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A B S T R A C T   

Water biostability is desired within drinking water distribution systems (DWDSs) to limit microbiologically- 
related operational, aesthetic and, eventually, health-related issues. However, variations in microbiological 
quality can take place both spatially along DWDS pipelines and temporally at single locations due to biofilm 
detachment, water quality seasonality and other processes. In this study, long- and short-term trends of bacterial 
concentration and community structure were investigated in a secondary branch of an unchlorinated DWDS for 
several months using high-frequency flow cytometry (FCM) and traditional laboratory monitoring campaigns. 
Long-term trends of bacterial concentrations and community structures were likely caused by changes in the 
water physical-chemical quality (i.e. pH and conductivity). Short-term daily pattern, instead, resulted in sig
nificant variations between the bacterial concentrations and community structures at different hours, likely due 
to biofilm detachment and loose deposits resuspension related to changes in the local water flow. These patterns, 
however, showed broad variations and did not persist during the entire monitoring campaign presumably due to 
the stochasticity of local instantaneous demand and seasonal changes in water consumption. During periods 
without sensible long-term trends, the sampling hours explain a comparable or larger fraction of the bacterial 
community diversity compared to dates. The variations observed with FCM were poorly or not detected by 
traditional laboratory analyses, as the correlation between the two were rather weak, highlighting the limited 
information provided by traditional approaches. On the other hand, FCM data correlated with water pH and 
conductivity, underlining the relation between physical-chemical and microbiological water quality. Such results 
suggest that the advanced control of the physical-chemical water quality could minimize the microbiological 
water quality variations. Moreover, monitoring campaign planning should take into account the sampling time to 
reduce the noise caused by daily fluctuations and/or assess the overall quality variations. Finally, as monitoring 
costs are one of the barriers which prevent a more widespread use of FCM, a monitoring scheme optimization 
strategy was developed. Such strategy employs the data from an initial high-frequency sampling period to select 
the sampling hours which maximize the observed variations of bacterial concentration and community 
composition.   

1. Introduction 

The availability of water of high quality at every household is 
necessary for human wellbeing. With respect to drinking water micro
biological quality, such goal is often declined as achieving “biostability”, 
condition in which spatial and temporal microbiological water quality 
variations are negligible during distribution (Prest et al., 2016b), to 
control the growth of pathogens, operational and aesthetic issues such as 
biofouling and discoloration (Li et al., 2015; Vreeburg and Boxall, 
2007). 

Spatial instability can be caused by several phenomena including the 
decay of disinfectant residuals, bacterial growth on available substrates 
and biofilm detachment during distribution, which can result in both an 
increase in bacterial concentrations (Boe-Hansen et al., 2002; Chan 
et al., 2019; Gillespie et al., 2014), but also in the variation of microbial 
populations composition (El-Chakhtoura et al., 2015; Farhat et al., 
2020). On the other hand, temporal instability can arise due to sea
sonality of the source water and within the drinking water distribution 
system (DWDS), due to changes in the operating conditions, such as 
water flow, both in drinking water treatment plants (DWTPs) and in 
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DWDSs (Bautista-de los Santos et al., 2016; Besmer et al., 2016; Besmer 
and Hammes, 2016; Pinto et al., 2014). Additionally, the combination of 
the two processes can produce different effects in different regions of 
DWDSs (Potgieter et al., 2018). 

Full-size monitoring campaigns are needed to verify the water bio
stability within full-scale DWDSs, as DWDS conditions cannot be 
reproduced in laboratory (Prest et al., 2016a), and to ensure the pro
tection against possible contamination events due to DWTPs failures or 
eventual re-contamination events occurring throughout the DWDS. 
Several methods have been used to monitor the water microbiological 
quality, either with respect to (i) bacteria concentration as heterotrophic 
plate counts (HPC), flow cytometry (FCM) and optical counts (Allen 
et al., 2004; Hammes et al., 2012; Højris et al., 2016), (ii) bacterial 
community composition based on genetic analyses (Bautista-de los 
Santos et al., 2016; Burtscher et al., 2009) or (iii) bacterial activity as 
using adenosine triphosphate (ATP) and available organic carbon (AOC) 
assays (Van Der Kooij, 2000; Vital et al., 2012). 

HPC is used by most water utilities and it is considered the standard 
by many national and international entities (EC, 1998; Robertson and 
Brooks, 2003; US EPA, 2009) regardless of its intrinsic drawbacks 
(Staley and Konopka, 1985; van der Kooij and van der Wielen, 2014). 
The efficiency of this monitoring method is further reduced by the fact 
that the sampling frequency adopted by water utilities is often not 
frequent enough to detect short-term temporal variations (Besmer et al., 
2017). Despite the lack of legislative indications outside Switzerland, 
FCM is recently being adopted by water utilities (Safford and Bischel, 
2019) due to its several advantages compared to HPC which include: 
single-cell information, fast output (<15 min), reproducible results 
(<10%) (Prest et al., 2013) and the possibility for automation and online 
use (Besmer et al., 2014). These advantages make the use of FCM 
feasible for the detection of short-term temporal variations. In addition, 
FCM can provide information regarding bacterial viability and activity 
(Safford and Bischel, 2019) and information which correlates with the 
diversity at species level (Props et al., 2016), useful to highlight bacterial 
community changes (Farhat et al., 2020; Favere et al., 2020; Props et al., 
2018b). Although several studies used FCM to investigate seasonal or 
other long-term microbiological variations in DWDS (e.g. Nescerecka 
et al., 2018; Schleich et al., 2019), short-term variations have been 
studied mostly for short periods (e.g. Farhart et al., 2020; Favere et al., 
2020) or with a focus mostly on bacterial concentrations, rather than 
their community structure (e.g. Prest et al., 2016c). Unfortunately, the 
further adoption of this technique by water utilities will be likely limited 
by financial and legislative constraints (Besmer et al., 2017). This is 
especially relevant in the case of in situ FCM: even though real-time data 
acquisition was tested (Besmer and Hammes, 2016), frequent sampling 
is likely not feasible for some water utilities, especially considering 
long-term monitoring. Due to the costs related to long-term monitoring, 
an optimum between the sampling frequency and usefulness of the in
formation retrieved should be found. 

As the bacterial concentrations monitored through HPC and FCM are 
not necessarily related to hygienic issues (Allen et al., 2004), legislations 
are progressively moving from defining an upper concentration limit to 
stating that “no abnormal change” should be detected (Van Nevel et al., 
2017b). Unfortunately, the identification of “not abnormal” or accept
able changes in microbiological water quality is not trivial, especially in 
complex systems as DWDS, due to the fact that several factors can be 
considered (e.g. relative concentration change, absolute concentration 
change, different bacterial composition) (Favere et al., 2020; Prest et al., 
2016b; Van Nevel et al., 2017b) and the fact that the observed changes 
depend on the monitoring frequency, but also the locations. 

This study aims at investigating the short- and long-term variations 
of microbiological water quality within DWDS with respect to both 
bacterial populations concentration and composition to deepen the 
understanding about DWDS microbial water quality dynamics. For this 
reason, high-frequency FCM and traditional laboratory monitoring 
campaigns were carried out for 5 months at a DWDS secondary branch. 

Furthermore, a monitoring scheme optimization strategy for the detec
tion of microbiological water variations is proposed. 

2. Materials and methods 

2.1. Study site and sampling location 

This study was conducted on a DWDS of an Italian city with around 
27,000 inhabitants supplying on average about 2⋅106 m3/y of water. The 
network, made predominantly of steel pipes, extends for 36.5 km and it 
comprises of a main conduit and a grid of secondary pipes, which deliver 
the water to the households. No reservoirs are present throughout the 
DWDS as DWTPs pumps are activated automatically based on water 
consumption. No other pumps are present throughout the DWDS. 
Furthermore, no pipes flushing was conducted on the network during 
the monitoring campaign. The drinking water is supplied by two 
DWTPs: while DWTP1 employs only a granular activated carbon (GAC) 
filter, DWTP2 treats groundwater through a static sand trap and a GAC 
filter and supplies on average the 67% of water to the city. 

DWDS sampling was carried out thanks to a continuous bleed applied 
directly to a secondary branch of the network placed in a mostly resi
dential area. Based on the analysis of previous samples (data not shown), 
chemical data suggest that the water at the sampling location originates 
almost completely from DWTP2. 

2.2. Monitoring campaign 

Microbiological water quality at the DWDS sampling location was 
monitored by both online flow cytometry and laboratory analyses be
tween May and October 2019. 

2.2.1. Online flow cytometry 
Samples (volume: 260 μL of which 90 μL for analysis) were taken 

automatically from the bleed every 2 h, for a total of 1423 samples, and 
analyzed with a BactoSense® (Sigrist-Photometer AG, Switzerland) 
flow-cytometer equipped with a 488-nm solid-state laser, a side-scatter 
detector (SSC: 488/10) and two fluorescence detectors (FL1: 525/45, 
FL2: 715 LP). Before analysis, samples were mixed with SYBR Green I 
and incubated for 10 min at 37 ◦C. 

2.2.2. Laboratory microbiological and chemical analyses 
Microbiological quality was monitored through traditional labora

tory analyses. Manual sampling was performed about 3 times per day, 3 
days per week at the same time as flow cytometric analyses, for a total of 
98 samples. Samples were collected in sterile plastic bottles, kept in the 
dark, refrigerated at 4 ◦C and plated within maximum 6 h from collec
tion. All samples were analyzed for the detection of Pseudomonas aeru
ginosa and psychrophilic and mesophilic heterotrophic plate counts 
(HPC), while 28 samples were also analyzed for Escherichia coli, total 
coliforms and intestinal enterococci according to the Italian standard 
procedures (6020 B IRSA-CNR; 7050 IRSA-CNR, APAT-IRSA/CNR, 
2003), similar to those reported in Standards Methods (APHA/AWA/
WEF, 2012). For the detection of P. aeruginosa, 250 mL of water were 
filtered on a 0.45 μm sterile filter (Sartorius AG, Germany) and incu
bated for 48 h at 37 ◦C in Pseudomonas Agar Base (VWR International, 
Belgium). HPC were, instead, analyzed with 2 replicates incubated in 
Plate Count Agar (VWR International, Belgium). Other than the standard 
incubating conditions equal respectively to 48 h at 37 ◦C and 72 h at 
22 ◦C for mesophilic and psychrophilic HPC, the incubation was pro
longed to 7 days for both types of HPCs. E. coli, total coliforms and in
testinal enterococci were analyzed by filtering 100 mL of water on a 
0.45 μm sterile filter and incubated respectively in Tryptone Bile 
X-Glucuronide Agar (VWR International, Belgium), m-LES Endo Agar 
(Biolife Italiana, Italy) and Slanetz Bartley Agar Base (VWR Interna
tional, Belgium) for 48 h or, in the case of E. coli, 24 h. Results were 
reported as CFU (Colony Forming Units) per unit of filtered volume. 
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Additionally, 33 samples were analyzed also for pH (pH 538, WTW, 
Germany) and conductivity (Cond 3210, WTW, Germany) in accordance 
to the Italian standard procedures (2060 IRSA-CNR; 2030 IRSA-CNR, 
APAT-IRSA/CNR, 2003). 

2.3. Data analysis 

Data was processed and analyzed in R (v3.6.3) (R Core Team, 2020). 
Flow Cytometric Standard files were loaded using the flowcore 

package (v1.50.0) (Ellis et al., 2019) and cleaned from anomalous values 
regarding the dynamic range, flow rate stability and signal acquisition 
thanks to the flowAI package (v1.12.7) (Monaco et al., 2016). Succes
sively, background noise due to debris was excluded from the analyses 
by drawing a polygonal gate on the FL1 and FL2 graph, after hyperbolic 
arcsine transformation, in order to recover the cells signal and calculate 
total cell concentration (TCC) [cells/μL]. Such gate was drawn based on 
10 random samples uniformly spread throughout the entire monitoring 
period. The same samples were used to select the threshold on the FL1 
signal to estimate the low nucleic acid (LNA) and high nucleic acid 
(HNA) cells concentrations [cells/μL] and calculate the percentage of 
HNA cells (HNA%) as the ratio of between HNA cells and TCC (Amal
fitano et al., 2018; Prest et al., 2013). Advanced fingerprinting was 
carried out thanks to the flowFDA package (v0.99) (Clement and Thas, 
2014) discretizing FL1, FL2 and SSC in 128 evenly distributed bins after 
the data was rescaled to a [0,1] range (Props et al, 2016, 2018b). 

Following this step, the Phenoflow package (v1.1.1) (Props et al., 
2018a) was used for additional analyses. The phenotypic diversity index 
(D2) [arbitrary units, a.u.] was calculated for each sample thanks to the 
function diversity_rf using the standard settings (Props et al., 2016). 
Furthermore, “phenotypic community types” were calculated as 
described by Props et al. (2018b). In short, samples were first reduced 
dimensionally through principal component analysis to retain 90% of 
their variability and then clustered, maximizing the silhouette index, 
through k-medoid clustering. To account for sample size differences, this 
workflow was repeated for 100 bootstrap samples, after which the most 
frequent result for each sample was selected. In addition, the advanced 
fingerprint was used for the analysis of the beta diversity, estimated 
through the Bray-Curtis dissimilarity using the vegan package (v2.5-5) 
(Oksanen et al., 2019). Prior to the estimation of beta diversity, 
resampling to the lowest cell count (n = 1609) was carried out to 
exclude possible interferences due to the different cell count in different 
samples (Favere et al., 2020). 

The entire monitoring campaign was divided into 6 periods based on 
a visual assessment of the TCC trend and sampling interruptions (due to 
malfunctioning or external reasons), labeled from A to F (Figure S1; 
Table S1). Furthermore, sampling hours were grouped considering a 
typical water demand pattern of a comparable municipality (Candelieri, 
2017) (Figure S2). 

2.4. Monitoring scheme evaluation 

Hypothetical alternative monitoring schemes were evaluated 
through the index Rbeta×ΔTCC which was calculated as the product be
tween Rbeta and RΔTCC. With reference to the maximum amplitude of the 
daily variations which can be observed in each specific monitoring 
scheme, Rbeta and RΔTCC represent the amplitude observed in the hypo
thetical alternative monitoring schemes compared to the ones witnessed 
in the full monitoring campaign for fingerprints and TCC respectively. 
Rbeta was, then, calculated as the ratio between the observed maximum 
and the true maximum daily beta diversity, while RΔTCC as the ratio 
between the observed maximum and the true maximum TCC daily 
variation. 

2.5. Statistical analyses 

Statistical differences between groups were tested through the use of 

non-parametric Conover and Dunn tests with Bonferroni adjustment, 
implemented respectively in the packages conover.test (v1.1.5) (Dinno, 
2017a) and dunn.test (v1.3.5) (Dinno, 2017b), depending on the ho
moscedasticity of the data, assessed thanks to Levene tests, as imple
mented in the car package (v3.0-3) (Fox and Weisberg, 2019). 

Monotonic and linear correlations between variables were calculated 
respectively using the Spearman and Pearson correlation coefficients. 
The differences between the HPCs at different incubation times were 
carried out using a paired Wilcoxon test. To test the difference between 
the beta diversity among groups, the multivariate homogeneity of 
groups dispersion (PERMDISP) was assessed and tested thanks to the 
function betadisper, while the permutational multivariate analysis of 
variance (PERMANOVA) and analysis of similarities (ANOSIM) were 
conducted using the functions adonis and anosim considering 999 per
mutations. Furthermore, the monotonic correlation between the di
versity data and other variables was tested through Mantel tests 
considering ranked data and euclidean dissimilarity of the tested vari
able. All functions used to analyze multivariate and diversity data can be 
found in the package vegan (Oksanen et al., 2019). 

3. Results and discussion 

3.1. Bacterial concentration dynamics 

Five months of FCM sampling at 2-h intervals revealed the presence 
of both short- and long-term variations in the bacterial concentration of 
the water at the sampling point (Fig. 1). Such trends allowed for the 
distinction of three groups: (i) periods A and E, (ii) periods B, D and F 
and (iii) period C (Tables S2, S3). Such concentrations lie in the same 
range as other studies involving treated or untreated groundwater 
(Besmer et al., 2016; Nescerecka et al., 2018; Van Nevel et al., 2016). 
While periods A and E can be considered as the TCC “baseline” as TCC 
does not show any long-term trends, period B was affected by an in
crease in TCC which culminated during period C and carried over to 
period D. Period F, instead, even though presenting an increase of TCC 
with respect to period E and levels not statistically different from periods 
B and D, consisted of a 5-day event where the bacterial population 
gradually increased and then decreased (Figure S1). 

Long-term seasonal variations in the microbial abundance, likely 
caused by changes in the chemical water quality and temperature, have 
been reported by others (Nescerecka et al., 2018; Prest et al., 2016c; 
Schleich et al., 2019). The long-term TCC variation reflected also on the 
median SSC (Figure S3) indicating an increase in cell biovolume, 
complexity and granularity (Hammes et al., 2010; Safford and Bischel, 
2019). The increase in SSC could be caused by the presence of more 

Fig. 1. TCC for each group of hours interval during the different periods. A 
different number of asterisks indicates groups with significantly different con
centrations assessed through a Conover test with Bonferroni adjust
ment (Table S3). 
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nutrients, condition known to result in increased cell sizes (Chien et al., 
2012). Noteworthy, the SSC associated to LNA cells remained always 
below the HNA one in the same sample, which, as observed by Bouvier 
et al. (2007), is not strictly necessary. Furthermore, during periods B and 
C, the SSC associated to LNA cells reached values higher than the one of 
HNA cells during baseline conditions indicating their high biovolume, 
complexity and granularity. 

Focusing on the TCC differences across different groups of hours, it is 
clear the presence of important short-term variations in the water 
delivered by the DWDS. Differently from Besmer et al. (2014), but in 
accordance with Nescerecka et al. (2014) and Farhat et al. (2020), TCC 
did not show a gradual overnight increase, supporting the grouping of 
these hours. Such difference is likely due to the fact that Besmer and 
coworkers sampled from a building tap, not directly from the DWDS, 
which possibly affected the bacterial concentration observed. Periods A, 
D and E show a clear peak in TCC between the hours 19–21. Such group 
of hours was, also, characterized by significantly higher variability than 
the other times of the day (p-value < 0.001). This variability could not 
be attributed to different days of the week or the occurrence of week
ends, but it is likely due to the diversity of flow conditions which 
affected biofilm detachment and loose deposits resuspension (Chan 
et al., 2019; Lehtola et al., 2006; Liu et al., 2014; Nescerecka et al., 
2014). The same behavior was not observed during periods B, C and F 
where, instead, the group of hours did not show significant differences in 
their variability (p-values, respectively, equal to 0.17, 0.97 and 0.91) 
and in their TCC (p-values > 0.08, with the exception of 0.02 for the 
groups of hours 11–14 and 14–19 in period B). The different behavior 
could be caused by an alteration of the water consumption due to the 
occurrence of the holiday season coincident with periods B and C. 
Noteworthy, period F also coincides with the city patron holiday. 

Noticeably, neither the TCC daily trend observed during this moni
toring campaign or either the ones carried out by Nescerecka et al. 
(2014) and Farhat et al. (2020) follow the typical water demand pattern 
(e.g. Candelieri, 2017). While some events might have occurred within 
samples, it is unlikely that a consumption peak was missed due to the 
high sampling frequency. A more likely explanation is that TCC varia
tions are caused by local variations of the water flow which are affected 
by the instantaneous demand of small groups of consumers leading to 
higher unpredictability in such patterns (Trifunović, 2006). 

Compared to TCC, HPC allowed to detect <1% of the bacteria pre
sent in the water (Table S2), as reported by previous studies (van der 
Kooij, 2003; Van Nevel et al., 2017b). Moreover, HPC showed higher 
variability within each periods (coefficients of variation: HPC 0.4–2.53, 
TCC 0.24–0.43) which allowed to discriminate only period C from pe
riods A and E (Table S3) indicating the lower sensibility of HPC with 
respect to FCM, similarly to what found by Prest et al. (2016c) and Jie 
et al. (2017). Furthermore, the concordance ratio of the sign of the 
variations of HPC and TCC in consecutive samples was in the range 
0.46–0.6, suggesting that even a resource-intensive sampling campaign 
based on HPC would not be able to properly characterize microbial 
water quality dynamics, in accordance to what reported by Besmer et al. 
(2017). Furthermore, congruently to the low concordance ratios found 
and similarly to other studies (Nescerecka et al., 2014; Siebel et al., 
2008), low correlations between TCC and mesophilic and psychrophilic 
HPC with standard incubation were found (Pearson’s r equal to 0.25 in 
both cases). However, in case of extended incubation such coefficients 
increased respectively to 0.48 and 0.47 due to the fact that a larger 
number of colonies had time to develop (p-value < 0.001). Separating 
the data for each period made possible to observe how such relationship 
varied in different periods (Figure S4). Such behavior is likely due to the 
difference of the bacterial communities present in each period. For this 
reason, even though an extended incubation was shown to generically 
increase the values of correlations between TCC and HPCs, the corre
lations obtainable are not only site-specific, but also, time-specific and, 
as shown by Van Nevel et al. (2017), extremely weak correlations are 
found in case data from multiple sources is used. In any case, the time 

required to obtain a result with traditional plating methods makes this 
technique infeasible for an efficient management of the DWDS. 

3.2. Bacterial community dynamics 

The bacterial communities were studied with respect to samples 
HNA% and, both, alpha and beta diversity, which represent respectively 
the intra- and inter-sample variability. These properties are useful to 
discriminate samples not only based on their concentration, but also on 
the characteristics of the bacteria present in the water allowing the 
identification of bacterial population changes (Favere et al., 2020; Prest 
et al., 2014; Props et al., 2018b). 

In coincidence with the increase of TCC during periods B and F, an 
increase in HNA% was also observed (Figure S5). However, differently 
from TCC, this increase was not found in period D, which, conversely, 
had significantly lower HNA% with respect to the baseline periods. As 
some LNA bacteria are likely to be obligate oligotrophs unable to grow 
in rich media (Wang et al., 2009), the increase of HNA, again, suggests a 
higher availability of nutrients which favored the growth of HNA bac
teria and/or the passage from LNA to HNA (Bouvier et al., 2007; Proctor 
et al., 2018; Rubbens et al., 2019). Furthermore, by observing HNA% at 
hours group level a general daily trend can be identified: HNA% 
generically increased between 06 and 19, dropped between 19 and 21 
and re-increased during the night. The daily trend, as explained in 
Section 3.1 regarding TCC, is likely due to the consumers’ water demand 
which alters the water microbiological quality due to biofilm detach
ment and loose deposits resuspension. 

Before assessing the samples alpha and beta diversity, all samples 
were analyzed to identify phenotypic community types present (Props 
et al., 2018b). Such analysis identified 2 different phenotypic types, as 
shown in Figure S6, with “type 1” predominantly present in periods A, 
with the exception of an event close to its beginning, D and E, and “type 
2” in periods B, C and F. Except for the onset of the event in period A, a 
persistent change between the two types occurred after a period with 
frequent switches between community types (e.g. the onset of period B), 
indicating that the transition occurred in a period longer than the in
terval between two measurements. 

Alpha diversity was assessed through the phenotypic diversity index 
D2 which accounts for both the effective number of phenotypical states 
(richness) and their relative abundance (evenness) within each sample 
(Props et al., 2016). The index D2 showed an average value of 1946 ±
247 a.u., slightly lower but in the same range of the tap water results 
obtained with comparable settings in Props et al. (2018b), indicating a 
similar richness and evenness of the two microbial communities. During 
the monitoring period the diversity index was not stable, but, as pre
sented in Fig. 2a, its values showed negligible uncertainty and a negative 
correlation with TCC in each period (p-value < 0.001), regardless of the 
phenotypic community type. As taxonomic and phenotypic indices are 
strongly related (Props et al., 2016), such result indicates that the in
crease of TCC is due to a limited number of taxa which affect the com
munity richness and evenness. It can also be noted how the relationship 
between the index D2 and TCC varies in the different periods, such as 
periods C or F compared to B, D and E (Spearman’s rho, respectively, 
− 0.27, − 0.87, − 0.55, − 0.58, − 0.62), or also within a single period 
(period A). However, as shown in Fig. 2b, when phenotypic community 
“type 1” was present, the increase in TCC resulted in lowered HNA%; 
while, in the presence of phenotypic community “type 2”, a different 
behavior can be observed. These differences are likely due to the di
versity of the phenotypic characteristics of the additional cells with 
respect to the ones present at lower TCC. Declines in bacterial commu
nity evenness are generically not wanted in the distributed water, 
especially in correspondence to increases in the cell concentrations, as 
such behavior has been linked with lower resistance against invasive 
species (De Roy et al., 2013; Van Nevel et al., 2013). 

Beta diversity was, instead, evaluated thanks to the estimation of 
Bray-Curtis dissimilarity and analyzed using principal coordinates 
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analysis (PCoA) plots, shown in Figs. 3 and 4, and several multivariate 
statistics summed up in Table 1. Bray-Curtis dissimilarity provides an 
easily interpretable and bounded measure of the difference between two 
fingerprints and is widely used in ecology (Favere et al., 2020; Legendre 
and Legendre, 2012). Period A was tested both including and excluding 
the event characterized by the presence of phenotypic community “type 
2”, as such event could be considered an outlier influencing period A 
results. Figs. 3 and 4 show how phenotypic clustering leads to compa
rable results to the analysis of Bray-Curtis dissimilarity, as the clusters 
belonging to the different phenotypic community types show a clear 
separation in the PCoA plot indicating the diversity of the bacterial 
communities. However, the discrete nature of phenotypic community 
types makes its result less detailed, especially during periods in which a 
modification of the bacterial community is present (periods B and F), in 
accordance with what reported by Favere et al. (2020). In addition, the 
beta diversity analysis confirmed the peculiarity of the event in period A, 
highlighted by phenotypic clustering: such samples are shown in the 
same region as the ones belonging to period C indicating high similarity 
between these samples. The reason for such event was investigated with 
the aid of the water utility managing the DWDS, but no evident reason 

was found as no interventions or costumer complaints were reported and 
no conventional physical-chemical analyses were carried out during 
those days. 

The Mantel tests in Table 1 demonstrate that only a limited corre
lation is present between samples beta diversity and time differences in 
periods A, D and E, suggesting the stability of the bacterial community 
during these periods. Differently, periods B and C show higher Mantel 
coefficients due to the presence of monotonic correlations between the 
beta and temporal diversity. The presence of a stronger correlation can 
also be seen in Fig. 3: periods B and C show a clear trend between the 
start and the end of the period, while periods A, D and E do not. The 
Mantel test does not detect properly the non-monotonic trend present in 
period F, which can be seen in Fig. 3, leading to a coefficient similar to 
period A. As the beta diversity was calculated after resampling to the 
minimum sample size, such diversity analysis is not influenced by the 
different TCC in each sample. Nonetheless, it can be observed how the 
increase of TCC in periods B, C and F coincides with alterations in the 
bacterial community. As no changes in water treatment were done 
during this monitoring period and, thus, it can be excluded as the cause 
for this behavior, a possible cause could be due to the onset of physical- 

Fig. 2. Phenotypic diversity index D2 (a) and HNA% (b) as a function of TCC. The labels on the top of each panel indicate to which periods the filled markers belong 
to, while grey empty markers represent the samples not belonging to the specific period. Vertical bars present in (a) indicate the 95% confidence interval estimated 
through bootstrapping. 
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chemical conditions within the DWDS which increased bacterial growth 
leading to higher TCC and to the changes in the fingerprints, similarly to 
what observed by Buysschaert et al. (2019). 

Beta diversity was also analyzed with respect to sampling dates and 
hours groups. Before the analysis, the groups of hours used beforehand 
were modified, as shown in Fig. 4, to obtain a more balanced design and 
obtain valid results in case of groups dispersion heterogeneity (Anderson 
and Walsh, 2013). Such operations are also supported by the similarity 
of these groups position in the PCoA plot (Fig. 4). The different groups of 
hours show a significant distinction (p-value < 0.001) in case the sam
ples belonged to phenotypic community “type 1”, while a much weaker 
distinction was found for “type 2” (p-value = 0.06). The PERMDISP 
analysis shows, as reported in Table 1, that during periods A, D and E, 
the dispersion of the samples of the various groups of hours is signifi
cantly different, while this is not verified in case of periods B, C and F. 
During periods A, D and E, the groups of hours which include mealtimes 
(06–11, 11–14 and 19–23) showed an average higher dispersion than 
the others. On the contrary, sampling dates show no significant differ
ence in their dispersion with the exception of periods C and, to a lesser 
extent, E. The results of PERMANOVA analysis showed in Table 1 
indicate that, during periods with a limited correlation between beta 
diversity and time (periods A, D and E), the hour groups explain a 
comparable or larger share of the beta diversity, compared to the sam
pling date. On the contrary, the sampling dates explain most of the 
variability in periods B, C and F, in accordance with the monotonic 
trends detected by the Mantel test. The high percentage of variation due 
to the sampling dates in period F supports the conclusion of the presence 
of a trend, even though non monotonic, during this period, as deduced 
from Fig. 3. 

By observing the PCoA plot in Fig. 4, it is also possible to notice an 
intra-day pattern in the samples belonging to phenotypic community 
“type 1”. This is also supported by the pairwise ANOSIM analysis re
ported in Table 2: even though all differences can be considered as 
significant (p-value < 0.001), the R statistics for the couples “23–03” 
and “03–06”, “19–23” and “06–11”, and “14–19” and “11–14” is one 
order of magnitude lower than the other combinations and below 0.1, 
indicating the high similarity of their center and dispersion (Buttigieg 
and Ramette, 2014). To the best of our knowledge, the detection of 
cyclical intra-day patterns in the DWDS bacterial community composi
tion has never been highlighted before through FCM, confirming what 
observed with molecular and genetic techniques which, however, do not 
allow for online use (Bautista-de los Santos et al., 2016; Sekar et al., 

2012). 
Such results suggest that a certain value of daily variability of the 

bacterial community within DWDS is to be expected. Furthermore, even 
though the daily degree of variability might be constant across days, this 
might not be true at different hours. The cause of such diversity could be 
due to variations at the DWTP and/or to phenomena occurring within 
the DWDS, including stagnation in pipes, biofilm resuspension and loose 
deposit resuspension, likely affected by the different local water con
sumption and by its variability (Bautista-de los Santos et al., 2016; 
Farhat et al., 2020; Prest et al., 2014). For example, the water uses 
connected with mealtimes can lead to greater fluctuations of the local 
water flow compared to the other groups of hours, causing an increased 
sample diversity. For these reasons, sampling times should then be taken 
into account in the monitoring planning in order to observe the full 
diversity (e.g. sampling at different hours) or to avoid spurious variation 
in the data (e.g. sampling at a specified time). 

Beta diversity variations were tested against changes of the plate 
counts values. No significant differences were found between samples 
characterized by the detection of P. aeruginosa and the ones, taken in the 
same period and groups of hours, with no detection, likely due to the low 
counts (2–4 CFU/250 mL). Furthermore, no significant correlation was 
found between the samples beta diversity and the ratio between meso
philic and psychrophilic HPC, used as an indicator of the cultured 
community composition. The absence of a correlation between beta 
diversity and the diversity of the ratio between HPCs is likely due to the 
fact that HPC are composed of copiotrophic bacteria, whose change does 
not reflect the one of the entire bacterial community (Burtscher et al., 
2009; Hoefel et al., 2005). The lack of the detection of fecal contami
nation indicators demonstrates that the observed variations are not due 
to a fecal contamination, but are, instead, to be attributed to the DWTP 
and/or the DWDS operation. This comparison further underlines the 
limited sensibility of standard plating methods to detect changes in the 
total bacterial community composition. 

3.3. Correlations with physical-chemical water quality 

Microbiological parameters showed significant correlations with pH 
and conductivity as summarized in Table 3. Both water characteristics 
were found to be significantly correlated with changes in TCC and, 
furthermore, the composition of the bacterial populations. Except for the 
correlation between alpha and beta diversities and pH, which show a 
weakly-significant monotonic correlation and a non-significant linear 

Fig. 3. Principal coordinates analysis (PCoA) of beta diversity time trends estimated through Bray-Curtis dissimilarity. The labels on the top of each panel indicate to 
which periods the filled markers belong to, while grey empty markers represent the samples not belonging to the specific period. 
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Fig. 4. Principal coordinates analysis (PCoA) of beta diversity estimated through Bray-Curtis dissimilarity. Plots with grey axes and the connected arrows illustrate 
the merging and splitting operation described in the text. The labels on the top of each panel indicate to which periods the filled markers belong to, while grey empty 
markers represent the samples not belonging to the specific period. 

Table 1 
Summary of beta diversity analysis results for each period: p-values are enclosed in brackets, while the other entries represent the Mantel correlation coefficient and the 
percentage of explained variance [R2] in the PERMANOVA analysis.   

Periods 

A A (no event) B C D E F 

Mantel test  0.22 (0.001) 0.20 (0.001) 0.76 (0.001) 0.49 (0.001) 0.06 (0.005) 0.11 (0.001) 0.22 (0.001) 
PERMDISP Hours groups (0.05) (<0.001) (0.21) (0.54) (<0.001) (<0.001) (0.53) 

Dates (<0.001) (0.08) (0.68) (0.014) (0.59) (0.04) (0.49) 
PERMANOVA Hours groups 0.11 (0.001) 0.18 (0.001) 0.08 (0.03) 0.06 (0.001) 0.29 (0.001) 0.20 (0.001) 0.17 (0.01) 

Dates 0.38 (0.001) 0.18 (0.001) 0.68 (0.001) 0.49 (0.001) 0.10 (0.06) 0.16 (0.001) 0.45 (0.001)  
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one, the other correlations showed similar values, and indicating that a 
monotonic linear relationship between the variables can be assumed. 
Even though both HNA% and Bray-Curtis dissimilarity reflect the bac
terial community composition, the different results obtained are due to 
the fact that Bray-Curtis dissimilarity has been estimated using data 
regarding FL1, but also FL2 and SSC, and it is thus more sensitive to 
changes in the community structure with respect to the overall variation 
of FL1 assessed through HNA% (Prest et al., 2013). Correlations bearing 
the same sign, as the ones in Table 3, were found between pH and 
conductivity, and cells concentrations and HNA% in other studies (Jie 
et al., 2017; Prest et al., 2016c). Unfortunately, as only pH and con
ductivity were measured, we cannot exclude the variation of other 
physical-chemical characteristics which could have affected bacterial 
cells characteristics, concentrations and communities, as speculated in 
Sections 3.1 and 3.2. These results highlight the link between the 
physical-chemical and the microbiological water quality within DWDSs, 
suggesting the possibility to act on the former to manage the latter in 
order to minimize operational issues (e.g. biocorrosion), aesthetic issues 
and ensure safer water for consumers (Hull et al., 2019; Prest et al., 
2016b; Waak et al., 2019). 

3.4. Implications for DWDS management and monitoring 

Due to the consumers demand, the operating conditions in DWDSs 
pipes vary widely within each day. The influence of local changes of 
such conditions, due to local instantaneous demands, on microbiological 
water quality leads to sensible variations in both bacterial concentra
tions and community structure during the day. Such changes, even 
though not being harmful to consumers per se (Allen et al., 2004), can 
highlight the presence of uncontrolled processes (e.g. bacterial growth, 
biofilm detachment and loose deposit resuspension, trigger of bio
corrosion phenomena, aesthetic deterioration) which are highly unde
sirable in a DWDS. 

Even though DWDS management can be optimized to take into ac
count water quality and pumps scheduling (Mala-Jetmarova et al., 
2017), the minimization of microbiological water quality fluctuations is 
likely challenging due to its susceptibility to local operating conditions. 
Nonetheless, the entity of the microbiological water quality variations 

can provide an indirect estimate of the DWDS infrastructure conditions 
and be used to assess the effect of maintenance operations used to 
control the presence of bacteria and biofilms, similarly to what done by 
Van Nevel et al. (2017a) and Del Olmo et al. (2021). 

The correlation between microbiological and physical-chemical 
water quality (Table 3; Jie et al., 2017; Prest et al., 2016c) suggests 
that a possible approach to control the microbiological variations of the 
delivered water is the reduction of the changes of physical-chemical 
water quality through improved water treatment. Nonetheless, this 
approach would not address the water quality variations which could 
occur during distribution due to the variation of operating conditions. 

FCM enables to observe variations of the bacterial concentration and 
community composition which are not necessarily detected by tradi
tional laboratory analysis based on HPC monitoring. In any case, this 
technique is unfortunately of little help in the assessment of the respect 
of HPC-based legal standards as EC (1998) and US EPA (2009), due to 
the limited correlation and concordance. Furthermore, due to the 
non-specificity of FCM, laboratory methods are still required to assess 
the presence of pathogen indicators such as E. coli and coliforms bacteria 
(Cheswick et al., 2019). Despite this, FCM automated solutions allow 
utilities to monitor the water microbiological water quality without the 
need for human intervention, thus extending monitoring outside the 
working hours of water system operators. In addition, FCM potentially 
enables a smart management of DWTPs and DWDSs if the detected 
variations are linked to specific actions. 

The findings of this study highlight how substantial variations of 
microbiological water quality can have a limited duration and can occur 
without any explicit cause (e.g. DWTP and DWDS failures, maintenance 
work, etc.). Standard microbiological and physical-chemical monitoring 
is not helpful to detect their occurrence as the temporal (and spatial) 
resolution is too coarse, not allowing to detect short-lived events. 

Regardless of the sampling frequency, when planning a monitoring 
campaign, it is necessary to take into account that bacteria concentra
tion and community structure can vary significantly throughout the day 
and decide the most suitable sampling strategy depending on the goal of 
the monitoring campaign. For example, in case the goal is to verify the 
presence of a long-term trend, sampling could be performed over a long- 
time span (e.g. weeks) at a fixed time of the day to reduce the effect 
caused by the daily variability. On the other hand, sampling at different 
hours in a short timeframe would, instead, ensure to assess the overall 
daily microbiological water quality fluctuations and the need to imple
ment corrective actions. In this sense, FCM can support an effective 
planning of the monitoring campaigns, performed by both FCM itself 
and standard methods, according to the final purpose, i.e. DWDS (and 
DWTP) management and verification of regulation compliance. 

3.5. Monitoring scheme optimization 

Due to the costs connected with long-term monitoring at high sam
pling frequency, a trade-off between the monitoring cost and the 
retrieved information is required. In case of FCM, an optimum should be 
found with respect to both cell concentrations and bacterial commu
nities diversity, as both are relevant to ensure the delivery of high 
quality water (Favere et al., 2020). Furthermore, as high FCM cell 
concentrations do not necessarily imply health risks and no universal 
absolute upper limit exist (Prest et al., 2016b; Van Nevel et al., 2017), an 
optimal monitoring scheme should focus more on the detection of 
changes of the microbiological water quality, rather than just the 
maximum cell concentrations. 

Hypothetical alternative monitoring schemes were evaluated by 
comparing the full monitoring campaign, described before, with hypo
thetical scenarios in which a lower number of samples per day was 
analyzed (number of samples = 2–6). Fig. 5 illustrates the ratio Rbe

ta×ΔTCC obtained comparing the amplitude of daily beta diversity and 
TCC variations of the full monitoring campaign with the ones which 
would have been observed in hypothetical scenarios with different 

Table 2 
Pairwise ANOSIM R statistics between the samples characterized by phenotypic 
community “type 1” in the different groups of hours.   

Sampling hours group 

03–06 06–11 11–14 14–19 19–23 23–03 

Sampling 
hours 
group 

03–06       
06–11 0.21      
11–14 0.16 0.26     
14–19 0.17 0.36 0.04    
19–23 0.26 0.07 0.30 0.38   
23–03 0.02 0.17 0.13 0.15 0.21   

Table 3 
Correlations between physical-chemical and microbiological water quality 
indices. p-values are reported within brackets.   

pH Conductivity 

Spearman Pearson Spearman Pearson 

TCC 0.45 
(0.02) 

0.52 
(0.004) 

− 0.68 
(<0.001) 

− 0.76 
(<0.001) 

HNA% 0.44 
(0.02) 

0.45 
(0.02) 

− 0.71 
(<0.001) 

− 0.74 
(<0.001) 

Alpha diversity 
(phenotypic diversity 
index D2) 

− 0.37 
(0.05) 

− 0.29 
(0.14) 

0.43 
(0.027) 

0.39 (0.05) 

Beta diversity (Bray- 
Curtis dissimilarity) 

0.15 
(0.047) 

0.10 
(0.13) 

0.44 
(0.001) 

0.42 
(0.003)  
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sampling schemes. This metric expresses the ability of the specific 
monitoring scheme to capture the variability of beta diversity and TCC. 
As expected, Rbeta×ΔTCC increases with a higher number of samples per 
day but, regardless on the number of samples per day selected, the 
choice of sampling hours leads to significant differences (p-value <
0.001) in the value of Rbeta×ΔTCC. A strategy with random hours sam
pling, on one side, prevents from selecting a combination of hours 
resulting in the lowest Rbeta×ΔTCC values, but, on the other side, does not 
maximize the observed microbiological water quality variations, 
resulting thus in average and suboptimal performances. 

Even though the values shown in Fig. 5 are specific to the case study 
investigated, microbiological water quality has been often linked with 
cyclic patterns both at buildings taps (Besmer et al., 2014), in DWDS 
(Favere et al., 2020) and at DWTPs outlet (Besmer and Hammes, 2016). 
The presence of such patterns could be exploited by an optimized 
monitoring scheme to maximize the information obtained and mini
mizing costs. On the basis of these considerations, a monitoring scheme 
optimization strategy based on the following steps is proposed:  

1. Initial high-frequency sampling: an initial high-frequency sampling 
should be carried out to properly characterize the microbiological 
quality variations. Such initial period should last until the variation 
of the means of TCC in each hour and the beta diversity among all the 
hours drops below a defined threshold (e.g. 5% which was achieved 
after approximately one month in this case study).  

2. Rbeta×ΔTCC estimation and sampling scheme selection: the Rbeta×ΔTCC 
ratio between the high-frequency campaign and hypothetical sce
narios with lower sampling frequency should be calculated and used 
to select the optimal monitoring scheme by taking into account both 
monitoring costs and the Rbeta×ΔTCC values.  

3. Monitoring and detection of changes: microbiological monitoring 
should be carried out with the selected combination of number of 
samples per day and sampling hours. 

Due to the possible variability of these patterns, their eventual 
change should be investigated. Useful tools for this task could be the 
change of the detection methods, as, for example, the ones described in 
Aminikhanghahi and Cook (2017). If a change is detected, the whole 
strategy should be iterated from step 1 to redefine the new optimal 
sampling scheme. The complete procedure might not be necessary in all 
cases, as seasonal trend might be present within the DWDS and previous 
daily patterns might reoccur, as exemplified by the behavior of periods 
A, D and E in Figs. 1 and 3. In this case, an equivalence tests (Wellek, 
2010) could be used to verify the novelty of the pattern, eventually 
leading to the reuse of an old pattern, further limiting the costs associ
ated with the initial high-frequency sampling. In case the collection and 
analysis of 2 samples per day over long periods would still not be feasible 
due to the costs or operational constraints, the collection and analysis of 
the samples could be carried out only for a few selected and equally 
distant days. In this case, it could, also, be possible to take into account 

(if present), systematic differences between weekdays to maximize the 
odds of observing the maximum variations possible. 

4. Conclusions 

Long term FCM and plate count high-frequency monitoring allowed 
to investigate the water quality in an unchlorinated DWDS secondary 
branch with respect to both microbial abundance and bacterial com
munity composition, highlighting both short- and long-term variations. 
In the periods when long-term microbiological quality variations were 
absent, FCM revealed consistent cyclic daily patterns for both cell con
centrations and, for the first time, bacterial community composition, 
resulting in higher hourly than daily differences. Such dynamics could 
not be properly observed using plate counts monitoring, underlining its 
low sensitivity. Instead, FCM data showed significant correlation with 
the water pH and conductivity suggesting a link between microbiolog
ical and physical-chemical water quality which could eventually be 
exploited for DWDS management. These findings stress the importance 
of a carefully planned monitoring campaign both with respect to the 
number of samples per day and the time of sampling to properly char
acterize the microbiological water quality dynamics. For these reasons, 
we propose a monitoring scheme optimization strategy to ensure the 
detection of most the microbiological water dynamics, limiting however 
the number of analyzed samples. Such optimization scheme will be 
particularly relevant for future studies and water utilities applying high- 
frequency long-term microbiological water monitoring. 
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