene expression or clinical data. For instance,
Support Vector Machines with Squared Loss (SVMSL) [1]
were applied to perform cancer classification. The 1-norm978-1-7281-5871-6/20/$31.00 ©2020 IEEE
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Fig. 1. Workflow of the proposed framework. Dimensionality reduction is performed on Gene Expression or Clinical Data. The reduced dataset is transformed
into images and diagnosis classification is performed using DenseNet 169. GradCAM and Guided GradCAM are generated during CNN training. In brackets
the manuscript section.

SVMSL is first used to select “useful” genes and then to
classify the resulting dataset. This method performs a very
fast gene selection compared with other methods, but the
classification performance is obtained using approximation
methods that could affect the overall performance. Rotation
Forest based-Genetic algorithms (GAs) were used to perform
breast cancer classification based on clinical data [2] featuring
several attributes such as “clump thickness”, “cell size”, “cell
shape”, etc. GA is employed as a feature reduction mechanism
to remove redundant data; the best feature subset is classified
via Rotation Forest techniques. The approach achieves an
accuracy mean value higher than 98%.

As for classification methods, deep-learning-based models
recently achieved promising results. Deep learning models,
such as Convolutional Neural Networks (CNN) [3], are proven
to be appropriate and effective when compared to conventional
methods. Interestingly, CNNs currently represent the most
widely used method for image processing; nevertheless, the
application of deep learning methods is not common in the
context of gene expression, due to the well-known “large p,
small n” problem [4], where p refers to the number of features
and n refers to the number of samples.

In the last year, understanding neural network decision-
making was a topic of research. Several approaches were
proposed to visualize the behavior of a CNN by sampling
image patches that maximize the activation of hidden units [5],
and by backpropagation to identify or generate salient im-
age features [6]. Other researchers were trying to solve this
problem by explaining neural network decisions by generating
informative heatmaps such as GradCAM [7], or through layer-
wise relevance propagation [8]. These methods present some
limitations; indeed, the generated heatmaps were qualitative
and not informative enough to specify which concepts have
been detected. An improvement was provided using semanti-
cally explanation from visual representation [9] to decompose
the evidence for a prediction for image classification into
semantically interpretable components, each with an identified
purpose, a heatmap, and a ranked contribution.

In this work, we propose a novel approach for analyzing
the internal processes and the decision performed by a neural

network during the training phase. Our approach relies on
data visualization techniques to represent gene expression
or clinical data of all patients that suffer from a specific
pathology. Data visualization represents an advantage w.r.t
the state-of-the-art methods as it is able to improve diagnosis
classification and, also, provides a better interpretability and
explainability of the rationale behind the decisions performed.

The remainder of the paper is structured as follows. In
Section III we provide a detailed description of our approach,
that has been assessed via a careful experimental activity,
reported in Section IV; we analyze and discuss results in
Section V, eventually drawing our conclusions in Section VI.

III. PROPOSED APPROACH

The herein proposed approach is illustrated in Fig. 1:
1) Data Reduction using Principal Component Analysis

(PCA), in order to reduce the dataset dimension;
2) Data Visualization for each patient, through:

• a heatmap: visualize proportion level of each attribute;
• a hot-spot map, based on Getis-Ord Gi∗, to visualize

spatial information level of each attribute;
3) Disease Classification using CNNs;
4) Visual Explanations using Gradient-weighted Class Acti-

vation Mapping (GradCAM) to indicate the discrimina-
tive image regions used by the CNN;

5) Verification of patients clusterization by survival analysis.

A. Data Reduction

PCA is used to reduce data from the high p-dimensional
variable space to a K-dimensional variable component space,
with less than the number of samples n. We selected a cut-
off value of 75% of explained variance by the remaining
component as it appeared to be the best compromise between
data readability and quality.

B. Data Visualizzation

For each patient, we created heatmaps and hot-spot maps
that are graphical representations of data where the individ-
ual values contained in a matrix are represented as colors.
Heatmaps are directly generated from quantitative differences
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Fig. 2. An example of GradCAM structure. Given an image, and a category (”Diagnosis c”) as input, we foward propagate the image through the model
to obtain the raw class scores before softmax. The gradients are set to zero for all classes except the desired class (Diagnosis c), which is set to 1. This
signal is then backpropagated to the rectified convolutional feature map (A) of interest, where we can compute the coarse GradCAM localization (blue
heatmap). Finally, we pointwise multiply the heatmap with guided backpropagation to get Guided GradCAM visualizations which are both high-resolution
and class-discriminative.

TABLE I
DATASET DESCRIPTION. FOR EACH DATASET, ON THE COLUMNS WE REPORT THE NUMBER OF PATIENTS, THE NUMBER OF ATTRIBUTES, THE NUMBER OF

ATTRIBUTES AFTER PCA, THE TYPOLOGY OF DATASET AND CLASSIFICATION.

DATASET

NUMBER OF NUMBER OF NUMBER OF ISTANCE CLASSIFICATION
PER PATIENTS ATTRIBUTES ATTRIBUTES

PER PATIENTS PER PATIENTS
AFTER PCA

BREAST CANCER 569 10 8 CLINICAL DATA BENIGN OR MALIGNANT MASS
MAMMOGRAPHY MASS 961 45 28 CLINICAL DATA BENIGN OR MALIGNANT MASS
PARKINSON DISEASE 197 754 52 CLINICAL DATA HEALTHY OR NOT
BREAST OR KIDNEY CANCER 635 9834 112 GENE EXPRESSION BREAST OR KIDNEY
LYMPHOMA CANCER 62 4026 102 GENE EXPRESSION HEALTHY OR NOT
BREAST CANCER (BC-TCGA) 590 17814 133 GENE EXPRESSION HEALTHY OR NOT
BREAST CANCER (GSE2034) 286 12634 127 GENE EXPRESSION HEALTHY OR NOT

in expression levels, by coding numerical values of different
types of data into colors. Hot-spot maps are generated using
the Getis-Ord Gi∗ statistics computed to preserve the spatial
information contained in the matrices; for example, the hotspot
show the highest concentration of genes by means of darker
colors. Getis-Ord Gi∗ statistic estimates the density distribu-
tion of features at the local level, and measures the degree of
spatial association in a whole dataset. The method evaluates
the degree to which each feature (i.e., gene) is surrounded by
features with similarly high or low values within a specified
geographical distance (neighborhood).

C. Classification
We classified the patients using DenseNet 169 [10]. This

network is made of dense blocks, where for each layer
the inputs are the feature maps of all the previous layers.
Networks can be more efficient to be trained if they have
shorter connections between layers close to the input and
than close to the output. The DenseNet architecture features
several advantages, since each layer has direct access to the
gradients from the loss function and the original input signal,

the flow of information and gradients, ensuring alleviation of
the vanishing gradient problem.

D. Visual Explanations

We used GradCAM to identify visual features in the input
able to explain result process achieves during the classification.
In particular, it uses the gradient information flowing into
the last convolutional layer of the CNN to assign importance
values to each neuron. As shown in Fig. 2, in order to
obtain the class-discriminative localization map (Lc

GradCAM ),
GradCAM computes the gradient yc (i.e. output score y for
class of interest c - instance to be predicted) w.r.t. feature maps
activation matrix Ak of a convolutional layer. It performs a
weighted combination of forward activation maps Ak, and is
followed by ReLU to obtain:

Lc
GradCAM = ReLU(

∑
k

ackA
k)

where ack is a value computed to express the ”importance” of
feature map Ak for a target class c (i.e. tumor).
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We combined GradCAM with existing pixel-space visu-
alizations to create a high-resolution class-discriminative vi-
sualization and generated a Guided GradCAM. GradCAM
localizes relevant regions on original image but it was not
able to highlight fine-grained details like pixel-space gradient
visualization. We computed Guided Backpropagation [11] that
visualizes gradients w.r.t. the image where negative gradients
are suppressed when backpropagating through ReLU layers.

E. Survival Analysis

According to the classification results, we grouped patients
of all datasets into two diagnostic groups. For each group we
computed the Kaplan-Meier [12] analysis in order to obtain
the overall survival using:

1) Images generated on original dataset;
2) Images generated after removing the highlighted regions

identified by GradCAM and Guided-GradCAM.
We compared the survival curves computed on 1 and 2 images
to show if there is a statistical difference after removing the
highlighted regions and then if the selected elements can be
used as the diagnosis markers. The probability of survival is
computed as:

P (t) = P (s1s2|s1)

where s1 is the probability of surviving after the first day and
s2 is the probability of surviving after the second day.

IV. EXPERIMENTAL PROTOCOL

A. Dataset description and training phase

For the experimental analysis we used these datasets:
• the publicly available dataset from the Gene Expres-

sion Omnibus (GEO)1, a database consisting of microar-
ray, next generation sequencing (NGS) and other high-
throughput data;

• the dataset from the UC Irvine Machine Learning Repos-
itory2, a database consisting of heterogeneous set of
features about different diseases and different categories
of DNA microarray;

• the dataset from The Cancer Genome Atlas (TCGA)3,
a publicly available database hosting many types of
data including genomic, epigenomic, transcriptomic, and
proteomic data.

All dataset used in our experiments are described in Table I.
Each dataset is converted into 2-D images according to Sec-
tion III-B; we split them into training (80%) and testing (20%)
sets; the 20% of the training set is used as validation set, in
order to monitor the training process and prevent overfitting.

All experiments are performed on a machine equipped
with a 12 x86 64 Intel(R) Core(TM) CPUs @3.50GHz,
running GNU/Linux Debian 7 and using CUDA compilation
tools, release 7.5, V 7.5.17 NVIDIA Corporation GM 204 on
GeForce GTX 970.

1https://www.ncbi.nlm.nih.gov/geo/
2https://archive.ics.uci.edu/ml/index.php
3https://www.cancer.gov/about-nci/organization/ccg/research/structural-

genomics/tcga

Fig. 3. Workflow of the test description. Each test is performed on heatmap
and hot-spot map. Blu arrows indicate network re-training using ”new” dataset
obtained by removing highlighted elements founded by visual explanations
technique.

B. Fine-tuning

For the training phase we performed hyperparameters op-
timization. DenseNet 169 was trained with both optimizers
Adam and SGD and for each optimizer 7 learning rate were
tried. The best performance is obtained with the following con-
figuration, trained for 150 epochs: Adam optimizer, learning
rate 10−5 and batch size 32. The configuration of each network
is obtained by hyperparameter tuning. We performed 10-fold
cross-validation in order to choose the parameter value that
gives the lowest cross-validation average error; experiments
were performed on the very same machine with the same
configuration of the other approaches.

C. Tests

Figure 3 lists the different approaches that we performed
during our experiments. For all the approaches we used
both heatmap and hot-spot map as input of CNN after the
application of data reduction and data visualization.

• Test A: Apply GradCAM to diagnosis on both heatmap
and hot-spot map using DenseNet 169.

• Test B: Perform diagnosis on a reduced dataset generated
by removing the elements corresponding to the high-
lighted ares identified by Test A.

• Test C: Apply Guided-GradCAM to the classification
performed by DenseNet, identify a set of the elements
corresponding to the highlighted ares and remove from
the original image input. Re-train on reduced dataset.

• Test D: Perform survival analysis and comparison among
survival curves obtained from Test A-Test B and Test C

D. Performance Metrics

We assessed the effectiveness of our approach using Recall,
as in this context, the most important thing is to minimize
False Negatives (i.e., disease is present but is not identified).

Recall is computed as (Rec = TruePositive
TruePositive+FalseNegative ).

It considers prediction accuracy among only actual positives
and explain how correct our prediction is among ill people.
We perform paired t-test [13] among heatmap and hot-spot
map in order to check whether the population distributions
are similar.
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TABLE II
VALIDATION RECALL (AND STANDARD DEVIATION) OF DENSENET 169 AFTER 10-FOLD CROSS-VALIDATION WITH THE DIFFERENT INPUTS, GRADCAM

AND GUIDED-GRADCAM APPLIED DURING THE TRAINING, AND DENSENET 169 PERFORMED ON A NEW ”REDUCED” DATASET OBTAINED BY
REMOVING THE HIGHLIGHTED ELEMENTS SELECTED BY GUIDED-GRADCAM.

DATASET
DENSENET

169
(TEST A)

DENSENET 169
ON REDUCED DATASET

(TEST B)

DENSENET 169
ON REDUCED DATASET

(TEST C)

H
E

A
T

M
A

P
S

BREAST CANCER
0.9889

(0.0109)
0.9454

(0.0126)
0.9389

(0.0114)

MAMMOGRAPHY MASS
0.8601

(0.0511)
0.8564

(0.0168)
0.8399

(0.0209)

PARKINSON DISEASE
0.9886

(0.0113)
0.9394

(0.0169)
0.9372

(0.0099)

BREAST OR KIDNEY
0.9068

(0.0360)
0.8914

(0.0136)
0.9012

(0.0301)

LYMPHOMA CANCER
0.9681

(0.0183)
0.9469

(0.0121)
0.9411

(0.0118)

BREAST CANCER (BC-TCGA) 0.9899
(0.0099)

0.9565
(0.0103)

0.9482
(0.0115)

BREAST CANCER (GSE2034) 0.9372
(0.0142)

0.8730
(0.0221)

0.8817
(0.0341)

H
O

T-
S

P
O

T
M

A
P

S

BREAST CANCER
0.9899

(0.0106)
0.9416

(0.0102)
0.9391

(0.0142)

MAMMOGRAPHY MASS
0.8991

(0.0211)
0.8514

(0.0141)
0.8402

(0.0123)

PARKINSON DISEASE
0.9949

(0.0051)
0.9414

(0.0149)
0.9399

(0.0181)

BREAST OR KIDNEY
0.9168

(0.0360)
0.8928

(0.0249)
0.9097

(0.0191)

LYMPHOMA CANCER
0.9881

(0.0203)
0.9589

(0.0151)
0.9549

(0.0147)

BREAST CANCER (BC-TCGA) 0.9983
(0.0034)

0.9299
(0.0241)

0.9378
(0.0206)

BREAST CANCER (GSE2034) 0.9345
(0.0204)

0.7000
(0.0371)

0.9091
(0.0141)

We also used log-rank test for comparing the survival
distributions of two groups. The statistic test z is:

z =
(O1 − E1)

2

E1
+

(O2 − E2)
2

E2

where E1 and E2 are the expected number of events in
each group while O1 and O2 are the total number of observed
events in each group. Log-rank tests were computed within a
level of significance of 5% [14].

V. RESULTS AND DISCUSSION

Table II reports classification results after 10-fold cross
validation for all dataset, using either heatmaps or Getis-Ord
Gi∗ hot-spot maps. Also it lists the validation results obtained
using GradCAM and Guided-GradCAM on original images
and images generated after removing the highlighted regions
founded by visual explanation technique.

The herein proposed approach achieves promisingly results
using both gene expression and clinical data. For instance,
taking into account Test A and gene expression data, the results
of DenseNet 169 trained on heatmap show the highest Recall
mean value on Breast Cancer (BC-TCGA) (i.e., Rec 0.9899);
among clinical datasets, instead, the highest Recall mean value
is obtained on Parkinson Disease (i.e., Rec 0.9886) and Breast
Cancer (i.e., Rec 0.9889). Furthermore, the evaluation of the
prognosis based on DenseNet 169 trained on hot-spot map
shows a general improvement of Recall. Heatmap and hot-spot
map have different population distribution. This means that
the spatial information generated by Getis-Ord Gi∗ statistic is

critical for providing knowledge and improving both precise
population information and classification accuracy.

Fig. 4. Example of the markers identification on a heatmap using GradCAM
and Guided-GradCAM. Elements highlighted in red for GradCAM and in
purple for Guided-GradCAM are considered key features in classification
process.

In Test B and Test C we selected and removed the 40% of
highlighted elements; this threshold appeared to be the best
compromise between data readability and quality. Figure 4
shows an example of the results. Both tests show a worsening
of Recall value; DenseNet 169 trained on new heatmaps
achieves on the 0.9454 and the 0.9354 of Recall after Test
B and Test C, respectively, w.r.t. 0.9889 obtained on the
original images. The similar worsening is shown using hot-
spot maps, indeed the accuracy does not exceed the 0.96 in
all the experiments. In general, a substantial decrease of Recall
is shown using both Heatmap and Hot-spot map; this suggests
that Test B and Test C are able to identify the important
elements involved in the training process and, consequently,
responsibility for this diminishment is due to images cutting
by which we removed the peculiar characteristic of the disease.
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Fig. 5. Plots of Kaplan-Meier product limit estimates of survival of a group
of patients (on the left), and after removing genes according the Test B (on
the right) computed on Breast Cancer (GSE2034) dataset.

TABLE III
LOG-RANK TEST COMPUTED ACCORDING BREAST CANCER (GSE2034)
DATASET BEFORE (I) AND AFTER Approach C (II) and after Approach D

(III) on survival probability (i.e Y axis) (right) and on survival time (i.e. X
axis) (left)

LOG-RANK OBSERVED CRITICAL VALUE P-VALUE
I 2.73 3.84 0.17
II 3.98 3.84 0.04
III 4.18 3.84 0.02

Figure 5 shows an example of survival graph computed
according to the Test A and Test B, on the left and on the
right, respectively.

Table III shows the comparison between log-rank test results
obtained from original dataset (I), the resulting dataset after
Test B (II) and after Test C (III). In particular, Test B and
Test C indicate a significant difference between the population
survival curves (p-value 0.0391 and p-value 0.0194 ); Test A,
instead, does not show a significant difference between the
two curves (p-value 0.1670).

VI. CONCLUSION

We presented a novel approach for analyzing the internal
processes performed by a neural network during the training
phase, with the aim of improving explainability in the process
of making qualified decisions; more in detail, we try to iden-
tify the most important regions that influence the network’s
decisions. We tested the proposed approach over DenseNet
169 trained for the task of automatic medical diagnosis based
on images representing high-dimensional gene expression and
clinical data. The use of images for representing data presents
two relevant advantages: first of all, it significantly eases
and improves data visualization; furthermore, it allows taking
advantage of effective techniques explicitly geared towards
image processing in order to perform classification tasks.

Starting from numerical “raw” data, we make use of PCA
to reduce the dimensions, getting rid of redundant or irrelevant
information and paving the way to a proper 2-D image-based
representation.

Experimental results show that not only our proposal is
comparable to current state-of-the-art methods, proving to be
effective and robust, but it is also able to identify specific
regions that are crucial in the neural network decision-making
process, thus improving explainability. Indeed, classification

accuracy is lower when highlighted regions are removed from
the input images; this suggests the importance of these areas
in disease classification and the possibility to consider the set
of elements identified as potential disease markers.

In general, as one might expect, dataset quality, along
with careful dimensionality reductions and feature selection
schemes, are of great importance for effective CNNs, and sub-
sequently for accurate disease predictions. Hence, the choice
of the most relevant and informative feature subset for training
a model is the basis of robust and competitive models.

In contexts where early and accurate medical diagnosis
of specific pathologies are essential, our method proves that
data visualization combined with machine learning techniques
can be used to analyze high-dimensional multivariate data
and automatically discover new bio-markers by interpreting
network decisions.

As future work is concerned, we plan to investigate misclas-
sification errors and build more robust classifiers with better
generalization.
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