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Abstract. Network modeling is an important approach to understand cell behaviour.
It has proven its effectiveness in understanding biological processes and finding novel
biomarkers for severe diseases. In this study, using gene expression data and complex
network techniques, we propose a computational framework for inferring relationships
between RNA molecules. We focus on gene expression data of kidney renal clear cell
carcinoma (KIRC) from the TCGA project, and we build RNA relationship networks
for either normal or cancer condition using three different similarity measures (Pear-
son’s correlation, Euclidean distance and inverse Covariance matrix). We analyze the
networks individually and in comparison to each other, highlighting their differences.
The analysis identified known cancer genes/miRNAs and other RNAs with interesting
features in the networks, which may play an important role in kidney renal clear cell
carcinoma.

1 Scientific Background
Network biology covers a wide range of scales, from molecular interactions in the

cell to intercellular communications and connections between organisms. At the cell
level, high-throughput next-generation sequencing technology is generating an enor-
mous amount of genomic data from which qualitative and quantitative relationships
between RNA molecules can be inferred [1]. In particular, gene expression data provide
information about the synthesis of functional gene products, either proteins or not; us-
ing mathematical and statistical techniques, from gene expression data we can generate
biological networks, where genes are the network nodes and interactions between gene
products are the edges in the network graph. This process, named network inference or
reverse engineering, has given important insights on complex biological processes and
disease mechanisms within the cell [2]. Network inference has the advantage of being
efficient and inexpensive compared to experimental lab validation; thus, complex net-
work techniques and algorithms have been increasingly deployed to understand inferred
biological networks.

A complex network is a graph with non-trivial topological features [3], i.e., the pat-
terns of connection between its elements are neither purely regular nor purely random.
All biological processes can be modeled as networks, since they occur thanks to in-
teractions among molecules. In biology, the most studied complex networks are gene
networks, where typically genes encode for proteins; their interrelated activity deter-
mines protein abundance and related processes [3].

Most of the approaches used for inferring edges in gene networks are based on sim-
ilarity (co-expression) measures. Co-expression measurement is based on the “guilt by
association” definition, where genes with similar expression profiles are functionally
associated due to their presumable co-regulation [2]. Thus, several different measures
have been considered to assess co-expression, including Pearson’s correlation and Eu-
clidean distance. Pearson’s correlation is the most common co-expression measure in
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the literature [2]. It has the benefit of being scalable, i.e., it can be efficiently com-
puted for large numbers of genes, and it is not sensitive to linear transformations or
different normalizations. Other methods for the construction of gene networks include
Bayesian network approaches, as well as regression and differential equation based
models. Bayesian networks are applied to represent conditional dependencies between
genes given their expression levels, using a directed acyclic graph structure [1]. How-
ever, this procedure is applicable only to small networks, i.e., only a modest number of
genes must be involved. Instead, regression and differential equation models are used
for inferring gene regulatory networks, i.e., they assume that a particular subset of gene
expression profiles is the most informing subset of all to predict expression profiles of
target genes [1].

Here, we focus on co-expression networks built by computing Pearson’s correlation,
Euclidean distance and inverse Covariance metrics. The first measure is calculated to
capture the scale-free similarity of gene expression profiles, the second one to take into
account the scale of different gene expression profiles, and the third one as a multivariate
analysis representing conditional independence between variables. Using expression
data from the TGCA project [4], we build two different gene co-expression networks
for normal or cancer cells, respectively; normal and cancer gene networks are computed
for each similarity measure, and comparison analyses are performed among them.

For the considered datasets, we integrated messenger RNA (mRNA), microRNA
(miRNA) and long non-coding RNA (lncRNA) expression profiles and we computed
the co-expression networks among them; thus, our study is not limited to protein cod-
ing RNAs. MicroRNAs are small non-coding RNA molecules containing between 19
and 25 nucleotides, which work for RNA silencing and post-transcriptional regulation
of gene expression [5]. The predominant function of miRNAs is to regulate protein
translation by binding to complementary sequences in the 3’ untranslated region (UTR)
of target messenger RNAs (mRNAs), and thereby to negatively regulate mRNA transla-
tion [5]. A single miRNA can target hundreds of mRNAs, using base-pairing with com-
plementary sequences within mRNA, and influence the expression of many genes often
involved in a functional interaction pathway. However, miRNAs can also target lncR-
NAs, which are made of more than 200 nucleotides and are not translated into proteins.
In this case, lncRNAs act as decoys for miRNAs silencing, allowing the translation of
target mRNAs [6].

2 Materials and Methods
In this section, we explain our extraction and pre-processing pipeline for TCGA gene

expression data and how we build pair networks for normal and cancer conditions, re-
spectively, using three different similarity measures for each condition, resulting in a
total of six networks.

2.1 Data extraction and pre-processing
We considered both RNA-Seq and miRNA-Seq public data for the human GRCh38

assembly from the TCGA repository. GRCh38 miRNA-Seq data contains miRNA quan-
tification (i.e., the calculated expression for all reads aligning to a particular miRNA)
and is derived from the sequencing of microRNAs, whereas GRCh38 RNA-Seq data
contains gene expression quantification. For each miRNA-Seq and RNA-Seq dataset of
each tumor type in TCGA, we computed the number of normal and cancer condition
patients. For kidney renal clear cell carcinoma (KIRC) the ratio between the number of
normal and cancer samples from patients resulted the lowest among all tumors in the
TCGA repository, providing balanced datasets. KIRC RNA-Seq dataset resulted to have
72 and 527 patients for normal and cancer conditions, respectively, and KIRC miRNA-
Seq dataset 71 and 545 patients for normal and cancer conditions, respectively. Thus,
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we used these KIRC data for our analysis.
Since RNA-Seq is designed for long gene sequencing, expression quantifications of

short genes (i.e., shorter than 200 bp) can be considered as measure errors indeed. Thus,
from the RNA-Seq dataset we removed them and selected only data of protein coding
and long non-coding genes, which we integrated with the miRNA-Seq dataset ones
keeping only those of patients common in both datasets.

We arranged these public gene expression data from the TCGA repository in the form
of matrices, thus we constructed RNA-Seq and miRNA-Seq matrices in which rows
represent genes/miRNAs and columns represent patients. Each element of the TCGA
miRNA-Seq matrices is the expression level computed as reads per million miRNA
mapped (RPM); conversely, the expression levels in the TCGA RNA-Seq matrices are
provided as fragments per kilobase million (FPKM). To integrate the two miRNA-Seq
and RNA-Seq datasets, we transformed miRNA expression data to be homogeneous
with the RNA expression data; we converted RPM expression levels into FPKM ones
by multiplying each element of the miRNA-Seq matrices by 100 and dividing it by the
double of the length of the corresponding miRNA.

Furthermore, to separate biologically relevant genes from low-expression noisy ones,
on the RNA-Seq data we applied the zFPKM normalization method [7]. For normal
and tumoral cases separately, we computed the mean and the standard deviation of the
log-transformed expression distribution of each gene across all KIRC samples and we
normalized each logarithmic FPKM value of a gene by subtracting the gene computed
mean and dividing the obtained value by the gene standard deviation (i.e., zFPKMs are
Z-scores of log(FPKMs)). Then, we removed those genes with mean of their zFPKM
distribution smaller than -3.0 in both normal and cancer conditions; this threshold sep-
arates expression levels of active genes from background genes as shown in [7].

After removing the background genes, we also deleted miRNAs with null expression
in all normal and cancer samples from patients; thus, we obtained two matrices, one
for normal and one for cancer data, each with 12,792 long RNAs (either coding or non-
coding) and 1,397 miRNAs, and regarding 71 normal and 487 patients with cancer,
respectively. These two matrices contain all the relevant FPKM values needed to build
the desired networks.

2.2 Building the networks
To build the adjacency matrices of the gene networks, we considered three different

similarity measures: Euclidean distance, Pearson’s correlation and inverse Covariance.
As mentioned in Section 1, we used these three different similarity measures to find
scale-free, scale-dependent and multivariate similarities, respectively.

The Euclidean distance between two points is the length of the path connecting them.
If p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) are two points in an Euclidean n-space, then
their distance d is given by the Pythagorean formula [8]:

d =

√√√√ n∑
i=1

(qi − pi)2 (1)

We applied the Euclidean distance on each pair of genes/miRNAs in the datasets, con-
sidering the n patients in the datasets as the Euclidean n-dimensional space.

In statistics, the Pearson’s correlation coefficient is a measure of the linear correlation
between two variables X and Y (Eq. 2) [1]. Its values range between −1 and +1, where
−1 indicates total negative linear correlation, 0 no linear correlation, and +1 total pos-
itive linear correlation. The Pearson’s correlation between varable X and Y is defined
as:

ρX,Y =
cov(X,Y)

σXσY
=

E[(X− µX)(Y − µY)]

σXσY
(2)



Proceedings of CIBB 2019 - Special session 4

(a) (b) (c) (d)

Figure 1: (a) Red dashed line represents the distribution of Pearson’s correlation coefficients for the
gene/miRNA expression dataset in normal condition. Dotted green line represents the distribution of
the average Pearson’s correlation coefficients on 10 permuted repetitions of the gene/miRNA expression
dataset in normal condition; (b)-(d) Strength distributions in normal and cancer networks are shown in
blue full line and red dashed line, respectively, for the networks built with each of the similarity measures
considered, i.e., Pearson’s correlation (b), Euclidean distance (c) and inverse Covariance (d), respectively.

where cov(X, Y ) is the covariance of the two variables X and Y, i.e., the joint variabil-
ity of X and Y, σX and σY are the standard deviations of X and Y, respectively, and
cov(X, Y ) can be expressed as the expected product of X and Y deviations from their
individual expected values (i.e., their means µX and µY , respectively). In our study we
computed pairwise Pearson’s correlation on each pair of genes/miRNAs in the datasets,
and used the Pearson’s coefficients to represent the weights of the edges in the networks.

The inverse Covariance matrix, commonly referred to as precision matrix, displays
information about the partial correlations of variables [9]. In the Covariance matrix, the
(i,j)-th element represents the unconditional correlation between a variable i and a vari-
able j [9]. The inverse Covariance matrix instead represents conditional dependence,
such that its (i,j)-th element is equal to zero if i and j are conditionally independent [9].
In other words, it gives the covariation of two variables while conditioning on the po-
tential influence of the others involved in the analysis, i.e., it removes the effect of other
variables. Thus, the precision matrix allows to obtain direct covariation between two
variables by capturing partial correlations. If X is the data matrix containing d variables
and n observations, the Covariance matrix can be expressed as follows:

C =
1

n− 1

n∑
i=1

(Xi − µ)(Xi − µ)> (3)

where C ∈ IRd×d, µ is the mean value of the variables, and> represents matrix transpo-
sition. In this study we considered genes/miRNAs as variables and patients as observa-
tions to compute the inverse of C, i.e., the precision matrix C−1. We built six different
networks, three for the cancer and three for the normal patients, based on the three
similarity measures described. Networks were first built as fully connected graphs for
all gene/miRNA pairs, where similarity coefficients are used as weights of the network
node associations. Then, we randomized the expression data and computed again the
similarity measures to obtain a reference null distribution [1]; we did so by computing
the average null distribution on 10 permuted repetitions of the gene/miRNA expression
dataset. From the comparison between real and average permuted distributions of each
similarity measure, we derived relevant associations in the networks [1]. In other words,
we identified the limit values of each permuted distribution and used them as thresholds
in the correspondent real distribution. E.g., Fig. 1 (a) shows that the average permuted
distribution for the normal Pearson’s correlation has values ranging from -0.2 to 0.4;
thus, values of the real normal distribution greater than 0.4 and smaller than -0.2 were
considered as representing relevant associations.

3 Results
The six constructed networks have same nodes and different edges/weights, depend-

ing on the similarity measure used for each network construction. We focused our un-
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supervised analysis on the computation of each node strength, i.e., the sum of the total
weighted connections of each gene/miRNA, in each of the six networks.

3.1 Pearson’s correlation networks
Strength distributions of Pearson’s correlation networks for normal and cancer con-

dition are shown in Fig. 1 (b), where the x-axis represents the strength values and
the y-axis is the proportion of nodes having certain strengths. Interestingly, the pro-
portion of nodes with strength around 0 gets higher in cancer condition (red dashed
line), meaning that in cancer many genes/miRNAs have lost their correlation with other
genes/miRNAs. We performed a gene set enrichment analysis on the set of genes whose
strength changes from high/low in the normal network to almost 0 in the cancer network
(156 genes out of 12,792) and found it significantly enriched for the KEGG metabolic
pathways (p-value 1.65× 10−25); indeed, KIRC is known as a metabolic disease.

MiRNAs having high/low strength in normal condition and almost 0 strength in can-
cer were 5 (out of 1,397): hsa-mir-192, hsa-mir-194-1 and hsa-mir-194-2, which are
well known miRNAs involved in cancer, as well as hsa-mir-22 and hsa-mir-378c.

3.2 Euclidean networks
Fig. 1 (c) shows the strength distribution for the nodes of the Euclidean networks,

i.e., the networks built using the Euclidean distance as similarity measure between each
pair of genes/miRNAs in the processed KIRC dataset in cancer (red dashed line) or nor-
mal (blue full line) condition, respectively. Fig. 1 (c) shows higher values of strength in
cancer compared to the strengths in the normal network, i.e., [4.0× 103, 2.65× 107] vs.
[1.5 × 103, 1.0 × 107], respectively. The y-axis scale permits the identification of a set
of outlier nodes having high values of strength in both normal and cancer conditions,
i.e., hsa-mir-10b, hsa-mir-30a, hsa-mir-22 and hsa-mir-143; these miRNAs maintain
high Euclidean distances with all the other genes/miRNAs in the dataset from normal to
cancer condition. Instead, hsa-mir-10a has one of the highest strength in the normal net-
work and low strength in cancer, with FPKM values over-expressed in normal condition
compared to cancer, where its regulatory activity could be disrupted.

3.3 Inverse Covariance networks
Also the inverse Covariance networks show different strength distributions in normal

and cancer conditions, as presented in Fig. 1 (d). The dependencies between pairs of
genes/miRNAs conditioned for all the other genes/miRNAs, here used as weights of
the inverse Covariance networks, are lower in cancer than in normal network. How-
ever, Fig. 1 (d) shows that inverse Covariance values in both normal and cancer net-
works are very close to 0; this means that, even if inverse Covariance coefficients have
greater values in normal than in cancer, they do not represent real dependency between
genes/miRNAs in either condition.

3.4 Network comparison
The strength analysis performed allowed us to identify relevant RNAs to be further

investigated. For example, hsa-mir-22 has an interesting behaviour in both Pearson’s
correlation networks and Euclidean networks. It has high values of Pearson’s correla-
tion coefficients with all the other genes/miRNAs in normal condition, however it does
not maintain these high correlations in cancer. It also has one of the highest value of
strength in both Euclidean networks, i.e., it has very distant FPKM expression values
from each other gene/miRNA in the network both in cancer and normal condition; fur-
thermore, these Euclidean distances get wider in cancer, where hsa-mir-22 doubles its
strength compared to the one in the normal network, with its FPKM mean value in-
creasing in cancer (to 396,490 from 332,072 in the normal condition). These features
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together make hsa-mir-22 a miRNA of interest for the analysis of gene/miRNA interac-
tions in KIRC. Another interesting miRNA is hsa-mir-10a; it is one of the outliers with
high value of strength in the normal Euclidean network, and it has very low strength
in the cancer Euclidean network; moreover, its strength values in Pearson’s correlation
networks are significantly different from normal to cancer condition (1,128 vs. 380,
respectively). Thus, in normal condition this miRNA has FPKM expression values dis-
tant from those of the other genes/miRNAs, but highly correlated with them, whereas
in cancer they get closer to the ones of the other genes/miRNAs and their correlation to
them decreases. Hsa-mir-10a has 290,026 and 140,536 mean FPKM values in normal
and cancer condition, respectively; thus, it is over-expressed in normal condition.

4 Conclusions
In this study we proposed an unsupervised data-driven framework based on com-

plex networks to better represent and understand gene/miRNA relationships and inter-
actions based on gene expression data. To this aim, we preprocessed the public gene
expression data of kidney renal clear cell carcinoma from the TCGA project, and we
computed three different similarity measures between genes/miRNAs to get different
normal and cancer network representations. Comparative analysis of the six networks
obtained lead us to identify two interesting miRNAs: hsa-mir-22 and hsa-mir-10a. They
are not significantly differentially expressed; yet, they display important features in
both Euclidean and Pearson’s correlation networks. According to Euclidean networks,
hsa-mir-22 has highly different expression from other genes/miRNAs in both normal
and cancer conditions, and hsa-mir-10a only in normal condition; however, based on
Pearson’s correlation networks, from normal to cancer condition both miRNAs lose
many correlations with other genes/miRNAs, i.e., they co-regulate with a lower number
of genes/miRNAs. Dysregulated miRNAs play an important role in cancer initiation
and progression, they have also showed great potential as novel diagnostic/prognostic
biomarkers of cancer [10]. Our findings support this assumption and stress the impor-
tance of understanding the function of miRNAs as gene suppressors. Future work will
further explore the created networks with ad hoc network algorithms, and will investi-
gate the role of miRNAs in the networks.
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