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ON SOME RIGOROUS ASPECTS OF FRAGMENTED CONDENSATION

DANIELE DIMONTE, MARCO FALCONI, AND ALESSANDRO OLGIATI

ABSTRACT. In this paper we discuss some aspects of finite fragmented condensation from a
mathematical perspective. Inspired by techniques of pseudodifferential calculus and semi-
classical analysis in Bosonic Quantum Field Theory, we propose a simple way of identifying
finite fragmentation, and we analyze the effects of pair interaction on finite fragmented
states. In particular, we focus on the persistence of finite fragmented condensation when
the gap between the degenerate ground state and the excited states of the corresponding
non-interacting system is very large.

1. INTRODUCTION

The phenomenon of fragmented Bose-Einstein condensation has attracted a lot of atten-

tion in recent years, both from an experimental and a theoretical point of view [see, e.g.,

, , and references thereof contained for a detailed bibliography on fragmented
condensates]. The physical idea of fragmentation is that in some cases, e.g. due to some de-
generacy of the low-energy states, the condensed fraction of a bosonic system is distributed
among more than one single-particle state. In this paper we analyze two aspects of finite
fragmented condensation: one is the identification of a fragmented state in mathematical
terms, and the other is persistence of finite fragmentation under time evolution, for mean
field systems.

The easiest, and perhaps most widespread, mathematical definition of fragmentation is the
following |: a system of N bosons with density matrix oy exhibits finite fragmented
condensation if there is a finite number bigger or equal than two of eigenvalues of the reduced

(1)

one-particle density matrix ’y]\} associated to gy that are of order N, the remaining ones

being of order one. If there is convergence, as N — oo, of the p-particles reduced density

matrix ,Y](\z;) in trace class or Hilbert-Schmidt norm, the above definition is equivalent to the

fact that the effective one-particle density matrix 7&,) has a (finite) rank bigger or equal than
two [see m, for additional details on convergence of reduced density matrices and other
mathematical aspects of condensation]. However, despite its simplicity, such mathematical
definition of fragmentation is very broad, in the sense that it includes states that are not
fragmented in a physically meaningful way. In fact, there are statistical mixtures of simply
condensed states whose effective one-particle reduced density matrix has rank two or more
(we follow again ] in calling simple condensate a state whose reduced one-particle
density matrix has only one macroscopic eigenvalue). Such states represent the physical
situation of a system that is simply condensed (with probability one), but where there is
only statistical information on which one-particle state it is condensed into. More precisely,
the effective one-particle reduced density matrices of the aforementioned statistical mixtures

coincides exactly with the effective one-particle reduced density matrices of truly fragmented
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states. It is therefore desirable to give a different definition/characterization of finite frag-
mented condensation, able to distinguish truly fragmented states from statistical mixtures
of simply condensed states. Since the effective one-particle reduced density matrices may
coincide, it is necessary to consider properties of the state that involve two or more particles
as well. Based on the comparison of the effective behavior of temperature-zero mean field
fragmented states with the one of statistical mixtures with the same effective one-particle
reduced density matrix, we propose a simple characterization of finite fragmentation, that
distinguishes between fragmented condensation and statistical mixtures of simply condensed
states. A precise definition can be found in however the idea is roughly speaking that a
state exhibits fragmented condensation if the rank of 'y&l)) is two or more, and the rank of fyc(g),
as a function of p, is not constant. Let us remark that in most cases it should be sufficient
to check that the rank of ’yg,) is different (usually higher) than the rank of 'yg,), and it is not

necessary to consider at once all the reduced density matrices with an arbitrary number of

particles (the collection { 7&2)} , determines uniquely the mean-field configuration of the
system [see, e.g., , :lAEBlﬁJ;J], but it is often impractical or impossible to com-
pute, either analytically or numerically, all the reduced density matrices of a system with a
large number of particles).

Another interesting aspect of finite fragmented condensation is whether it persists under
the effect of interactions. It is well-known that simple condensation persists if the particles
are interacting among each other in a suitable way. For example, it has been rigorously proved

to persist for Bose gases (confined or not) with weak pair interactions, proportional to the

inverse of the number of particles (Hartree regime) [see, e.g., , , , ,
@ IM and in dilute Bose gases with intense collisions (Gross-Pitaevskii regime)
[see, e.g., IESde IR]_cld lR].Cl_d IBQSLd lB_SlII For states exhibiting finite fragmented con-
densation, the situation is more complicated. In the Hartree regime, Alon, Streltsov, and
Cederbaum ﬂA.SQO_’ZL I.A_SQ_O_é] formally derived an effective mean-field evolution for a frag-

mented condensate, imposing that fragmentation is persisting, with the same number of

one-particle states at any time, in the limit of a large number of particles N — oo. This idea
seems close to the so-called Dirac-Frenkel principle used in mathematical physics and numer-
ical analysis M] Unfortunately, the error made in imposing that fragmentation with the
same number of states holds at any time is in general not converging to zero when N — oo,
as it can be proved applying a series of rigorous results on the mean-field effective evolution
in the Hartree regime, for generic many-body states ﬂAN_O_é, IANQ_d, IA.N_]_]J, lA.N.lﬁ'i, IAER].GH]
In fact, from these results it follows that finite fragmentation is destroyed by interactions:

)

for almost all times the time-evolved effective one-particle reduced density matrix vso (%)

has infinite rank. Hence finite fragmented condensation could be rather difficult to detect
experimentally in systems where the inter-particle interactions play a role. Nonetheless, we
prove that finite fragmented condensation is persisting in interacting systems where there is
a very large energy gap between the degenerate ground states and the first excited states of
the corresponding non-interacting system. In this case, the effective mean-field evolution is
described by equations that are similar to the one introduced in the aforementioned papers

[ascod, [ascod).

In the following, we restrict our analysis to states with simple and finite fragmented con-

densation at temperature zero (ultra-cold systems), and with weak inter-particle interactions
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(Hartree regime). Our results could be extended with suitable modifications to dilute gases
in the Gross-Pitaevskii regime. It would be interesting to study fragmented condensation
at finite inverse temperature (in the thermodynamic limit), but this would require different
mathematical techniques from the ones considered in this paper. We plan to address this
question in a future work. We introduce the degeneracy in the ground state of the system,
causing finite fragmented condensation, in the most natural way: the degeneracy is caused
by spin or pseudo-spin degrees of freedom, that do not affect the Hamiltonian.

The rest of the paper is organized as follows. The characterization of fragmentation that
we propose is described in and in we analyze the persistence of fragmentation for
interacting systems with a large energy gap. In we briefly review semiclassical
analysis in QFT and its applications to the study of systems of non-relativistic bosons with a
very large number of particles. The tools introduced in this appendix are the mathematical
backbone of our description of fragmented condensation, and they could be useful to better

understand some results used in and (3. In we provide the mathematical
proofs of some important results of [§ 2| and [3l

2. CHARACTERIZATION OF FRAGMENTED CONDENSATION

In this section we propose a characterization of finite fragmented condensation that is more
specialized than the one commonly adopted, with the advantage of being able to distinguish
truly fragmented states from statistical mixtures of simply condensed states.

The most common mathematical definition of finite fragmentation, & la Penrose-Onsager

|, is the following @]

Let 7](\}) be the one-particle reduced density matrix (1-RDM) of an N-bosons
system. Then the system exhibits finite fragmented condensation if there is
a finite number bigger or equal than two of eigenvalues of ’y](\}) of order N,

with the remaining ones being of order one.

It is always possible to take the limit N — oo of the 1-RDM trace-class operator in
some suitable topology (in particular, it is always possible to take the limit in the weak-*
topology); in the explicit cases considered below we have convergence in the relevant trace
norm topology, and this ensures that no mass is lost by the RDM in the limit procedure.
We denote the resulting effective 1-RDM by 'y&l)) (and in general the effective p-RDM by

7).

fragmented condensation easily by looking at the rank of the effective p-RDMs 7&2): if the

The advantage of the limit N — oo is that one can investigate simple and finite

rank is one there is simple condensation, if the rank is (finite and) two or more there is
(finite) fragmented condensation.

The above definition seems intuitive, and it indeed captures a property of fragmented
condensates: in fact, all fragmented condensates have two or more macroscopic eigenvalues in
the relative 1-RDM. The aforementioned property is, however, not sufficient to characterize
fragmented condensates: it is easy to write statistical mixtures of simply condensed states
whose 1-RDMs have two or more macroscopic eigenvalues, and such statistical mixtures

describe (albeit incompletely) systems that are simply condensed rather than fragmented.
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In addition, the effective 1-RDMs of statistical mixtures of simple condensates of the form
2541
N
W) onsat = D B0 [ on® @ o) ep® - @
k=1 N X

)

coincide with the effective 1-RDMs of fragmented condensates of the form

ONfrag = | (P1 @ - @ 1) V... V(pasy1 ® - @ pasy1) )
————

2) J1(N) fas+1(N)
<(s01®'--®s01)\/---\/(902s+1®"'®302s+1)| ;
S (V) fast1(N)
where V stands for the symmetric tensor product, and the ¢, k =1,...,2s4+1, are mutually
orthogonal one-particle states. I(—Ie)re the frx(N) € N are such that Zzsjll fx(N) = N. The
[N

limit numbers 7 = limy ;o 55— are: for the state gnstat the macroscopic probabilities
of the state being simply condensed on the one-particle state oy ; and for the state on frag
the macroscopic fractions of particles in the one-particle states ¢p, within the fragmented
condensate. One could think of ¢, k =1,...,2s+ 1, as the 2s+ 1 degenerate ground states
of a one-particle free Hamiltonian describing a spin or pseudo-spin s boson. We study and
compare the p-RDMs of oy stat and op frag in detail below. Let us remark that fragmented
states analogous to on frag have been considered in M], where the authors prove that, for
a system of interacting bosons trapped by a suitably scaled double-well confining potential,
the purely factorized state does no longer describe the many-body ground state accurately.
There is in fact a transition to a regime in which energy is gained by localizing particles in
either of the two wells. It is expected that, in a suitable scaling regime of the double-well,
the ground state is well approximated by a state of the form on frag-

Since the 1-RDMs of onstat and on frag are equal, a definition of fragmentation that
includes o frag but not onstat should involve properties of the system correlating two or
more particles. Given a many-body density matrix gy, its limit N — co may be interpreted
as a probability measure p on the one particle Hilbert space H of the system (see[Appendix AJ
for more details). In addition, the effective p-RDM 'yc(g) associated to oy has the following

explicit mathematical form:

’yg) :/ |u®...®u><u®...®u|du(u) .
" P P
By the Penrose-Onsager definition of condensation it follows that in order to have a simple
condensate, the measure p should be concentrated either on a single point ug, or be a convex
combination of measures concentrated on single points, each one differing from the other

only by a phase. In fact, these are the only measures yielding

’yg?cond = | up >< uo | ’

for some one-particle wavefunction ug € H. Hence it follows that, for a simple condensate,

(»)

Yoo ,cond

:|U0®"'®Uo><uo®"'®uo )

p p




ON SOME RIGOROUS ASPECTS OF FRAGMENTED CONDENSATION 5

In addition, the measure v associated to a statistical mixture of the form

25+1
v =Y m(N)onk
k=1
is
2s+1
v="> m(co)u ,
k=1
where 7 (00) = limy_o0 mx(N) and gy is the measure associated to gy . Therefore the
effective p-RDMs of statistical mixtures of simple condensates are of the form

2s+1
(»)

Yoo,stat — Zﬂk|uk®®uk><uk®®uk|’

k=1 p p

2s5+1 1

where the probabilities 7, are such that ) ;” 7, = From the above discussion, the

following proposition follows.

Proposition 2.1. The rank Rsat(p) of effective p-RDMs 7(1) ) corresponding to statistical

oo,stat

mixtures of simple condensates is a constant function of p > 1. In particular, we have that
for all p > 1, Rsat(p) = 11, with

(3) H:Card({kzl,...,Qs—i—l;wk#0}>§23+1.

In particular, the effective p-RDMs of the aforementioned mixture oy star are given by the

above formula with u, = ¢, and 7, = limy o0 —fk](\rN):
2s+1
Yoot = O Tl or @ @ o Nk ® - @i
k=1

P P
Let us now turn our attention to the effective p-RDMs corresponding to the fragmented
density matrices on frag. The probability measure fig,, corresponding, in the limit N — oo,
to ON frag has the following form. Let P = {kz =1,...,2s+1; m # 0} be the set of indices

corresponding to non-zero 7;s and let, for any one particle wavefunction u € H, 55 " be the

following convex combination (average) of delta measures

51 1 2
05 = — | 50,40
2 0

then

1
(4) piag = @) iy, 00
kepP

where 50L is the delta in zero acting on the orthogonal complement Hf of the linear span
Hi = Span(c{gok, ke P} .

Hence this measure is not a convex combination of delta measures but rather a product of

convex combinations of delta measures. Hence the associated p-RDMs

W= [ J00180)us - 0] i
p p
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should differ from the ones of statistical mixtures of simple condensates such as gy stat- The
explicit form of the p-RDMs is more complicated than for statistical mixtures, and it is given

in the following proposition. The corresponding proof can be found in

Proposition 2.2. Let oy frag be defined by |Eq. (2), and let 7(1)) p > 1, be the associated

oo,frag’
effective p-RDMs. In addition, define for any o > 1,
« ﬂ_Qj
Fpa = {gGNO‘: Zgj:p}, Cpg = D! H #
j=1 jefl,. 2s+1} 7
9570
Then,
%(ﬁ)frag = Z Cpg | (L1 @ @)V V(p2sg1 ® -+ @ Pa541) )
) —_—
9EFp 2541 g1 g2s+1
(1@ - ®p) VoV (2541~ @ P2511) | -
—— —— -~ ”
g1 92s+1

Corollary 2.3. 7(1) 1)

oo, frag — ’Yoo,stat

Corollary 2.4. Let Rpag(p) be the rank of 'yg?frag as a function of p > 1, and let 11 be
defined by |Eq. (3). Then

p+ 11— 1>
» .

Rirag(p) = <

Hence even if the effective 1-RDMs of o stat and oy frag coincide, and have both the same
rank IT (with 1 < II < 2s + 1), the >2-RDMs behave quite differently in the two cases
for any II > 1 (if I = 1 both ongtat and on frag are describing simple condensates in the

same one-particle state). One notable difference is that the rank function Ryag(p) of the

fragmented state is a mon-constant function of p > 1, while as proved in [Proposition 2.1]

the rank function Rgiat(p) of a statistical mixture of simple condensates is always a constant
function of p. In particular, Ry, is a strictly increasing function (and thus its non-constancy
is already verified looking at p = 1 and p = 2). In our opinion, this feature provides a nice
characterization of finite fragmentation, and thus we propose the following modified definition

of fragmented condensation:

Let %(\1;)’ p > 1, be the p-RDMs of an N-bosons system. Then the system
exhibits finite fragmented condensation if the number of eigenvalues of order

N of 7](\1;) is a non-constant function R(p) of p, with values in N, and R(1) > 2.

Let us remark again that the above definition/characterization is reasonably easy to check
in concrete examples, and excludes statistical mixtures of simple condensates, since for such
states R(p) is constant. In addition, all the examples of physically relevant states with finite
fragmented condensation that we know of satisfy the above definition, including, to mention
a concrete example, the spin-one fragmented state corresponding to the LPB wavefunction
[see |

N
(aé,laa_l +ap 100, — a3,0a3,0)7\"ac> .
The LPB state is not of the type on trag previously considered, nonetheless the rank of
its effective 2-RDM is different from the rank of its 1-RDM. Therefore we believe that
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this definition characterizes finite fragmented condensation better than the usual Penrose-
Onsager-like definition, at the same time being only slightly more difficult to verify.

3. PERSISTENCE OF FINITE FRAGMENTED CONDENSATION

In this section we study the behavior of (temperature-zero) finite fragmented condensation
under the action of two-body inter-particle interactions of mean-field type (Hartree regime).
Let us consider a many-body system of N bosons with (pseudo-) spin s, whose free one-
body energy operator has an energy gap w between the (degenerate) ground state and the
first excited states. We also denote the (re-scaled) inter-particle interaction by V. The

Hamiltonian of the system is given by

N
1
(5) Hyn:=)_ hw,j+NZV(xj—xk),
j=1 i<k
acting on the symmetric product space Hy := vj\/:1 L3R4, C?*h), s ¢ %N ~ {0}. We
require the following mathematical assumptions on the one-particle operator h,,, acting on
Hl — Lz(Rd,CQS+1).

e (Self-adjointness) h,, = h, ® idgest1, by, self-adjoint on L?(R?, C);
e (Ground state energy) inf o(h,,) = 0;
e (Ground state) Jp € LQ(Rd,(C), {y € LQ(Rd,(C), ]@HQ =1, b= 0} = spanc{f};

e (Gap condition) inf(a(hw) ~ {O}) =w e RT {0}

The pair potential V € L%OC(Rd, C2s+1) is supposed to be Kato-small, with arbitrarily small
bound, as an operator, with respect to h,. More precisely, we require that, for every ¢ > 0,

there exists a constant C. such that
(6) V2 <eh? 4+ C..

From the above assumptions, it follows that H, n is self-adjoint on D(Z;-V:l hw,j>, and
that h, has a 2s + 1-fold degenerate ground state, spanned by the orthonormal functions
1 = (E,O, . ,0) Jit P25l = (07 . ,O,g). The degeneracy is induced by the degrees of
freedom due to the particles’ (pseudo-) spin. Let us denote

(7) -7:1 = spanc{cpl,... 7@284‘1} C Hl .
Then for any j=1,...,25+ 1, ¢ € Fi-, [[¢[l, = 1:

<¢7 hw¢>7—l1 - <()Ok7 hw‘Pk>’H1 Z [CVR

in other words, the one-particle Hamiltonian h, has also an energy gap of order w. Given
an initial many-body configuration Wy € Hy, the time-evolution is given by the Schrédinger

equation

)

10V (t) = Hy N (1)
{ v (0) =¥

whose solution is ¥(t) = e~#Hw.N Wy, Let us remark that our assumptions are fulfilled by a

one-particle hamiltonian with harmonic trap h, = —A + iw2x2 — %w, and by the physically

relevant pair interaction with a local Coulomb singularity, i.e. V(z) ~ |z|~1.
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At initial time, let us consider, as a fragmented condensate, a ground state of the non-
interacting system of the following type:

Qf1(N ®f2s+1 (N Rf1(N ®f2s+1 (N
QOZerag:|801f1( )\/...\/8028{31‘0'1( )><901f1( )\/"'\/@23.]:?1-’_1( )|

As we have already discussed in the N — oo counterpart of gy is a probability measure
o on the one-particle space H;. For all p > 1,

®) W= [ W] dpolw).
Hi
The measure pg is a U(1)-invariant product of convex combinations of delta measures:
S
(9) po = Q)0 s, @0

kepP

see the discussion following for additional details.

Now, suppose that we have prepared the system in the state gy, and then turn on the inter-
particle interaction, letting the system evolve for some time ¢. It has been proved in M]
that for any potential V satisfying the assumptions above, the time-evolved interacting

effective p-RDMs, p > 1, at time ¢ are given by

(10) W= [ OO du)
Hi
where (t) is the unique solution of the effective Hartree Cauchy problem
{ 10 (t) = hup(8) + (V x [ (1)) (1)
$(0) = ¢

In other words, the effective probability distribution of single-particle states is pushed forward

(11)

by the Hartree effective evolution. From this mathematical description it is quite easy to
see how the inter-particle interaction destroys finite fragmentation: the nonlinear Hartree
evolution destroys, as it pushes forward the effective probability distribution, the factorized
structure of the latter, and “spreads” it on the whole Hilbert space of available wavefunctions

(in doing this, the relative phases corresponding to the different convex combinations of deltas

(p)

so,¢ 18, for almost all times ¢ € R,

in the product play a crucial role). As a result, the rank of ~
infinite. This does not happen only in the case Il = 1, i.e. when the initial state is actually
a simple condensate: in this case the measure is a U(1)-invariant convex combination of
delta measures, and such structure is preserved by the U(1)-invariant nonlinear Hartree

evolution; simple condensation is therefore preserved. Let us remark that the error made in

(p)

oo,t

by [Eq. (10)]is of order N~ for any time, and this is confirmed by theoretical and numerical

analysis |[AFP16h].

approximating the evolved interacting N-particle reduced density matrices with v ', given

Hence in general it is not possible to assume that a condensate fragmented into II states
remains [I-fragmented under the action of interactions, unless Il = 1: the fragmented conden-
sate spreads to have macroscopic occupation on an infinity of one-particle states. Nonethe-
less, there are suitable situations in which finite fragmented condensation persists under the
action of inter-particle interactions, in the sense that the fraction of particles not occupying
a specified set of one-particle states is so small to be irrelevant at the macroscopic level. Our
aim is to discuss the case of a very large energy gap w between the degenerate ground state

and the first excited states of the aforementioned system of bosons with (pseudo-) spin s is
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very large. Intuitively, the explanation is the following: it costs so much energy to transi-
tion from the (free) ground state, that inter-particle interactions are not strong enough to
cause such transition; thus the particles are effectively constrained to the 2s + 1-dimensional
Hilbert space of degenerate ground states of h,, and this preserves the finite fragmentation
caused by spin degeneracy. We rigorously justify the above intuition, and provide an explicit
effective one-particle evolution on the reduced Hilbert space of degenerate ground states
that is valid in the limit of a very large energy gap w — co. Such evolution is conveniently
described by the evolution of projections of the one-particle effective wavefunction on each
degenerate ground state.

For the sake of simplicity, let us focus on the evolution of the first marginal ’yéi?t(w) (where
the dependence on w is made explicit to clarify that we are studying the infinite gap limit).
By [Egs. (9)| and |(10)} it follows that

(12) 7&31&( ) (271—)1_[ / W{GMGP}( )>< {ez,zeP} H by

kepP

where ¢?g}ﬂ P} (t) is the solution of [Eq. (11)| with initial condition

(13) A OED BELN AT

kepP

Let us decompose now ¢?g} 1P} (t) following the Hilbert space decomposition
Hqi = ﬁl (&%) ﬁf‘

introduced in [Eq. (7)} Let us stress that here % is spanned by all the 2s + 1 degenerate
ground states. We obtain

2s+1

(14) Vo) epy () me Yok + U (W) ;

where Ky (w) € C for any k = 1,...,2s + 1, and ¢ (w) € Fi-. In the right hand side
we have omitted for convenience the dependence on {6,,: € P}, however the presence of
such phases plays a crucial role, and should be kept in mind. Finally, let us define for any

1<l=1,...,2s the “averaged” transition amplitudes

27
Kyy(w) = Gy /0 e (@)? T dos

kepP

27
Kypi(w) = ﬁ/o Koyt (W) kg (w H do,

kepP

(15)

that thus does not depend on {6,,2 € P} anymore. We also define their limits, which,
according to [Theorem 3.1], are interpreted as matrix elements of the mean-field 1-RDM in
the limit of infinite gap:
K,1(00) = lim K,;(w)
wW—r00

(16) . :
Kyi(o0) = lim Ky y(w)
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Theorem 3.1.
2s+1 2s+1
1 .
7 (00) = N}ggwm Z K, 1(00)|@) (| + ;l Ky0,4(00)00) (el + Koo,1(00) | 0) (] -
3

< Rankfyc(xl)?t(oo) <2s+41 for allt € R, being equal to 2s + 1 for a.e. t.

Both limits are intended in the norm topology of the space of trace-class operators &'(Hy),
and the order in which they are taken is indifferent. In addition, the evolution of each

component k,(00) is described by the ordinary differential equation

2s+1 2s+1

; /ﬁ“ ‘ (Z Kyt SDK/> >

el /m, ifieP
Ka,0(00) = .

0 ifi¢ P
Remark. [Theorem 3.1l can be extended without effort to any p-RDMs. In fact, we have
that

II-1 2 2
<p + » > < Rank’yc(g?t(oo) < (p—; S) for all ¢t € R, being equal to <p—; S) for a.e. t.

The proof of [Theorem 3.1 can be found in [Appendix B.2| As we discussed previously,
[Theorem 3.1l rigorously proves the persistence of finite fragmented condensation for inter-

10k 1 (00) = < O, Vo

(17)

acting systems in the Hartree regime, if the energy gap between the degenerate one-particle
ground-state of the non-interacting system causing fragmentation and the relative excited
states is very large. In that case, the system remains finitely fragmented on the space of
ground states: at almost every time there is a nonzero macroscopic fraction of particles occu-
pying all the available degenerate non-interacting ground states, provided that at the initial
time at least two of them had macroscopic occupation, and no macroscopic occupation of
the orthogonal space of excitations. The effective one-particle reduced density matrix of the
system has in fact non-zero action only on the 2s 4+ 1-dimensional subspace F; spanned by
the degenerate ground states, and its matrix elements can be characterized explicitly. They
are the average, over all possible phases, of the coefficients of projection on the ground states
of the solution of the Hartree equation on Fi, corresponding to initial data oscillating with

the aforementioned phase coefficient. Such evolution shares some similarities with the one

given in [ASC07, [ASCOS].
APPENDIX A. SYSTEMS WITH MANY BOSONS AND QFT SEMICLASSICAL ANALYSIS

In order to better understand the main mathematical tools used throughout this paper, let
us recast the large N approximation as a semiclassical problem in quantum field theory, and
recall some of the main results obtained in the latter concerning semiclassical states. This
section may be of independent interest for the reader that is not familiar with semiclassical
techniques in bosonic field theories.

Let us start with a simple remark: it is always possible to see an N-particle bosonic
vector ¥ € Hy = \/;Vzl H, where H is a separable “one-boson” Hilbert space (in it
was L?(RY,C?*1)), as the only non-zero component of a vector ¥ = (0,...,0,1,0,...) in
the symmetric Fock space I's(H) = @,,cyy Hn- Therefore it is possible to interpret any N-

particle bosonic density matrix, with NV fixed, as a density matrix with an arbitrary number
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of identical particles and probability one of having exactly N particles. It is also possible
to interpret an N-body Hamiltonian Hpy (with pair interactions) as an Hamiltonian H on
the Fock space that agrees with Hy on the N-particles sector and that commutes with the
number operator: let

N
HN:Zhj+ ZV —.%'k
j=1

]<k
be the self-adjoint Hamiltonian defined by (5)| (where we have omitted the w dependence
for simplicity); then the Hamiltonian H on I's(H) defined by

1 = [ b @awsdy + 5 [ Ve -y’ @ (a(eal)dedy
where h(z,y) is the integral kernel of the self-adjoint operator h, and a*, a are the bosonic
creation and annihilation operator-valued distributions, is self-adjoint [see, e.g., I@, M]
and agrees with Hx when restricted to Hy (so in particular H \I/|HN = Hpn1). So for any
vector ¢ € Hy, e Ny = e_itH\If‘HN, the other components of the latter being zero. In
other words, we can study the evolution of an N-body system with pair interactions directly
in the Fock space setting (restricting to vectors whose only non-zero component is in the
N-particle sector).

Let us now show that the limit N — oo can be seen as a classical limit in quantum field
theory (whose limit “classical” field is the one-particle mean-field wavefunction). First of all,
let us define the semiclassical parameter ¢ = N~!. Therefore H depends on ¢, as well as, in
general, the vector ¥ = W.. In order to make the semiclassical nature of the problem more
explicit, let us define new creation and annihilation operator-valued distributions a} = \/ea*
and a. = \/ea satisfying

0. (2), a2 (y)] = eb(z — y)

If we rewrite H in terms of a} and a., we obtain H = %He, where

H. = [ heg)az@ato)dedy + 5 [ Ve = pad(e)a(v)ac)e(r)dady

is the energy per particle (H, = %) Therefore, the evolution of the system is described

~iH-y_ and the creation and annihilation operators corresponding to the canonical

by e
field observables of the system satisfy “semiclassical” e-dependent commutation relations.
In other words, the parameter ¢ for this (non-relativistic) bosonic quantum field theory is
perfectly analogous to A in ordinary quantum mechanics, and the system admits therefore a
semiclassical description.

Semiclassical analysis for bosonic quantum field theories has been studied rigorously [see,

¢.g., ANOS, [Fal1d, AF14, [AN15, [Fal16, ABN17, [AF17, [Fall g, ICF18, [CFO1S], and share some

similarities with the better known quantum mechanical version (that can in fact be recovered

as a special case). There are, however, some significant differences due to the fact that the
classical fields’ phase space is infinite-dimensional. Let us outline the basic ideas. Fields (both
at the classical and quantum level) are described mathematically as distributions, making
sense when smeared by suitably regular test functions. Given a real vector space (X,¢) of
test functions with a symplectic form (that due to its symplectic nature is sometimes called
the phase space), it is possible to construct the algebra of quantum observables W, (X <)
satisfying e-dependent canonical commutation relations (bosonic algebra of observables), and
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quantum states as continuous linear functionals of norm one on such algebra. In the limit
e — 0, one would like to interpret observables and states as classical objects, i.e. functions
and states of classical fields. In particular, since the algebra of bosonic observables can be
represented in the symmetric Fock space I'y(H) whenever (X, ¢) originates from a complex
pre-Hilbert space $ (X = Hr and ¢ = Im(-, -)g) such that H = $, one would like to have
at least such a description for polynomial field observables and density matrices in the Fock
space.

For quantum states, it is actually possible to give a very general semiclassical description.
Given a state w. on W.(X, <), there is always a (generalized) subsequence w, , that converges
to some classical state M (in a suitable topology) that is a cylindrical probability on the
space of classical fields X%, the latter being the algebraic dual of X endowed with the weak
o(X*, X) topology. M is called the cylindrical Wigner measure associated to the state w, 5
and the subsequence extraction is a mathematical requirement that does not have physical
relevance. Such description agrees with the physical intuition: the classical counterpart of
a quantum state is a “probability measure” in a space of classical fields acting on the test
functions as (non-regular) distributions. In addition it can be shown that this description is
unique up to isomorphisms, and “optimal” in the sense that given any cylindrical probability
on X% there is at least one quantum state that converges to it semiclassically. There are
two features that are not completely satisfactory: M is in general only a cylindrical prob-
ability and not a true probability measure [for an introduction to cylindrical probabilities,
see @, |, and the classical fields in X% can be very singular, hence difficult to
study mathematically (the space of classical fields is in some sense “too large”). Cylindrical
measures are physically relevant, since they are the classical counterpart of suitable ther-
modynamic states (e.g. suitable grand-canonical Gibbs states). The space of classical fields
is too large because the quantum states considered in this abstract setting are too general,
and one should restrict to physical quantum states. It is possible to formulate sufficient
conditions on states such that all the corresponding Wigner measures are concentrated as
true probability measures in more reasonable spaces of classical fields. In our non-relativistic
many bosons system, it can be proved that all Wigner measures corresponding, in the limit
N — 00, to N-particle density matrices are Radon probability measures, concentrated on the
unit ball of H, that are invariant under U(1) symmetry transformations on H. The situation
may be more complicated in relativistic quantum mechanics since the number of particles
is not conserved by the evolution. Let us remark that the action of linear symplectic trans-
formations on test functions induces on one hand a quantum transformation on states (and
also observables), and on the other hand a classical transformation on classical fields. The
transformed quantum state converges semiclassically to the corresponding Wigner measure
pushed forward by the classical fields’ transformation.

The semiclassical analysis of quantum field observables is more difficult in general, but it
is possible for a wide class of observables in the Fock representation that are polynomial in
the fields, and normal ordered. For example, the second quantized operator H. can be seen

as the Wick quantization of the following densely defined symbol on H:

e = [ hepa@uasdy + 5 [V —g)lu)Plut) Py
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defined and real-valued for any u € D(h) C H. The function u is the classical counterpart
of the annihilation operator-valued distribution, and it is interpreted as the one-particle
effective wavefunction in the mean-field limit. It can be proved that for any density matrix

0e such that Tr(p.H.) < C, the associated Wigner measure p is concentrated on D(h), and

hmTr (0cH. / E(u)dp(u) .

In particular, it follows that the expectation on an N-body state of the energy per-particle
converges as N — oo to the average of the effective one-particle energy with respect to the
mean-field probability distribution of one-particle wavefunctions. A similar description can
be given for other physically relevant observables of the system. The p-RDM vép ), associated
to a density matrix g, converging to the Wigner measure u, also converges:

lim 7”) /‘u@ Qu(u®- @u|du(u)

e—0

P
and the convergence always holds in the weak-* topology of trace class operators, and for
suitable density matrices also in trace norm topology.

It is also possible to characterize explicitly the effective evolution of the mean-field particle
in the limit. Let o.(¢) = B_Z%HEQ eieHs he the many-body evolution of the density matrix o.
Then, given an observable A, that is the Wick quantization of a (suitably nice) polynomial
symbol A(u), we get

hm Tr(o:(t / A(ug)dp(u

where u; is the solution of the Hartree equation idyu; = huy + V * |uz|?u; with initial da-
tum ug = u. In other words, the mean-field counterpart of an evolved N-body state is a
probability pushed forward by the nonlinear Hartree flow governing the effective evolution.

Let us conclude this section remarking that it is possible to compute explicitly the Wigner
measure, for physically relevant quantum states. This is done with the aid of the “non-
commutative Fourier transform” of a state, i.e. testing the convergence with Weyl operators
(exponential of the field smeared on test functions). Such average converges to the Fourier
transform of the Wigner measure, that identifies it uniquely. For example, an N-particle
density matrix of the form ‘u®N Y(usN ‘ converges to the measure fo% §(z — ¢t u) (that is
U(1)-invariant as expected), while the squeezed coherent state C(u) of minimal uncertainty
converges to the delta measure §(z — u) (that is not U(1) invariant since the coherent state
has non-zero components on any fixed-particle sector of the Fock space). The Wigner mea-

sures corresponding to fragmented density matrices have already been introduced in[§ 2l For

other explicit examples, refer, e.g., to ﬂAN.Oéi [AERI_Q{J]

APPENDIX B. MATHEMATICAL PROOFS

In this appendix we collect the mathematical proofs of the results discussed in and [3

B.1. Proof of |Proposition 2.2l To prove [Proposition 2.2|it is important to better under-

(p)
Voo Jfrag®

stand the combinatorial factors appearing in o frag and Recall that the wavefunction
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2N Ly Lp?iﬁ“(m is defined as follows:

N 2s+1

si1(N
\/...vgpiﬁfl( )(xl,...xN)::Cf(N%N Z H prj(n)goj(xa(n))

oSy n=1 j=1
N 2s+1

=Cranw 2 1 D Xewwn(m)es(zn)

oSN n=1 j=1

Rf1(N
o J1(N)

(18)

with Cry o= (N[5 £ )’%, and Fj := (Y02 A(N), S0, ilN)] NN for any j €
{1, ce, 28+ 1}. It follows from the orthogonality of the vectors ¢; that cancellations occur
in the partial trace of o frag; nonetheless the number of vectors ¢; is the same on each side
of the projection. More precisely,

(19)
p 2s+1

[TTN—pQN,frag] (1'17 ey Tpy Y1y e 7yp) = CJ%(N),N Z H Z Xo(F, Fij)n{1,...k }(n)()@](xn)

o,7€SN \n=1 j=1

p 2s+1 2s+1
> vt @)y (w) ( I > xemrmnert,.. v (m ))

v=1 y=1 m=k+1 [=1

The last term in the product naturally translate on a condition on the family of possible
permutations that we can choose from. Let us identify, for any permutation o € %y, the
set I[o] = 0*1({1, ... ,p}). The permutation o can be seen as a permutation from I[o] to
p elements, and another from the complement of I[o] to (the other) N — p elements. This
idea can be carried further, and it is easy to realize that every permutation o € .5 can be
thought of as a triple (01,02, I) with o1 € 7, 00 € SN_pand I C {1, e ,N} with #1 = p.

Now it is important to understand how the choice of k particles affects the total distribu-
tion of particles. In this sense, one should first notice that f(V) (as a frequency distribution)
is identified uniquely by the partition of connected subsets F' = {F], 1< <25+ 1}. Both
the family F N I[o] and FN ({1,...,N} \ I[o]) are partitions of connected subsets, respec-
tively of I[o] and of its complement. To these two families we can now associate two different

frequency distributions g and h, respectively in the sets .7-" 9541 and FN N—p.as+1, Where

(20) Forer 1= {g:{l,...,a}—>N: g; < f(N), Zgjzk}.

Denote F9 := F N 1[o], and F" := F N ({1,...,N} \ I[o]). These two families of sets (and
the corresponding distributions ¢ and h) are identified, in a non-unique fashion, by the set
I[o]. Tt is hence possible to rewrite [Eq. (19) as

(21)  [TrN—pontrag] (T1,- -, Tpi g1, Yp) =

p 2s+1 p 2s+1
Z Cf(N (H Z XJI(Fg(I) )i (zn ) H Z XTI(Fg(I) QD“/(yl/)

01,T1E€ESp, 02,2ELN_p n=1 =1 v=1 =1
[IC{1,...N} #I=#J=k
o2 (F'D)=m (FM7)) 1<i<2541
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To get rid of o9 and 79 it is useful to compute the number of permutations that respect
the constraint in the sum, that is

(22) # {0277'2 € SN_p: 02 (Flh(l)> = 09 <Fh(‘])> , 1<l <25+ 1}
_ { (N = p) TIET WD) = Coly v, i 9(D) = g(J);

0 else.

Moreover, since the terms of the summation do not depend directly on I and J, we would
like to substitute them with the possible choices of g. To do so, it is necessary to understand
how many choices of I correspond to the same distribution function g. Equivalently, we
should know in how many ways it is possible to choose g; elements in f;(N). Clearly, the

answer is given by a binomial coefficient. Therefore, it follows that
(23)

[TTprQN,frag] (xla cee axp; Yy - ayp) =

C‘?(N)N 2s+1 f(N) p 2s+1 p 2s+1
s oo [ (0] (115 wamiornion) (115 vz
UTEYk f(N)=g,N-p | j=1 9i n=1 =1 v=1 vy=1

N
‘Fp 2s5+1

It is not difficult to see the operator corresponding to that kernel is a combination of

projectors:
(24)
—1 |2s+1
T _ N f]( ) g1 ®g2s+1 ®g1 ®g2s+1
'N—p@N frag = Z k H gi |901 VeV BTN TV Vil
G‘ng)v2s+1 j=1 !

To compute the limit N — oo it is convenient to calculate the limit of each coefficient
in the sum. Recall that f; = 7;N + o(N). In particular this implies that for any strictly
positive integer A smaller than f;, the binomial coefficient (ff) = % NA (71])‘ + 0(1)). Hence

we get

(25)

BRGNS (CORCRN WOVRT

j=1 je{l,...,2s+1} je{l,...,2s+1} 9i
J: g;7#0 J: g;#0
From it follows that
Wéz)frag =w’ - lim Try- —p ON frag
N—oo
(26) ”gj ® ® ® ®
= > K I1 |7 V- Vo BT TV v o BT
9€Fp,25+1 Je{1,...,254+1}

J: 9570
The rank of such density matrix is the following:

m-1
(27 Rank 70, = #{g€ 5 wjzo;sgjzo,1§jgs}:<p+p )

B.2. Proof of [Theorem 3.1 We prove [Theorem 3.1 in two steps.  Firstly, in

[Appendix B.2.1] we prove the desired limit taking before N — oo, and then w — oo.
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Then in [Appendix B.2.2| we take the limits in the reverse order w — oo and N — oo,

obtaining the same result.

B.2.1. The limit N — 0o, w — oco. We consider directly the effective problem, where the
limit N — oo has already been performed [see IAN_lﬂ, IAER]_GH, for a detailed discussion of
the limit N — oo for fragmented and more general states]. We prove that, at every time

t > 0, the component of Tpggz)’le P}(t) that is orthogonal to all the ¢y, is L?-small whenever
w is big. Then, we show that the coefficients {x,;(w)} converge to the solution {r,(c0)}
of (I7) (the existence and uniqueness of solutions to this system of ODE does not present
difficulties). The above implies that TIZ)E:Z)’Z c P}(t) has a limit for every 6, € [0, 27| and for every
t > 0, as w becomes large. Then we show how this implies the convergence of the 1-RDM.
This concludes the proof of [Theorem 3.1] if the limits are taken in the order N — oo, and
then w — co. The converse order is considered in the next section.

The first step is to prove the following proposition.

Proposition B.1. Consider the decomposition

2s+1

1
{oz,zeP} Z e (W)en + ¥y (W)
of the solution to the Hartree equation (III) with initial datum

Vo) epy (0) =D~ e/

kepP

Then there exists C' > 0 such that for every 0, € [0,27], 1 € P,

C

1

(28) 9@l < =0
In particular,

(29) Jim |l (@)ll2 = 0.

Proof. The Hartree energy

(30) E[W] = (W, b)) + (W, V x [9*))
is conserved along the Hamiltonian flow of (II)). It is then sufficient to show that E[¢)(“)(¢)]

controls the norm [[1);-(w)]|2.
By the relative boundedness assumption on V', i.e. V(z —y) < eh, + C;, for every ¢ € H;
with ||¥|| = 1 we have

(31) (0, V 5 [20)| < (4 @9, [huyp + Ce|¥ @ ) < e(h, hyth) + C

for every € > 0. This immediately implies

(1 =) (e, hot)) < E[P] + Cc .
Now since g[w?gz),zeP} (t)] = S[wgzz) ZeP}(O)], we deduce that

(32) (1= )W) e py (0, htlls) py (B) < EWS) py (0)] +Cc

Moreover, by the hypotheses on h, we have
(33) (W) cpy (8), hotbly) cpy (8)) > wllui-@)]I3
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and, by comparing (32)) and (33]), we deduce that for any 0 < e < 1,

) ey (0] + C:

4 (w2 <
(34) i @)l <~
This concludes the proof, since by (31) we have that
(w) — [ {ap@) (w) 2,,(w)
|g[w{€z,l€P} ‘ | w{Gz,lEP} )7 Vox WJ{«%,@EP}(O)’ w{ez,zeP}(O»‘
is bounded by a constant independent of w. -

The next step is to show that s, ;(w) converges to k,+(00).

Proposition B.2. For every 1 <1 < 2s+ 1 and for every t > 0 we have

1
(35) [fr,0(w) = ot (00)? < =M,

w

for some positive C, independent on t or w.

Proof. By direct computation one finds that the coefficients {r,;(w)} satisfy the system of
ODE

iat"fz,t(w) = < Oy V% |¢§°§1)7Z€p}(t)‘2(1??537@613}(’5)) >

(36) ¢t /m, if1eP
Ka0(w) = .
0 ife¢ P

Let us compute

|kua(w) — rug(0)* =S [(mt(w) — Fe(00)) (< O A O 1 O N () >

25+1 2s+1
—<%, Vo [y igg(00) (Z Kot W) >>}
/=1 =1

2541
— %[(ﬁz,t(w) - /‘&z,t(OO))< @ V * wggz),zeP}( )| <¢{92,Z€P} Z K,gl (PK/) >:|

=1

2s+1
W{el,zep} ) (Z ket W/> >]
=1

2s+1

D rea(oo
=1

+%[(m,t(w) - ’W(C’O))< Py Vo <

=: L, +1I,.
We treat the two terms separately.
) 2541
11 ) = )] [V 5 1005y OF 0| 60 e 0= 3 mtron
2 =1 2

By the assumptions on V one finds

|V« 045 ey O 0| < 0y Ol 0 + € < €

for some constant C that does not depend on w. Moreover,

2s+1 2s+1

() Z Kea(00)pe = > (Kep(w) — Keu(00)) pe + V().

(=1
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Hence,
2541
L] < C Jrp(w) = m(00)| [ 3 [ws(e) = moa(00)| + 197 @) 2]
o=1
(37) 2541 C
< C Ryt (W) = K00 ‘ [Z ‘fw - /w,t(oo)‘ + m] )
r=1

having used Proposition [B.1l in the last inequality.
The estimate of I, is analogous, and we get
2s+1

[II,| < C|kt(w) — Ky (o0 HZ ‘n“ ) — Kpt(00 )‘—i— 52} .

Denoting A(t) := S50 [y (w) — ﬁk7t(oo)|2, we have thus
At) < C(A[t) +w ™),

that yields, by Gronwall’s inequality,

(38) At) < et ,

w

since A(0) = 0. -

We are now able to conclude the proof of [Theorem 3.1] for the limits taken in the order
N — 00, w — 00. Recall that, from (12),

(1) (w)
Yoo t( ) = (QW)H/ W{@Z,zeP}( )> {Ol,zeP} Hdek

keP
We will show that the difference
2541 25+1
(39) D(w,t) =10 (w ZKM N (e = > Kug(00)l@) (@l — Kuri(00) o) (o1l
1<t=1

converges to zero in trace norm, as w — co. This will prove the claim. We use the identity

2s+1 2s+1
ZKH M) (o] + Z Kzét( )’(Pz><902’+Kl€t( Nepe) (el
1<l=1
1 o2r 2541 2s+1
= (27r)H/ ‘Z Hz7t(00)s0z><z kg t(00)pr H dby .
0 = =1 keP
Hence, it is possible to write
2s+1 2s+1
I D@, e = || / W{Wep} )><1/)E2}3’Z6P}(7f){—{Zﬁf,t(oo)@£><zl‘w/ 00) Py } IT dex
=1 =1 keP Ch
2s5+1 2s+1
< —( H W{gh,ep} )><¢{9Mep} |Z Ke,4(00) ) ( Z ke ¢ (00)ppr ‘ H dOy
r=1 kepP
2 @) 2s+1
S (23)H/ H {Z,zeP} Z ri,t(00 H doy. ;
0 2 ep

in the last inequality we have used that ||py, — Py, |le1 < 2||¥1 — 12|12, since py, is the rank-

one projection onto the linear span of 1;, and |[1;]|]2 = 1 for ¢ = 1,2. By [Propositions B.1|
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and [B.2]
2s+1 K|t|
() Ce
H w{e,,zeP}(t) - ; "‘%t(oo)w L < oAz

where C, K > 0 and are independent of w,t.

B.2.2. The limit w — oo, N — 0o. We define the orthogonal projection Py as the one whose
range is spanned by many-body vectors in which all particles occupy one of the ¢, with
k=1,...,2s+ 1. In other words,

N o
(40) Hpy :=ran Py = (span{ep, ... ’(st_i_l})v ~ P |

for a suitable D (that depends both on N and 2s+ 1). In the following, it should be kept in

mind that the vector ¥(t) depends on w, even if we may avoid to mention it explicitly. Let

us define

(41) ‘I)w(t) = PN\I/(t) = PNefitH%N\IIO
and

(42) Do (t) 1= e IPNVNPN

having used the notation

ZV —mk

]<k
If no confusion arises, we may omit the subscript of Py. Firstly, we prove that ®(t) is the
limit of W(t) as w — oo. It is sufficient to prove that (1 — P)W¥(t) vanishes in the norm of
Hy as w — 0o, and that @, (t) converges to P (t).

Proposition B.3. Let U(t) = e "Ho.N W | with

N s N
\I}O — @?fl( ) (VA vgpgz;ff_l*kl( )

Then, for any t € R, there exists C > 0, independent of w and t, such that
2 CN

43 HP\IJt—\I/tH <2

(43) 0 -ve), <<

In particular,
lim ‘P\IJ(t) - \IJ(t)H ~0.

Ww—00 HN

Proof. By conservation of the many-body energy, we have
N -1
(44) (U(t), Ho v ¥ (1)) = (Yo, Ho,n Vo) = ——5—(Vo, V(w1 —z2)¥0) -

On the other hand, by the relative boundedness of V' with respect to h,,, for every € > 0

we have N
<\I](t) HwN\I’ 1_5 Z )>_C€§
7j=1

hence, using the gap assumption on h,,,
N
(U(t), Hon¥(t) > (1—e) Y (1 t), by j(1 — P)W(t)) — C-
7=1

w(l =)L = P)¥(B)[I3, — C- -
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Using [Eq. (44)|on the left hand side, the proof is concluded.

Proposition B.4. For everyt € R,

w—>00

(45) lim H@w(t) - @m(t)(

Proof. Using the fact that PH,, n(1 — P) = PVy(1 — P), we deduce
i0,D,,(t) = PV Pd,(t) + PVy(1 — P)U(t)

that is equivalent to the integral equation

t
D, (t) = e WPy, 4 / ds e =S)PYNP Py (1 — P)W(s) .
0

Comparing with the definition of ®,(t), we obtain, using the Kato-smallness of V', for any
e>0:

H(bw(t) - @w(t)‘

<elt| sup HZhM 1-P) ()HH +C. n|t] sup H (1-P)V(s )H

Hp s€[0,¢]] s€[0,¢]] Hy

Now, since both (1—P)¥(s) and Z he, j(1—P)¥(s) are strongly continuous with respect to

s € [0, ]t|], and since Zj:1 w,j 1S a Closed operator, the result follows from [Proposition B.3|
_|

[Propositions B.3| and [B.4] yield

(46) lim

e itHo N, — e—z‘tPVNP\I,OH —0.

(1)

It remains to prove that the reduced density matrix % (c0) associated to ®(t) converges
(1)

to Vooi(00) in trace norm as N — oo. This is in fact a problem of finite-dimensional

semiclassical analysis (with N~! as semiclassical parameter). Consider the operator

W= DR Y Vi, - 2R
neN 1=j5<k
on I'y(C%+1) =2 [2(R2*+!) (where the isomorphism is intended between unitarily equivalent
irreducible representations of the C*-algebra of canonical commutation relations). On one
hand it agrees with Py Vxy Py when restricted to the sector with n = N, and on the other
hand it is the Wick quantization of a symbol (¢, () on C2**1. Such symbol o is, if we make
the identifications ¢ = (K1, ..., K2s41), and ue = Z?‘ﬁl Kyp; € Hi,
_ 1 3 3

(47) 760 =3 [ Vo= puc)acmucle)ucmdady

Eq. (47)| defines precisely the energy of the Hamilton-Jacobi equations (I7). The trace-norm
convergence of reduced density matrices is well-known in this finite-dimensional context, and
yields the sought result. This concludes the proof of [Theorem 3.1l
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