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ON SOME RIGOROUS ASPECTS OF FRAGMENTED CONDENSATION

DANIELE DIMONTE, MARCO FALCONI, AND ALESSANDRO OLGIATI

Abstract. In this paper we discuss some aspects of finite fragmented condensation from a
mathematical perspective. Inspired by techniques of pseudodifferential calculus and semi-
classical analysis in Bosonic Quantum Field Theory, we propose a simple way of identifying
finite fragmentation, and we analyze the effects of pair interaction on finite fragmented
states. In particular, we focus on the persistence of finite fragmented condensation when
the gap between the degenerate ground state and the excited states of the corresponding
non-interacting system is very large.

1. Introduction

The phenomenon of fragmented Bose-Einstein condensation has attracted a lot of atten-

tion in recent years, both from an experimental and a theoretical point of view [see, e.g.,

MHUB06, Leg08, and references thereof contained for a detailed bibliography on fragmented

condensates]. The physical idea of fragmentation is that in some cases, e.g. due to some de-

generacy of the low-energy states, the condensed fraction of a bosonic system is distributed

among more than one single-particle state. In this paper we analyze two aspects of finite

fragmented condensation: one is the identification of a fragmented state in mathematical

terms, and the other is persistence of finite fragmentation under time evolution, for mean

field systems.

The easiest, and perhaps most widespread, mathematical definition of fragmentation is the

following [Leg08]: a system of N bosons with density matrix ̺N exhibits finite fragmented

condensation if there is a finite number bigger or equal than two of eigenvalues of the reduced

one-particle density matrix γ
(1)
N associated to ̺N that are of order N , the remaining ones

being of order one. If there is convergence, as N → ∞, of the p-particles reduced density

matrix γ
(p)
N in trace class or Hilbert-Schmidt norm, the above definition is equivalent to the

fact that the effective one-particle density matrix γ
(1)
∞ has a (finite) rank bigger or equal than

two [see LSSY05, for additional details on convergence of reduced density matrices and other

mathematical aspects of condensation]. However, despite its simplicity, such mathematical

definition of fragmentation is very broad, in the sense that it includes states that are not

fragmented in a physically meaningful way. In fact, there are statistical mixtures of simply

condensed states whose effective one-particle reduced density matrix has rank two or more

(we follow again [Leg08] in calling simple condensate a state whose reduced one-particle

density matrix has only one macroscopic eigenvalue). Such states represent the physical

situation of a system that is simply condensed (with probability one), but where there is

only statistical information on which one-particle state it is condensed into. More precisely,

the effective one-particle reduced density matrices of the aforementioned statistical mixtures

coincides exactly with the effective one-particle reduced density matrices of truly fragmented
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states. It is therefore desirable to give a different definition/characterization of finite frag-

mented condensation, able to distinguish truly fragmented states from statistical mixtures

of simply condensed states. Since the effective one-particle reduced density matrices may

coincide, it is necessary to consider properties of the state that involve two or more particles

as well. Based on the comparison of the effective behavior of temperature-zero mean field

fragmented states with the one of statistical mixtures with the same effective one-particle

reduced density matrix, we propose a simple characterization of finite fragmentation, that

distinguishes between fragmented condensation and statistical mixtures of simply condensed

states. A precise definition can be found in § 2, however the idea is roughly speaking that a

state exhibits fragmented condensation if the rank of γ
(1)
∞ is two or more, and the rank of γ

(p)
∞ ,

as a function of p, is not constant. Let us remark that in most cases it should be sufficient

to check that the rank of γ
(2)
∞ is different (usually higher) than the rank of γ

(1)
∞ , and it is not

necessary to consider at once all the reduced density matrices with an arbitrary number of

particles (the collection
{
γ
(p)
∞
}

p≥1
determines uniquely the mean-field configuration of the

system [see, e.g., AN11, LNR15, AFP16b], but it is often impractical or impossible to com-

pute, either analytically or numerically, all the reduced density matrices of a system with a

large number of particles).

Another interesting aspect of finite fragmented condensation is whether it persists under

the effect of interactions. It is well-known that simple condensation persists if the particles

are interacting among each other in a suitable way. For example, it has been rigorously proved

to persist for Bose gases (confined or not) with weak pair interactions, proportional to the

inverse of the number of particles (Hartree regime) [see, e.g., GV79a, GV79b, RS09, ESY10,

KP10, BPS16], and in dilute Bose gases with intense collisions (Gross-Pitaevskii regime)

[see, e.g., ESY10, Pic10, Pic15, BOS15, BS17]. For states exhibiting finite fragmented con-

densation, the situation is more complicated. In the Hartree regime, Alon, Streltsov, and

Cederbaum [ASC07, ASC08] formally derived an effective mean-field evolution for a frag-

mented condensate, imposing that fragmentation is persisting, with the same number of

one-particle states at any time, in the limit of a large number of particles N → ∞. This idea

seems close to the so-called Dirac-Frenkel principle used in mathematical physics and numer-

ical analysis [Lub08]. Unfortunately, the error made in imposing that fragmentation with the

same number of states holds at any time is in general not converging to zero when N → ∞,

as it can be proved applying a series of rigorous results on the mean-field effective evolution

in the Hartree regime, for generic many-body states [AN08, AN09, AN11, AN15, AFP16b].

In fact, from these results it follows that finite fragmentation is destroyed by interactions:

for almost all times the time-evolved effective one-particle reduced density matrix γ
(1)
∞ (t)

has infinite rank. Hence finite fragmented condensation could be rather difficult to detect

experimentally in systems where the inter-particle interactions play a role. Nonetheless, we

prove that finite fragmented condensation is persisting in interacting systems where there is

a very large energy gap between the degenerate ground states and the first excited states of

the corresponding non-interacting system. In this case, the effective mean-field evolution is

described by equations that are similar to the one introduced in the aforementioned papers

[ASC07, ASC08].

In the following, we restrict our analysis to states with simple and finite fragmented con-

densation at temperature zero (ultra-cold systems), and with weak inter-particle interactions
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(Hartree regime). Our results could be extended with suitable modifications to dilute gases

in the Gross-Pitaevskii regime. It would be interesting to study fragmented condensation

at finite inverse temperature (in the thermodynamic limit), but this would require different

mathematical techniques from the ones considered in this paper. We plan to address this

question in a future work. We introduce the degeneracy in the ground state of the system,

causing finite fragmented condensation, in the most natural way: the degeneracy is caused

by spin or pseudo-spin degrees of freedom, that do not affect the Hamiltonian.

The rest of the paper is organized as follows. The characterization of fragmentation that

we propose is described in § 2, and in § 3 we analyze the persistence of fragmentation for

interacting systems with a large energy gap. In Appendix A we briefly review semiclassical

analysis in QFT and its applications to the study of systems of non-relativistic bosons with a

very large number of particles. The tools introduced in this appendix are the mathematical

backbone of our description of fragmented condensation, and they could be useful to better

understand some results used in § 2 and 3. In Appendix B, we provide the mathematical

proofs of some important results of § 2 and 3.

2. Characterization of fragmented condensation

In this section we propose a characterization of finite fragmented condensation that is more

specialized than the one commonly adopted, with the advantage of being able to distinguish

truly fragmented states from statistical mixtures of simply condensed states.

The most common mathematical definition of finite fragmentation, à la Penrose-Onsager

[PO56], is the following [Leg08]:

Let γ
(1)
N be the one-particle reduced density matrix (1-RDM) of an N -bosons

system. Then the system exhibits finite fragmented condensation if there is

a finite number bigger or equal than two of eigenvalues of γ
(1)
N of order N ,

with the remaining ones being of order one.

It is always possible to take the limit N → ∞ of the 1-RDM trace-class operator in

some suitable topology (in particular, it is always possible to take the limit in the weak-*

topology); in the explicit cases considered below we have convergence in the relevant trace

norm topology, and this ensures that no mass is lost by the RDM in the limit procedure.

We denote the resulting effective 1-RDM by γ
(1)
∞ (and in general the effective p-RDM by

γ
(p)
∞ ). The advantage of the limit N → ∞ is that one can investigate simple and finite

fragmented condensation easily by looking at the rank of the effective p-RDMs γ
(p)
∞ : if the

rank is one there is simple condensation, if the rank is (finite and) two or more there is

(finite) fragmented condensation.

The above definition seems intuitive, and it indeed captures a property of fragmented

condensates: in fact, all fragmented condensates have two or more macroscopic eigenvalues in

the relative 1-RDM. The aforementioned property is, however, not sufficient to characterize

fragmented condensates: it is easy to write statistical mixtures of simply condensed states

whose 1-RDMs have two or more macroscopic eigenvalues, and such statistical mixtures

describe (albeit incompletely) systems that are simply condensed rather than fragmented.
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In addition, the effective 1-RDMs of statistical mixtures of simple condensates of the form

(1) ̺N,stat =

2s+1∑

k=1

fk(N)
N

∣
∣ϕk ⊗ · · · ⊗ ϕk
︸ ︷︷ ︸

N

〉〈
ϕk ⊗ · · · ⊗ ϕk
︸ ︷︷ ︸

N

∣
∣ ,

coincide with the effective 1-RDMs of fragmented condensates of the form

̺N,frag =
∣
∣ (ϕ1 ⊗ · · · ⊗ ϕ1
︸ ︷︷ ︸

f1(N)

) ∨ . . .∨(ϕ2s+1 ⊗ · · · ⊗ ϕ2s+1
︸ ︷︷ ︸

f2s+1(N)

)
〉

〈
(ϕ1 ⊗ · · · ⊗ ϕ1
︸ ︷︷ ︸

f1(N)

) ∨ . . . ∨ (ϕ2s+1 ⊗ · · · ⊗ ϕ2s+1
︸ ︷︷ ︸

f2s+1(N)

)
∣
∣ ,

(2)

where ∨ stands for the symmetric tensor product, and the ϕk, k = 1, . . . , 2s+1, are mutually

orthogonal one-particle states. Here the fk(N) ∈ N are such that
∑2s+1

k=1 fk(N) = N . The

limit numbers πk = limN→∞
fk(N)
N are: for the state ̺N,stat the macroscopic probabilities

of the state being simply condensed on the one-particle state ϕk; and for the state ̺N,frag

the macroscopic fractions of particles in the one-particle states ϕk, within the fragmented

condensate. One could think of ϕk, k = 1, . . . , 2s+1, as the 2s+1 degenerate ground states

of a one-particle free Hamiltonian describing a spin or pseudo-spin s boson. We study and

compare the p-RDMs of ̺N,stat and ̺N,frag in detail below. Let us remark that fragmented

states analogous to ̺N,frag have been considered in [RS16], where the authors prove that, for

a system of interacting bosons trapped by a suitably scaled double-well confining potential,

the purely factorized state does no longer describe the many-body ground state accurately.

There is in fact a transition to a regime in which energy is gained by localizing particles in

either of the two wells. It is expected that, in a suitable scaling regime of the double-well,

the ground state is well approximated by a state of the form ̺N,frag.

Since the 1-RDMs of ̺N,stat and ̺N,frag are equal, a definition of fragmentation that

includes ̺N,frag but not ̺N,stat should involve properties of the system correlating two or

more particles. Given a many-body density matrix ̺N , its limit N → ∞ may be interpreted

as a probability measure µ on the one particle Hilbert space H of the system (see Appendix A

for more details). In addition, the effective p-RDM γ
(p)
∞ associated to ̺N has the following

explicit mathematical form:

γ(p)∞ =

∫

H

∣
∣ u⊗ · · · ⊗ u
︸ ︷︷ ︸

p

〉〈
u⊗ · · · ⊗ u
︸ ︷︷ ︸

p

∣
∣dµ(u) .

By the Penrose-Onsager definition of condensation it follows that in order to have a simple

condensate, the measure µ should be concentrated either on a single point u0, or be a convex

combination of measures concentrated on single points, each one differing from the other

only by a phase. In fact, these are the only measures yielding

γ
(1)
∞,cond =

∣
∣u0

〉〈
u0
∣
∣ ,

for some one-particle wavefunction u0 ∈ H. Hence it follows that, for a simple condensate,

γ
(p)
∞,cond =

∣
∣ u0 ⊗ · · · ⊗ u0
︸ ︷︷ ︸

p

〉〈
u0 ⊗ · · · ⊗ u0
︸ ︷︷ ︸

p

∣
∣ .
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In addition, the measure ν associated to a statistical mixture of the form

ηN =

2s+1∑

k=1

πk(N)̺N,k

is

ν =
2s+1∑

k=1

πk(∞)µk ,

where πk(∞) = limN→∞ πk(N) and µk is the measure associated to ̺N,k. Therefore the

effective p-RDMs of statistical mixtures of simple condensates are of the form

γ
(p)
∞,stat =

2s+1∑

k=1

πk
∣
∣uk ⊗ · · · ⊗ uk
︸ ︷︷ ︸

p

〉〈
uk ⊗ · · · ⊗ uk
︸ ︷︷ ︸

p

∣
∣ ,

where the probabilities πk are such that
∑2s+1

k=1 πk = 1. From the above discussion, the

following proposition follows.

Proposition 2.1. The rank Rstat(p) of effective p-RDMs γ
(p)
∞,stat corresponding to statistical

mixtures of simple condensates is a constant function of p ≥ 1. In particular, we have that

for all p ≥ 1, Rstat(p) = Π, with

(3) Π = Card
({

k = 1, . . . , 2s + 1 ; πk 6= 0
})

≤ 2s + 1 .

In particular, the effective p-RDMs of the aforementioned mixture ̺N,stat are given by the

above formula with uk = ϕk, and πk = limN→∞
fk(N)
N :

γ
(p)
∞,stat =

2s+1∑

k=1

πk
∣
∣ϕk ⊗ · · · ⊗ ϕk
︸ ︷︷ ︸

p

〉〈
ϕk ⊗ · · · ⊗ ϕk
︸ ︷︷ ︸

p

∣
∣ .

Let us now turn our attention to the effective p-RDMs corresponding to the fragmented

density matrices ̺N,frag. The probability measure µfrag corresponding, in the limit N → ∞,

to ̺N,frag has the following form. Let P =
{

k = 1, . . . , 2s+ 1 ; πk 6= 0
}

be the set of indices

corresponding to non-zero πks and let, for any one particle wavefunction u ∈ H, δS
1

u be the

following convex combination (average) of delta measures

δS
1

u =
1

2π

∫ 2π

0
δeiθudθ ;

then

(4) µfrag =
⊗

k∈P
δS

1√
πkϕk

⊗ δ⊥0 ,

where δ⊥0 is the delta in zero acting on the orthogonal complement H⊥
1 of the linear span

H1 = spanC
{
ϕk , k ∈ P

}
.

Hence this measure is not a convex combination of delta measures but rather a product of

convex combinations of delta measures. Hence the associated p-RDMs

γ
(p)
∞,frag =

∫

H

∣
∣u⊗ · · · ⊗ u
︸ ︷︷ ︸

p

〉〈
u⊗ · · · ⊗ u
︸ ︷︷ ︸

p

∣
∣dµfrag(u)
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should differ from the ones of statistical mixtures of simple condensates such as ̺N,stat. The

explicit form of the p-RDMs is more complicated than for statistical mixtures, and it is given

in the following proposition. The corresponding proof can be found in Appendix B.1.

Proposition 2.2. Let ̺N,frag be defined by Eq. (2), and let γ
(p)
∞,frag, p ≥ 1, be the associated

effective p-RDMs. In addition, define for any α ≥ 1,

Fp,α :=
{

g ∈ N
α :

α∑

j=1

gj = p
}

, cp,g := p!
∏

j∈{1,...,2s+1}
gj 6=0

π
gj
j

gj !
.

Then,

γ
(p)
∞,frag =

∑

g∈Fp,2s+1

cp,g
∣
∣ (ϕ1 ⊗ · · · ⊗ ϕ1
︸ ︷︷ ︸

g1

) ∨ · · · ∨(ϕ2s+1 ⊗ · · · ⊗ ϕ2s+1
︸ ︷︷ ︸

g2s+1

)
〉

〈
(ϕ1 ⊗ · · · ⊗ ϕ1
︸ ︷︷ ︸

g1

) ∨ · · · ∨ (ϕ2s+1 ⊗ · · · ⊗ ϕ2s+1
︸ ︷︷ ︸

g2s+1

)
∣
∣ .

Corollary 2.3. γ
(1)
∞,frag = γ

(1)
∞,stat

Corollary 2.4. Let Rfrag(p) be the rank of γ
(p)
∞,frag as a function of p ≥ 1, and let Π be

defined by Eq. (3). Then

Rfrag(p) =

(
p+Π− 1

p

)

.

Hence even if the effective 1-RDMs of ̺N,stat and ̺N,frag coincide, and have both the same

rank Π (with 1 ≤ Π ≤ 2s + 1), the ≥2-RDMs behave quite differently in the two cases

for any Π > 1 (if Π = 1 both ̺N,stat and ̺N,frag are describing simple condensates in the

same one-particle state). One notable difference is that the rank function Rfrag(p) of the

fragmented state is a non-constant function of p ≥ 1, while as proved in Proposition 2.1

the rank function Rstat(p) of a statistical mixture of simple condensates is always a constant

function of p. In particular, Rfrag is a strictly increasing function (and thus its non-constancy

is already verified looking at p = 1 and p = 2). In our opinion, this feature provides a nice

characterization of finite fragmentation, and thus we propose the following modified definition

of fragmented condensation:

Let γ
(p)
N , p ≥ 1, be the p-RDMs of an N -bosons system. Then the system

exhibits finite fragmented condensation if the number of eigenvalues of order

N of γ
(p)
N is a non-constant function R(p) of p, with values in N, and R(1) ≥ 2.

Let us remark again that the above definition/characterization is reasonably easy to check

in concrete examples, and excludes statistical mixtures of simple condensates, since for such

states R(p) is constant. In addition, all the examples of physically relevant states with finite

fragmented condensation that we know of satisfy the above definition, including, to mention

a concrete example, the spin-one fragmented state corresponding to the LPB wavefunction

[see LPB98]
(
a∗0,1a

∗
0,−1 + a∗0,−1a

∗
0,1 − a∗0,0a

∗
0,0

)N
2 |vac〉 .

The LPB state is not of the type ̺N,frag previously considered, nonetheless the rank of

its effective 2-RDM is different from the rank of its 1-RDM. Therefore we believe that
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this definition characterizes finite fragmented condensation better than the usual Penrose-

Onsager-like definition, at the same time being only slightly more difficult to verify.

3. Persistence of finite fragmented condensation

In this section we study the behavior of (temperature-zero) finite fragmented condensation

under the action of two-body inter-particle interactions of mean-field type (Hartree regime).

Let us consider a many-body system of N bosons with (pseudo-) spin s, whose free one-

body energy operator has an energy gap ω between the (degenerate) ground state and the

first excited states. We also denote the (re-scaled) inter-particle interaction by V . The

Hamiltonian of the system is given by

(5) Hω,N :=

N∑

j=1

hω, j +
1

N

∑

j<k

V (xj − xk) ,

acting on the symmetric product space HN :=
∨N
j=1 L

2(Rd,C2s+1), s ∈ 1
2N r {0}. We

require the following mathematical assumptions on the one-particle operator hω, acting on

H1 = L2(Rd,C2s+1).

• (Self-adjointness) hω = hω ⊗ idC2s+1 , hω self-adjoint on L2(Rd,C);

• (Ground state energy) inf σ(hω) = 0;

• (Ground state) ∃ϕ ∈ L2(Rd,C),
{

ψ ∈ L2(Rd,C) , ‖ψ‖2 = 1, hωψ = 0
}

= spanC

{

ϕ
}

;

• (Gap condition) inf
(

σ(hω)r {0}
)

= ω ∈ R
+
r {0}.

The pair potential V ∈ L2
loc(R

d,C2s+1) is supposed to be Kato-small, with arbitrarily small

bound, as an operator, with respect to hω. More precisely, we require that, for every ε > 0,

there exists a constant Cε such that

(6) V 2 ≤ εh2ω + Cε .

From the above assumptions, it follows that Hω,N is self-adjoint on D
(
∑N

j=1 hω,j

)

, and

that hω has a 2s + 1-fold degenerate ground state, spanned by the orthonormal functions

ϕ1 =
(
ϕ, 0, . . . , 0

)
, · · · , ϕ2s+1 =

(
0, . . . , 0, ϕ

)
. The degeneracy is induced by the degrees of

freedom due to the particles’ (pseudo-) spin. Let us denote

(7) F1 := spanC

{

ϕ1, . . . , ϕ2s+1

}

⊂ H1 .

Then for any  = 1, . . . , 2s + 1, ψ ∈ F⊥
1 , ‖ψ‖H1

= 1:

〈ψ, hωψ〉H1 − 〈ϕk, hωϕk〉H1 ≥ ω ;

in other words, the one-particle Hamiltonian hω has also an energy gap of order ω. Given

an initial many-body configuration Ψ0 ∈ HN , the time-evolution is given by the Schrödinger

equation
{
i∂tΨ(t) = Hω,NΨ(t)

Ψ(0) = Ψ0

,

whose solution is Ψ(t) = e−itHω,NΨ0. Let us remark that our assumptions are fulfilled by a

one-particle hamiltonian with harmonic trap hω = −∆+ 1
4ω

2x2 − 3
2ω, and by the physically

relevant pair interaction with a local Coulomb singularity, i.e. V (x) ∼ |x|−1.



8 DANIELE DIMONTE, MARCO FALCONI, AND ALESSANDRO OLGIATI

At initial time, let us consider, as a fragmented condensate, a ground state of the non-

interacting system of the following type:

̺0 = ̺frag =
∣
∣ϕ

⊗f1(N)
1 ∨ · · · ∨ ϕ⊗f2s+1(N)

2s+1

〉〈
ϕ
⊗f1(N)
1 ∨ · · · ∨ ϕ⊗f2s+1(N)

2s+1

∣
∣ .

As we have already discussed in § 2, the N → ∞ counterpart of ̺0 is a probability measure

µ0 on the one-particle space H1. For all p ≥ 1,

(8) γ
(p)
∞,0 =

∫

H1

|ψ⊗p〉〈ψ⊗p| dµ0(ψ) .

The measure µ0 is a U(1)-invariant product of convex combinations of delta measures:

(9) µ0 =
⊗

k∈P
δS1√

πkϕk
⊗ δ⊥0 ,

see the discussion following Eq. (4) for additional details.

Now, suppose that we have prepared the system in the state ̺0, and then turn on the inter-

particle interaction, letting the system evolve for some time t. It has been proved in [AN15]

that for any potential V satisfying the assumptions above, the time-evolved interacting

effective p-RDMs, p ≥ 1, at time t are given by

(10) γ
(p)
∞,t =

∫

H1

|ψ(t)⊗p〉〈ψ(t)⊗p| dµ0(ψ) ,

where ψ(t) is the unique solution of the effective Hartree Cauchy problem

(11)

{
i∂tψ(t) = hωψ(t) +

(
V ∗ |ψ(t)|

)
ψ(t)

ψ(0) = ψ
.

In other words, the effective probability distribution of single-particle states is pushed forward

by the Hartree effective evolution. From this mathematical description it is quite easy to

see how the inter-particle interaction destroys finite fragmentation: the nonlinear Hartree

evolution destroys, as it pushes forward the effective probability distribution, the factorized

structure of the latter, and “spreads” it on the whole Hilbert space of available wavefunctions

(in doing this, the relative phases corresponding to the different convex combinations of deltas

in the product play a crucial role). As a result, the rank of γ
(p)
∞,t is, for almost all times t ∈ R,

infinite. This does not happen only in the case Π = 1, i.e. when the initial state is actually

a simple condensate: in this case the measure is a U(1)-invariant convex combination of

delta measures, and such structure is preserved by the U(1)-invariant nonlinear Hartree

evolution; simple condensation is therefore preserved. Let us remark that the error made in

approximating the evolved interacting N -particle reduced density matrices with γ
(p)
∞,t given

by Eq. (10) is of order N−1 for any time, and this is confirmed by theoretical and numerical

analysis [AFP16b].

Hence in general it is not possible to assume that a condensate fragmented into Π states

remains Π-fragmented under the action of interactions, unless Π = 1: the fragmented conden-

sate spreads to have macroscopic occupation on an infinity of one-particle states. Nonethe-

less, there are suitable situations in which finite fragmented condensation persists under the

action of inter-particle interactions, in the sense that the fraction of particles not occupying

a specified set of one-particle states is so small to be irrelevant at the macroscopic level. Our

aim is to discuss the case of a very large energy gap ω between the degenerate ground state

and the first excited states of the aforementioned system of bosons with (pseudo-) spin s is
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very large. Intuitively, the explanation is the following: it costs so much energy to transi-

tion from the (free) ground state, that inter-particle interactions are not strong enough to

cause such transition; thus the particles are effectively constrained to the 2s+1-dimensional

Hilbert space of degenerate ground states of hω, and this preserves the finite fragmentation

caused by spin degeneracy. We rigorously justify the above intuition, and provide an explicit

effective one-particle evolution on the reduced Hilbert space of degenerate ground states

that is valid in the limit of a very large energy gap ω → ∞. Such evolution is conveniently

described by the evolution of projections of the one-particle effective wavefunction on each

degenerate ground state.

For the sake of simplicity, let us focus on the evolution of the first marginal γ
(1)
∞,t(ω) (where

the dependence on ω is made explicit to clarify that we are studying the infinite gap limit).

By Eqs. (9) and (10), it follows that

(12) γ
(1)
∞,t(ω) =

1
(2π)Π

∫ 2π

0

∣
∣ψ

(ω)
{θı,ı∈P}(t)

〉〈
ψ
(ω)
{θı,ı∈P}(t)

∣
∣
∏

k∈P
dθk ,

where ψ
(ω)
{θı,ı∈P}(t) is the solution of Eq. (11) with initial condition

(13) ψ
(ω)
{θı,ı∈P}(0) =

∑

k∈P
eiθk

√
πkϕk .

Let us decompose now ψ
(ω)
{θı,ı∈P}(t) following the Hilbert space decomposition

H1 = F1 ⊕ F
⊥
1 ,

introduced in Eq. (7). Let us stress that here F1 is spanned by all the 2s + 1 degenerate

ground states. We obtain

(14) ψ
(ω)
{θı,ı∈P}(t) =

2s+1∑

k=1

κk,t(ω)ϕk + ψ⊥
t (ω) ;

where κk,t(ω) ∈ C for any k = 1, . . . , 2s + 1, and ψ⊥
t (ω) ∈ F⊥

1 . In the right hand side

we have omitted for convenience the dependence on {θı, ı ∈ P}, however the presence of

such phases plays a crucial role, and should be kept in mind. Finally, let us define for any

ı < l = 1, . . . , 2s the “averaged” transition amplitudes

Kı,t(ω) =
1

(2π)Π

∫ 2π

0
|κı,t(ω)|2

∏

k∈P
dθk

Kıℓ,t(ω) =
1

(2π)Π

∫ 2π

0
κı,t(ω)κℓ,t(ω)

∏

k∈P
dθk

,(15)

that thus does not depend on {θı, ı ∈ P} anymore. We also define their limits, which,

according to Theorem 3.1, are interpreted as matrix elements of the mean-field 1-RDM in

the limit of infinite gap:

Kı,t(∞) = lim
ω→∞

Kı,t(ω)

Kıℓ,t(∞) = lim
ω→∞

Kıℓ,t(ω)
.(16)
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Theorem 3.1.

γ
(1)
∞,t(∞) := lim

N,ω→∞
γ
(1)
N,t(ω) =

2s+1∑

ı=1

Kı,t(∞)|ϕı〉〈ϕı|+
2s+1∑

ı<ℓ=1

Kıℓ,t(∞)|ϕı〉〈ϕℓ|+Kıℓ,t(∞)|ϕℓ〉〈ϕı| .

Π ≤ Rank γ
(1)
∞,t(∞) ≤ 2s+ 1 for all t ∈ R, being equal to 2s + 1 for a.e. t .

Both limits are intended in the norm topology of the space of trace-class operators S1(H1),

and the order in which they are taken is indifferent. In addition, the evolution of each

component κ,t(∞) is described by the ordinary differential equation

(17)







i∂tκı,t(∞) =
〈

ϕı , V ∗
∣
∣
∣

2s+1∑

ℓ=1

κℓ,t(∞)ϕℓ

∣
∣
∣

2(
2s+1∑

ℓ′=1

κℓ′,t(∞)ϕℓ′
) 〉

κı,0(∞) =

{
eiθı

√
πı if ı ∈ P

0 if ı /∈ P

.

Remark. Theorem 3.1 can be extended without effort to any p-RDMs. In fact, we have

that
(
p+Π− 1

p

)

≤ Rank γ
(p)
∞,t(∞) ≤

(
p+ 2s

p

)

for all t ∈ R, being equal to

(
p+ 2s

p

)

for a.e. t .

The proof of Theorem 3.1 can be found in Appendix B.2. As we discussed previously,

Theorem 3.1 rigorously proves the persistence of finite fragmented condensation for inter-

acting systems in the Hartree regime, if the energy gap between the degenerate one-particle

ground-state of the non-interacting system causing fragmentation and the relative excited

states is very large. In that case, the system remains finitely fragmented on the space of

ground states: at almost every time there is a nonzero macroscopic fraction of particles occu-

pying all the available degenerate non-interacting ground states, provided that at the initial

time at least two of them had macroscopic occupation, and no macroscopic occupation of

the orthogonal space of excitations. The effective one-particle reduced density matrix of the

system has in fact non-zero action only on the 2s + 1-dimensional subspace F1 spanned by

the degenerate ground states, and its matrix elements can be characterized explicitly. They

are the average, over all possible phases, of the coefficients of projection on the ground states

of the solution of the Hartree equation on F1, corresponding to initial data oscillating with

the aforementioned phase coefficient. Such evolution shares some similarities with the one

given in [ASC07, ASC08].

Appendix A. Systems with many bosons and QFT semiclassical analysis

In order to better understand the main mathematical tools used throughout this paper, let

us recast the large N approximation as a semiclassical problem in quantum field theory, and

recall some of the main results obtained in the latter concerning semiclassical states. This

section may be of independent interest for the reader that is not familiar with semiclassical

techniques in bosonic field theories.

Let us start with a simple remark: it is always possible to see an N -particle bosonic

vector ψ ∈ HN =
∨N
j=1H, where H is a separable “one-boson” Hilbert space (in § 1 it

was L2(Rd,C2s+1)), as the only non-zero component of a vector Ψ = (0, . . . , 0, ψ, 0, . . . ) in

the symmetric Fock space Γs(H) =
⊕

n∈NHn. Therefore it is possible to interpret any N -

particle bosonic density matrix, with N fixed, as a density matrix with an arbitrary number



ON SOME RIGOROUS ASPECTS OF FRAGMENTED CONDENSATION 11

of identical particles and probability one of having exactly N particles. It is also possible

to interpret an N -body Hamiltonian HN (with pair interactions) as an Hamiltonian H on

the Fock space that agrees with HN on the N -particles sector and that commutes with the

number operator: let

HN =
N∑

j=1

hj +
1

N

∑

j<k

V (xj − xk)

be the self-adjoint Hamiltonian defined by Eq. (5) (where we have omitted the ω dependence

for simplicity); then the Hamiltonian H on Γs(H) defined by

H =

∫

h(x, y)a∗(x)a(y)dxdy +
1

2N

∫

V (x− y)a∗(x)a∗(y)a(x)a(y)dxdy ,

where h(x, y) is the integral kernel of the self-adjoint operator h, and a∗, a are the bosonic

creation and annihilation operator-valued distributions, is self-adjoint [see, e.g., GV70, Fal15]

and agrees with HN when restricted to HN (so in particular HΨ
∣
∣
HN

= HNψ). So for any

vector ψ ∈ HN , e
−itHNψ = e−itHΨ

∣
∣
HN

, the other components of the latter being zero. In

other words, we can study the evolution of an N -body system with pair interactions directly

in the Fock space setting (restricting to vectors whose only non-zero component is in the

N -particle sector).

Let us now show that the limit N → ∞ can be seen as a classical limit in quantum field

theory (whose limit “classical” field is the one-particle mean-field wavefunction). First of all,

let us define the semiclassical parameter ε = N−1. Therefore H depends on ε, as well as, in

general, the vector Ψ = Ψε. In order to make the semiclassical nature of the problem more

explicit, let us define new creation and annihilation operator-valued distributions a∗ε =
√
εa∗

and aε =
√
εa satisfying

[aε(x), a
∗
ε(y)] = εδ(x − y) .

If we rewrite H in terms of a∗ε and aε, we obtain H = 1
εHε, where

Hε =

∫

h(x, y)a∗ε(x)a
∗
ε(y)dxdy +

1

2

∫

V (x− y)a∗ε(x)a
∗
ε(y)aε(x)aε(y)dxdy

is the energy per particle (Hε = H
N ). Therefore, the evolution of the system is described

by e−i
t
ε
HεΨε, and the creation and annihilation operators corresponding to the canonical

field observables of the system satisfy “semiclassical” ε-dependent commutation relations.

In other words, the parameter ε for this (non-relativistic) bosonic quantum field theory is

perfectly analogous to ℏ in ordinary quantum mechanics, and the system admits therefore a

semiclassical description.

Semiclassical analysis for bosonic quantum field theories has been studied rigorously [see,

e.g., AN08, Fal13, AF14, AN15, Fal16, ABN17, AF17, Fal18, CF18, CFO18], and share some

similarities with the better known quantum mechanical version (that can in fact be recovered

as a special case). There are, however, some significant differences due to the fact that the

classical fields’ phase space is infinite-dimensional. Let us outline the basic ideas. Fields (both

at the classical and quantum level) are described mathematically as distributions, making

sense when smeared by suitably regular test functions. Given a real vector space (X, ς) of

test functions with a symplectic form (that due to its symplectic nature is sometimes called

the phase space), it is possible to construct the algebra of quantum observables Wε(X, ς)

satisfying ε-dependent canonical commutation relations (bosonic algebra of observables), and
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quantum states as continuous linear functionals of norm one on such algebra. In the limit

ε → 0, one would like to interpret observables and states as classical objects, i.e. functions

and states of classical fields. In particular, since the algebra of bosonic observables can be

represented in the symmetric Fock space Γs(H) whenever (X, ς) originates from a complex

pre-Hilbert space H (X = HR and ς = Im〈 · , · 〉H) such that H = H, one would like to have

at least such a description for polynomial field observables and density matrices in the Fock

space.

For quantum states, it is actually possible to give a very general semiclassical description.

Given a state ωε on Wε(X, ς), there is always a (generalized) subsequence ωεβ that converges

to some classical state M (in a suitable topology) that is a cylindrical probability on the

space of classical fields X∗
X , the latter being the algebraic dual of X endowed with the weak

σ(X∗,X) topology. M is called the cylindrical Wigner measure associated to the state ωεβ ,

and the subsequence extraction is a mathematical requirement that does not have physical

relevance. Such description agrees with the physical intuition: the classical counterpart of

a quantum state is a “probability measure” in a space of classical fields acting on the test

functions as (non-regular) distributions. In addition it can be shown that this description is

unique up to isomorphisms, and “optimal” in the sense that given any cylindrical probability

on X∗
X there is at least one quantum state that converges to it semiclassically. There are

two features that are not completely satisfactory: M is in general only a cylindrical prob-

ability and not a true probability measure [for an introduction to cylindrical probabilities,

see Sch73, VTC87], and the classical fields in X∗
X can be very singular, hence difficult to

study mathematically (the space of classical fields is in some sense “too large”). Cylindrical

measures are physically relevant, since they are the classical counterpart of suitable ther-

modynamic states (e.g. suitable grand-canonical Gibbs states). The space of classical fields

is too large because the quantum states considered in this abstract setting are too general,

and one should restrict to physical quantum states. It is possible to formulate sufficient

conditions on states such that all the corresponding Wigner measures are concentrated as

true probability measures in more reasonable spaces of classical fields. In our non-relativistic

many bosons system, it can be proved that all Wigner measures corresponding, in the limit

N → ∞, to N -particle density matrices are Radon probability measures, concentrated on the

unit ball of H, that are invariant under U(1) symmetry transformations on H. The situation

may be more complicated in relativistic quantum mechanics since the number of particles

is not conserved by the evolution. Let us remark that the action of linear symplectic trans-

formations on test functions induces on one hand a quantum transformation on states (and

also observables), and on the other hand a classical transformation on classical fields. The

transformed quantum state converges semiclassically to the corresponding Wigner measure

pushed forward by the classical fields’ transformation.

The semiclassical analysis of quantum field observables is more difficult in general, but it

is possible for a wide class of observables in the Fock representation that are polynomial in

the fields, and normal ordered. For example, the second quantized operator Hε can be seen

as the Wick quantization of the following densely defined symbol on H:

E(u) =
∫

h(x, y)ū(x)u(y)dxdy +
1

2

∫

V (x− y)|u(x)|2|u(y)|2dxdy ,
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defined and real-valued for any u ∈ D(h) ⊆ H. The function u is the classical counterpart

of the annihilation operator-valued distribution, and it is interpreted as the one-particle

effective wavefunction in the mean-field limit. It can be proved that for any density matrix

̺ε such that Tr(̺εHε) ≤ C, the associated Wigner measure µ is concentrated on D(h), and

lim
ε→0

Tr(̺εHε) =

∫

D(h)
E(u)dµ(u) .

In particular, it follows that the expectation on an N -body state of the energy per-particle

converges as N → ∞ to the average of the effective one-particle energy with respect to the

mean-field probability distribution of one-particle wavefunctions. A similar description can

be given for other physically relevant observables of the system. The p-RDM γ
(p)
ε , associated

to a density matrix ̺ε converging to the Wigner measure µ, also converges:

lim
ε→0

γ(p)ε =

∫

H

∣
∣ u⊗ · · · ⊗ u
︸ ︷︷ ︸

p

〉〈
u⊗ · · · ⊗ u
︸ ︷︷ ︸

p

∣
∣dµ(u) ,

and the convergence always holds in the weak-* topology of trace class operators, and for

suitable density matrices also in trace norm topology.

It is also possible to characterize explicitly the effective evolution of the mean-field particle

in the limit. Let ̺ε(t) = e−i
t
ε
Hε̺εe

i t
ε
Hε be the many-body evolution of the density matrix ̺ε.

Then, given an observable Aε that is the Wick quantization of a (suitably nice) polynomial

symbol A(u), we get

lim
ε→0

Tr(̺ε(t)Aε) =

∫

H
A(ut)dµ(u) ,

where ut is the solution of the Hartree equation i∂tut = hut + V ∗ |ut|2ut with initial da-

tum u0 = u. In other words, the mean-field counterpart of an evolved N -body state is a

probability pushed forward by the nonlinear Hartree flow governing the effective evolution.

Let us conclude this section remarking that it is possible to compute explicitly the Wigner

measure, for physically relevant quantum states. This is done with the aid of the “non-

commutative Fourier transform” of a state, i.e. testing the convergence with Weyl operators

(exponential of the field smeared on test functions). Such average converges to the Fourier

transform of the Wigner measure, that identifies it uniquely. For example, an N -particle

density matrix of the form
∣
∣u⊗N

〉〈
u⊗N

∣
∣ converges to the measure

∫ 2π
0 δ(z − eiθu)dθ2π (that is

U(1)-invariant as expected), while the squeezed coherent state Cε(u) of minimal uncertainty

converges to the delta measure δ(z − u) (that is not U(1) invariant since the coherent state

has non-zero components on any fixed-particle sector of the Fock space). The Wigner mea-

sures corresponding to fragmented density matrices have already been introduced in § 2. For

other explicit examples, refer, e.g., to [AN08, AFP16a].

Appendix B. Mathematical proofs

In this appendix we collect the mathematical proofs of the results discussed in § 2 and 3.

B.1. Proof of Proposition 2.2. To prove Proposition 2.2 it is important to better under-

stand the combinatorial factors appearing in ̺N,frag and γ
(p)
∞,frag. Recall that the wavefunction
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ϕ
⊗f1(N)
1 ∨ · · · ∨ ϕ⊗f2s+1(N)

2s+1 is defined as follows:

ϕ
⊗f1(N)
1 ∨ · · · ∨ ϕ⊗f2s+1(N)

2s+1 (x1, . . . xN ) : = Cf(N),N

∑

σ∈SN

N∏

n=1

2s+1∑

j=1

χFj
(n)ϕj(xσ(n))

= Cf(N),N

∑

σ∈SN

N∏

n=1

2s+1∑

j=1

χσ(Fj)(n)ϕj(xn)

(18)

with Cf,N :=
(
N !
∏2s+1
j=1 fj!

)− 1
2 , and Fj :=

(∑j−1
l=1 fl(N),

∑j
l=1 fl(N)

]
∩ N for any j ∈

{
1, . . . , 2s+ 1

}
. It follows from the orthogonality of the vectors ϕj that cancellations occur

in the partial trace of ̺N,frag; nonetheless the number of vectors ϕj is the same on each side

of the projection. More precisely,

(19)

[TrN−p̺N,frag] (x1, . . . , xp; y1, . . . , yp) = C2
f(N),N

∑

σ,τ∈SN





p
∏

n=1

2s+1∑

j=1

χσ(Fj)∩{1,...,k}(n)ϕj(xn)





·





p
∏

ν=1

2s+1∑

γ=1

χτ(Fγ)∩{1,...,k}(ν)ϕγ(yν)





(
N∏

m=k+1

2s+1∑

l=1

χσ(Fl)∩τ(Fl)∩{k+1,...,N}(m)

)

.

The last term in the product naturally translate on a condition on the family of possible

permutations that we can choose from. Let us identify, for any permutation σ ∈ SN , the

set I[σ] = σ−1
({

1, . . . , p
})

. The permutation σ can be seen as a permutation from I[σ] to

p elements, and another from the complement of I[σ] to (the other) N − p elements. This

idea can be carried further, and it is easy to realize that every permutation σ ∈ SN can be

thought of as a triple
(
σ1, σ2, I

)
with σ1 ∈ Sp, σ2 ∈ SN−p and I ⊆

{
1, . . . , N

}
with #I = p.

Now it is important to understand how the choice of k particles affects the total distribu-

tion of particles. In this sense, one should first notice that f(N) (as a frequency distribution)

is identified uniquely by the partition of connected subsets F =
{
Fj , 1 ≤ j ≤ 2s+1

}
. Both

the family F ∩ I[σ] and F ∩
({

1, . . . , N
}
r I[σ]

)
are partitions of connected subsets, respec-

tively of I[σ] and of its complement. To these two families we can now associate two different

frequency distributions g and h, respectively in the sets FN
p,2s+1 and FN

N−p,2s+1, where

(20) FN
p,α :=

{

g : {1, . . . , α} → N : gj ≤ fj(N),
α∑

j=1

gj = k

}

.

Denote F g := F ∩ I[σ], and F h := F ∩
({

1, . . . , N
}
r I[σ]

)
. These two families of sets (and

the corresponding distributions g and h) are identified, in a non-unique fashion, by the set

I[σ]. It is hence possible to rewrite Eq. (19) as

(21) [TrN−p̺N,frag] (x1, . . . , xp; y1, . . . , yp) =

∑

σ1,τ1∈Sp, σ2,τ2∈SN−p

I,J⊆
{
1,...,N

}
,#I=#J=k

σ2
(
F

h(I)
l

)
=τ2
(
F

h(J)
l

)
,1≤l≤2s+1

C2
f(N),N

(
p
∏

n=1

2s+1∑

l=1

χ
σ1(F

g(I)
l

)
(n)ϕl(xn)

)



p
∏

ν=1

2s+1∑

γ=1

χ
τ1(F

g(J)
γ )

(ν)ϕγ(yν)



 .
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To get rid of σ2 and τ2 it is useful to compute the number of permutations that respect

the constraint in the sum, that is

(22) #
{

σ2, τ2 ∈ SN−p : σ2
(

F
h(I)
l

)

= σ2

(

F
h(J)
l

)

, 1 ≤ l ≤ 2s + 1
}

=

{

(N − p)!
∏2s+1
l=1 [h(I)l]! ≡ C−2

h(I),N−p if g(I) = g(J);

0 else.

Moreover, since the terms of the summation do not depend directly on I and J , we would

like to substitute them with the possible choices of g. To do so, it is necessary to understand

how many choices of I correspond to the same distribution function g. Equivalently, we

should know in how many ways it is possible to choose gj elements in fj(N). Clearly, the

answer is given by a binomial coefficient. Therefore, it follows that

[TrN−p̺N,frag] (x1, . . . , xp; y1, . . . , yp) =

∑

σ,τ∈Sk

g∈FN
p,2s+1

C2
f(N),N

C2
f(N)−g,N−p





2s+1∏

j=1

(
fj(N)

gj

)




2(
p
∏

n=1

2s+1∑

l=1

χσ(F g
l
)(n)ϕl(xn)

)



p
∏

ν=1

2s+1∑

γ=1

χτ(F g
γ )(ν)ϕγ(yν)



 .

(23)

It is not difficult to see the operator corresponding to that kernel is a combination of

projectors:

(24)

TrN−p̺N,frag =
∑

g∈FN
p,2s+1

(
N

k

)−1




2s+1∏

j=1

(
fj(N)

gj

)



∣
∣ϕ⊗g1

1 ∨· · ·∨ϕ⊗g2s+1

2s+1

〉〈
ϕ⊗g1
1 ∨· · ·∨ϕ⊗g2s+1

2s+1

∣
∣ .

To compute the limit N → ∞ it is convenient to calculate the limit of each coefficient

in the sum. Recall that fj = πjN + o(N). In particular this implies that for any strictly

positive integer λ smaller than fj, the binomial coefficient
(fj
λ

)
= 1

λ!N
λ
(
πλj + o(1)

)
. Hence

we get

lim
N→+∞

(
N

k

)−1 2s+1∏

j=1

(
fj(N)

gj

)

= lim
N→+∞

(
N

k

)−1 ∏

j∈{1,...,2s+1}
j: gj 6=0

(
fj(N)

gj

)

= k!
∏

j∈{1,...,2s+1}
j: gj 6=0

π
gj
j

gj !
.

(25)

From Eq. (25) it follows that

γ
(p)
∞,frag : = w∗− lim

N→∞
TrN−p ̺N,frag

=
∑

g∈Fp,2s+1

k!







∏

j∈{1,...,2s+1}
j: gj 6=0

π
gj
j

gj !







∣
∣ϕ⊗g1

1 ∨ · · · ∨ ϕ⊗g2s+1

2s+1

〉〈
ϕ⊗g1
1 ∨ · · · ∨ ϕ⊗g2s+1

2s+1

∣
∣ .

(26)

The rank of such density matrix is the following:

(27) Rank γ
(p)
∞,frag = #

{

g ∈ Fp : πj = 0 ⇒ gj = 0, 1 ≤ j ≤ s
}

=

(
p+Π− 1

p

)

.

B.2. Proof of Theorem 3.1. We prove Theorem 3.1 in two steps. Firstly, in

Appendix B.2.1 we prove the desired limit taking before N → ∞, and then ω → ∞.
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Then in Appendix B.2.2 we take the limits in the reverse order ω → ∞ and N → ∞,

obtaining the same result.

B.2.1. The limit N → ∞, ω → ∞. We consider directly the effective problem, where the

limit N → ∞ has already been performed [see AN15, AFP16b, for a detailed discussion of

the limit N → ∞ for fragmented and more general states]. We prove that, at every time

t ≥ 0, the component of ψ
(ω)
{θı,ı∈P}(t) that is orthogonal to all the ϕk is L2-small whenever

ω is big. Then, we show that the coefficients {κı,t(ω)} converge to the solution {κı,t(∞)}
of (17) (the existence and uniqueness of solutions to this system of ODE does not present

difficulties). The above implies that ψ
(ω)
{θı,ı∈P}(t) has a limit for every θı ∈ [0, 2π] and for every

t ≥ 0, as ω becomes large. Then we show how this implies the convergence of the 1-RDM.

This concludes the proof of Theorem 3.1 if the limits are taken in the order N → ∞, and

then ω → ∞. The converse order is considered in the next section.

The first step is to prove the following proposition.

Proposition B.1. Consider the decomposition

ψ
(ω)
{θı,ı∈P}(t) =

2s+1∑

k=1

κk,t(ω)ϕk + ψ⊥
t (ω)

of the solution to the Hartree equation (11) with initial datum

ψ
(ω)
{θı,ı∈P}(0) =

∑

k∈P
eiθk

√
πkϕk .

Then there exists C > 0 such that for every θı ∈ [0, 2π], ı ∈ P ,

(28) ‖ψ⊥
t (ω)‖2 ≤ C

ω1/2
.

In particular,

(29) lim
ω→∞

‖ψ⊥
t (ω)‖2 = 0 .

Proof. The Hartree energy

(30) E [ψ] = 〈ψ, hωψ〉+ 〈ψ, V ∗ |ψ|2ψ〉

is conserved along the Hamiltonian flow of (11). It is then sufficient to show that E [ψ(ω)(t)]

controls the norm ‖ψ⊥
t (ω)‖2.

By the relative boundedness assumption on V , i.e. V (x−y) ≤ εhx+Cε, for every ψ ∈ H1

with ‖ψ‖ = 1 we have

(31)
∣
∣〈ψ, V ∗ |ψ|2ψ〉

∣
∣ ≤ 〈ψ ⊗ ψ,

[
εhω,x + Cε

]
ψ ⊗ ψ〉 ≤ ε〈ψ, hωψ〉+ Cε ,

for every ε > 0. This immediately implies

(1− ε)〈ψ, hωψ〉 ≤ E [ψ] + Cε .

Now since E [ψ(ω)
{θı,ı∈P}(t)] = E [ψ(ω)

{θı,ı∈P}(0)], we deduce that

(32) (1− ε)〈ψ(ω)
{θı,ı∈P}(t), hωψ

(ω)
{θı,ı∈P}(t)〉 ≤ E [ψ(ω)

{θı,ı∈P}(0)] +Cε .

Moreover, by the hypotheses on hω we have

(33) 〈ψ(ω)
{θı,ı∈P}(t), hωψ

(ω)
{θı,ı∈P}(t)〉 ≥ ω‖ψ⊥

t (ω)‖22 ,
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and, by comparing (32) and (33), we deduce that for any 0 < ε < 1,

(34) ‖ψ⊥
t (ω)‖22 ≤

E [ψ(ω)
{θı,ı∈P}(0)] + Cε

(1− ε)ω
.

This concludes the proof, since by (31) we have that

∣
∣E [ψ(ω)

{θı,ı∈P}(0)]
∣
∣ =

∣
∣〈ψ(ω)

{θı,ı∈P}(0), V ∗ |ψ(ω)
{θı,ı∈P}(0)|

2ψ
(ω)
{θı,ı∈P}(0)〉

∣
∣

is bounded by a constant independent of ω. ⊣

The next step is to show that κı,t(ω) converges to κı,t(∞).

Proposition B.2. For every 1 ≤ ı ≤ 2s+ 1 and for every t ≥ 0 we have

(35) |κı,t(ω)− κı,t(∞)|2 ≤ 1

ω
eC|t| ,

for some positive C, independent on t or ω.

Proof. By direct computation one finds that the coefficients {κı,t(ω)} satisfy the system of

ODE

(36)







i∂tκı,t(ω) =

〈

ϕı , V ∗
∣
∣ψ

(ω)
{θı,ı∈P}(t)

∣
∣2
(
ψ
(ω)
{θı,ı∈P}(t)

)
〉

κı,0(ω) =

{
eiθı

√
πı if ı ∈ P

0 if ı /∈ P

.

Let us compute

∂t
∣
∣κı,t(ω)− κı,t(∞)

∣
∣2 = ℑ

[
(
κı,t(ω)− κı,t(∞)

)
(〈

ϕı , V ∗
∣
∣ψ

(ω)
{θı,ı∈P}(t)

∣
∣2
(
ψ
(ω)
{θı,ı∈P}(t)

)
〉

−
〈

ϕı , V ∗
∣
∣
∣
∣

2s+1∑

ℓ=1

κℓ,t(∞)ϕℓ

∣
∣
∣
∣

2(2s+1∑

ℓ′=1

κℓ′,t(∞)ϕℓ′

) 〉)]

= ℑ
[
(
κı,t(ω)− κı,t(∞)

)
〈

ϕı , V ∗
∣
∣ψ

(ω)
{θı,ı∈P}(t)

∣
∣2
(

ψ
(ω)
{θı,ı∈P}(t)−

2s+1∑

ℓ′=1

κℓ′,t(∞)ϕℓ′

) 〉]

+ℑ
[
(
κı,t(ω)− κı,t(∞)

)
〈

ϕı , V ∗
( ∣
∣
∣
∣

2s+1∑

ℓ=1

κℓ,t(∞)ϕℓ

∣
∣
∣
∣

2

−
∣
∣ψ

(ω)
{θı,ı∈P}(t)

∣
∣2
)(2s+1∑

ℓ′=1

κℓ′,t(∞)ϕℓ′

) 〉]

=: Iı + IIı .

We treat the two terms separately.

|Iı| ≤
∣
∣
∣κı,t(ω)− κı,t(∞)

∣
∣
∣

∥
∥
∥
∥
V ∗

∣
∣ψ

(ω)
{θı,ı∈P}(t)

∣
∣2ϕı

∥
∥
∥
∥
2

∥
∥
∥
∥
ψ
(ω)
{θı,ı∈P}(t)−

2s+1∑

ℓ′=1

κℓ′,t(∞)ϕℓ′

∥
∥
∥
∥
2

.

By the assumptions on V one finds
∥
∥
∥
∥
V ∗

∣
∣ψ

(ω)
{θı,ı∈P}(t)

∣
∣2ϕı

∥
∥
∥
∥
2

≤ ε〈ψ(ω)
{θı,ı∈P}(t), hωψ

(ω)
{θı,ı∈P}(t)〉+ Cε ≤ C ,

for some constant C that does not depend on ω. Moreover,

ψ
(ω)
{θı,ı∈P}(t)−

2s+1∑

ℓ=1

κℓ,t(∞)ϕℓ =

2s+1∑

ℓ=1

(
κℓ,t(ω)− κℓ,t(∞)

)
ϕℓ + ψ⊥

t (ω).
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Hence,

|Iı| ≤ C
∣
∣
∣κı,t(ω)− κı,t(∞)

∣
∣
∣

[ 2s+1∑

ℓ′=1

∣
∣
∣κℓ′,t(ω)− κℓ′,t(∞)

∣
∣
∣ + ‖ψ⊥

t (ω)‖2
]

≤ C
∣
∣
∣κı,t(ω)− κı,t(∞)

∣
∣
∣

[ 2s+1∑

ℓ′=1

∣
∣
∣κℓ′,t(ω)− κℓ′,t(∞)

∣
∣
∣ +

C

ω1/2

]

,

(37)

having used Proposition B.1 in the last inequality.

The estimate of IIı is analogous, and we get

|IIı| ≤ C
∣
∣
∣κı,t(ω)− κı,t(∞)

∣
∣
∣

[ 2s+1∑

ℓ=1

∣
∣
∣κℓ,t(ω)− κℓ,t(∞)

∣
∣
∣+

C

ω1/2

]

.

Denoting A(t) :=
∑2s+1

k=1 |κk,t(ω)− κk,t(∞)
∣
∣2, we have thus

Ȧ(t) ≤ C
(
A(t) + ω−1

)
,

that yields, by Grönwall’s inequality,

(38) A(t) ≤ 1

ω
eCt ,

since A(0) = 0. ⊣

We are now able to conclude the proof of Theorem 3.1 for the limits taken in the order

N → ∞, ω → ∞. Recall that, from (12),

γ
(1)
∞,t(ω) =

1
(2π)Π

∫ 2π

0

∣
∣ψ

(ω)
{θı,ı∈P}(t)

〉〈
ψ
(ω)
{θı,ı∈P}(t)

∣
∣
∏

k∈P
dθk .

We will show that the difference

(39) D(ω, t) := γ
(1)
∞,t(ω)−

2s+1∑

i=1

Kı,t(∞)|ϕı〉〈ϕı| −
2s+1∑

ı<ℓ=1

Kıℓ,t(∞)|ϕı〉〈ϕℓ| −Kıℓ,t(∞)|ϕℓ〉〈ϕı|

converges to zero in trace norm, as ω → ∞. This will prove the claim. We use the identity

2s+1∑

ı=1

Kı,t(∞)|ϕı〉〈ϕı|+
2s+1∑

ı<ℓ=1

Kıℓ,t(∞)|ϕı〉〈ϕℓ|+Kıℓ,t(∞)|ϕℓ〉〈ϕı|

=
1

(2π)Π

∫ 2π

0

∣
∣

2s+1∑

ℓ=1

κℓ,t(∞)ϕℓ
〉〈

2s+1∑

ℓ′=1

κℓ′,t(∞)ϕℓ′
∣
∣
∏

k∈P
dθk .

Hence, it is possible to write

‖D(ω, t)‖S1 =

∥
∥
∥
∥

1
(2π)Π

∫ 2π

0

[ ∣
∣ψ

(ω)
{θı,ı∈P}(t)

〉〈
ψ
(ω)
{θı,ı∈P}(t)

∣
∣−
∣
∣

2s+1∑

ℓ=1

κℓ,t(∞)ϕℓ
〉〈

2s+1∑

ℓ′=1

κℓ′,t(∞)ϕℓ′
∣
∣

] ∏

k∈P
dθk

∥
∥
∥
∥
S1

≤ 1
(2π)Π

∫ 2π

0

∥
∥
∥
∥

∣
∣ψ

(ω)
{θı,ı∈P}(t)

〉〈
ψ
(ω)
{θı,ı∈P}(t)

∣
∣−
∣
∣

2s+1∑

ℓ=1

κℓ,t(∞)ϕ
〉〈

2s+1∑

ℓ′=1

κℓ′,t(∞)ϕℓ′
∣
∣

∥
∥
∥
∥
S1

∏

k∈P
dθk

≤ 2
(2π)Π

∫ 2π

0

∥
∥
∥
∥
ψ
(ω)
{θı,ı∈P}(t)−

2s+1∑

ℓ=1

κℓ,t(∞)ϕℓ

∥
∥
∥
∥
2

∏

k∈P
dθk ;

in the last inequality we have used that ‖pψ1 − pψ2‖S1 ≤ 2‖ψ1−ψ2‖L2 , since pψi
is the rank-

one projection onto the linear span of ψi, and ‖ψi‖2 = 1 for i = 1, 2. By Propositions B.1
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and B.2,
∥
∥
∥
∥
ψ
(ω)
{θı,ı∈P}(t)−

2s+1∑

ℓ=1

κℓ,t(∞)ϕℓ

∥
∥
∥
∥
L2

≤ CeK|t|

ω1/2
,

where C,K > 0 and are independent of ω, t.

B.2.2. The limit ω → ∞, N → ∞. We define the orthogonal projection PN as the one whose

range is spanned by many-body vectors in which all particles occupy one of the ϕk, with

k = 1, . . . , 2s + 1. In other words,

(40) HPN
:= ranPN =

(
span{ϕ1, . . . , ϕ2s+1}

)∨N ∼= C
D ,

for a suitable D (that depends both on N and 2s+1). In the following, it should be kept in

mind that the vector Ψ(t) depends on ω, even if we may avoid to mention it explicitly. Let

us define

(41) Φω(t) := PNΨ(t) ≡ PNe
−itHω,NΨ0

and

(42) Φ∞(t) := e−itPNVNPNΨ0 ,

having used the notation

VN :=
1

N

∑

j<k

V (xj − xk) .

If no confusion arises, we may omit the subscript of PN . Firstly, we prove that Φ∞(t) is the

limit of Ψ(t) as ω → ∞. It is sufficient to prove that (1 − P )Ψ(t) vanishes in the norm of

HN as ω → ∞, and that Φω(t) converges to Φ∞(t).

Proposition B.3. Let Ψ(t) = e−itHω,NΨ0 , with

Ψ0 = ϕ
⊗f1(N)
1 ∨ · · · ∨ ϕ⊗f2s+1(N)

2s+1 .

Then, for any t ∈ R, there exists C > 0, independent of ω and t, such that

(43)
∥
∥
∥PΨ(t)−Ψ(t)

∥
∥
∥

2

HN

≤ CN

ω
.

In particular,

lim
ω→∞

∥
∥
∥PΨ(t)−Ψ(t)

∥
∥
∥
HN

= 0 .

Proof. By conservation of the many-body energy, we have

(44) 〈Ψ(t),Hω,NΨ(t)〉 = 〈Ψ0,Hω,NΨ0〉 =
N − 1

2
〈Ψ0, V (x1 − x2)Ψ0〉 .

On the other hand, by the relative boundedness of V with respect to hω, for every ε > 0

we have

〈Ψ(t),Hω,NΨ(t)〉 ≥ (1− ε)

N∑

j=1

〈Ψ(t), hω,jΨ(t)〉 − Cε ;

hence, using the gap assumption on hω,

〈Ψ(t),Hω,NΨ(t)〉 ≥ (1− ε)

N∑

j=1

〈(1− P )Ψ(t), hω,j(1− P )Ψ(t)〉 − Cε

≥ ω(1− ε)‖(1 − P )Ψ(t)‖2HN
− Cε .
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Using Eq. (44) on the left hand side, the proof is concluded.

⊣

Proposition B.4. For every t ∈ R,

(45) lim
ω→∞

∥
∥
∥Φω(t)− Φ∞(t)

∥
∥
∥
HP

= 0 .

Proof. Using the fact that PHω,N(1− P ) = PVN (1− P ), we deduce

i∂tΦω(t) = PVNPΦω(t) + PVN (1− P )Ψ(t) ,

that is equivalent to the integral equation

Φω(t) = e−itPVNPΨ0 +

∫ t

0
ds e−i(t−s)PVNPPVN (1− P )Ψ(s) .

Comparing with the definition of Φ∞(t), we obtain, using the Kato-smallness of V , for any

ε > 0:

∥
∥
∥Φω(t)−Φ∞(t)

∥
∥
∥
HP

≤ ε|t| sup
s∈[0,|t|]

∥
∥
∥

N∑

j=1

hω,j(1−P )Ψ(s)
∥
∥
∥
HN

+Cε,N |t| sup
s∈[0,|t|]

∥
∥
∥(1−P )Ψ(s)

∥
∥
∥
HN

.

Now, since both (1−P )Ψ(s) and
∑N

j=1 hω,j(1−P )Ψ(s) are strongly continuous with respect to

s ∈ [0, |t|], and since
∑N

j=1 hω,j is a closed operator, the result follows from Proposition B.3.

⊣

Propositions B.3 and B.4 yield

(46) lim
ω→∞

∥
∥
∥e−itHω,NΨ0 − e−itPVNPΨ0

∥
∥
∥
HN

= 0 .

It remains to prove that the reduced density matrix γ
(1)
N,t(∞) associated to Φ∞(t) converges

to γ
(1)
∞,t(∞) in trace norm as N → ∞. This is in fact a problem of finite-dimensional

semiclassical analysis (with N−1 as semiclassical parameter). Consider the operator

WN :=
1

N

⊕

n∈N
Pn

n∑

1=j<k

V (xj − xk)Pn

on Γs(C
2s+1) ∼= L2(R2s+1) (where the isomorphism is intended between unitarily equivalent

irreducible representations of the C*-algebra of canonical commutation relations). On one

hand it agrees with PNVNPN when restricted to the sector with n = N , and on the other

hand it is the Wick quantization of a symbol σ(ζ, ζ̄) on C
2s+1. Such symbol σ is, if we make

the identifications ζ = (κ1, . . . , κ2s+1), and uζ =
∑2s+1

=1 κϕ ∈ H1,

(47) σ(ζ, ζ̄) =
1

2

∫

Rd

V (x− y)ūζ(x)ūζ(y)uζ(x)uζ(y)dxdy .

Eq. (47) defines precisely the energy of the Hamilton-Jacobi equations (17). The trace-norm

convergence of reduced density matrices is well-known in this finite-dimensional context, and

yields the sought result. This concludes the proof of Theorem 3.1.
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