ARTICLE Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x # Biochemical characterisation of an $\alpha 1,4$ galactosyltransferase from *Neisseria weaveri* for the synthesis of $\alpha 1,4$ -linked galactosides Kun Huang^a, Andrea Marchesi^a, Kristian Hollingsworth^b, Peter Both^a, Ashley P. Mattey^a, Edward Pallister^a, Helene Ledru^c, Simon J. Charnock^d, M. Carmen Galan^c, W. Bruce Turnbull^b, Fabio Parmeggiani*,^{a,e}, Sabine Flitsch*,^a The human cell surface trisaccharide motifs globotriose and P1 antigen play key roles in infections by pathogenic bacteria, which makes them important synthetic targets as antibacterial agents. Enzymatic strategies to install the terminal α 1,4-galactosidic linkage are very attractive but have only been demonstrated for a limited set of analogues. Herein, a new bacterial α 1,4 galactosyltransferase from *N. weaveri* was cloned and produced recombinantly in *E. coli* BL21 (DE3) cells, followed by investigation of its substrate specificity. We demonstrate that the enzyme can tolerate galactosamine (GalN) and also 6-deoxygalactose and 6-deoxy-6-fluorogalactose as donors, and lactose and *N*-acetyllactosamine as acceptors, leading directly to analogues of Gb3 and P1 that are valuable chemical probes and showcase how biocatalysis can provide fast access to a number of unnatural carbohydrate analogues. # Introduction Carbohydrates on animal cell surfaces are often displayed as part of motifs that play a crucial role in biological interactions, such as cell-cell communication, surface recognition and pathogenic infection. Two biologically important trisaccharide motifs are globotriose (i.e., Gb3) and P1 antigens in which galactose is linked by an α 1,4-glycosidic bond to lactose and *N*-acetyllactosamine, respectively (Figure 1). **Figure 1.** Structure of Gb3 and P1 antigen motifs on cell surface glycans. The involvement of Gb3 and P1 antigens in a number of biological events has been demonstrated previously, in particular as animal cell surface receptors for toxins and pathogens. Shiga-toxin produced by STEC (shiga-toxinproducing Escherichia coli, i.e., E.coli O157) was shown to bind to the Gb3 motif of the glycolipid globotriosylceramide, on the intestinal cell surface, and this was recognised as a cause of food poisoning and sometimes even deadly haemolytic uremic syndrome (HUS).3 Similarly, Shiga-toxin recognises the P1 antigen, which shares the same terminal Gal- α 1,4-Gal epitope with globotriose.4 There is currently only limited therapy available against STEC infection and the interaction between globotriose and shiga-toxin provides an attractive therapeutic target for the development of treatments.5-9 Furthermore, the invasion of bacterial pathogens including Neisseria meningitidis and N. meningitidis immunotype L1 into mammalian cells was shown to be mediated by Gb3 in the bacterial lipooligosaccharides. 10 Therefore, Gb3 and P1 antigens, as well as their analogues, have been suggested as competitive inhibitors to prevent infections by pathogenic bacteria.5,11,12 Since the isolation of Gb3 and P1 trisaccharides from natural resources is not practical, there is a need for their synthesis and a number of chemical routes have been reported, 13-17 although the requirement for extensive protection/deprotection strategies results in a large number of steps and in low overall Enzymatic synthetic methods have also been proposed to access both Gb3 and P1 antigens, mainly involving $\alpha 1,4$ galactosyltransferases ($\alpha 1,4$ GalTs). Among them, NmLgtC from N. meningitidis is the most widely used glycosyltransferase for $\alpha 1,4$ -glycosidic bond formation. $^{18-21}$ Wang et al. studied the acceptor substrate specificity of a truncated enzyme variant vields. ^{a.} Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom. b. School of Chemistry and Asbury Centre for Structural Molecular Biology, The University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom. C. School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom. ^d Prozomix Ltd., Station Court, Haltwhistle, Northumberland, NE49 9HN, United Kinadom. e-Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy. Electronic Supplementary Information (ESI) available: kinetic studies, characterisation data, copies of the NMR and HRMS spectra. See DOI: 10.1039/x0xx000000x ARTICLE Journal Name using UDP-galactose as the donor substrate. 22 In order to decrease the cost of the donor substrate, coupling of the same system with nucleotide sugar regeneration was further investigated by Chen *et al.*, to produce Gb3 antigen derivatives. 23 Furthermore, the gene of α 1,4GalT and other required enzymes were cloned into the same plasmid to generate a whole cell biocatalyst for the production of Gb3 and P1 antigens and their derivatives. $^{24-26}$ Additionally, α 1,4GalTs from *Campylobacter jejuni* 27 and *Neisseria gonorrhoeae* 28 were also cloned and used for α 1,4-glycosidic bond formation. A limitation of enzymatic strategies is frequently a narrow substrate range, which can make access to analogues needed as biochemical probes very limited. Herein, we investigate a new $\alpha 1,4$ galactosyltransferase from *N. weaveri* (NwLgtC) for substrate promiscuity, in particular against deoxy, deoxyfluoro-and deoxyamino- analogues of the donor UDP-Gal. The applicability of this procedure to preparative scale synthesis was demonstrated with the preparation of a new deoxy derivative of Gb3 antigen (Gal6D- $\alpha 1,4$ -Lac-pNP). # Results and discussion ### Amino acid sequence analysis of NwLgtC Amino acid sequence alignment reveals that NwLgtC displays 46% and 63% identity with NmLgtC from *N. meningitidis* (UniProt: P96945) ²² and NgLgtC from *N. gonorrhoeae* (UniProt: A0A5K1QJC7)²⁸, respectively (Figure 2). No significant sequence identity was found with CgtD from *C. jejuni* (UniProt: Q8KWQ9).²⁷ The open-reading frame of the LgtC gene from Neisseria weaveri was synthesised with codon optimisation for E. coli expression and subcloned into pET-28a vector with N-terminal His-tag. The recombinant protein was produced in E. coli BL21 (DE3) cells using autoinduction TB medium at 25°C for 24 h. Protein purification was performed by Ni-NTA affinity chromatography, pooling all fractions containing the recombinant enzyme. The protein was precipitated by addition of ammonium sulfate (3.2 M final concentration). SDS-PAGE analysis (Figure 3) indicates that the recombinant enzyme possesses an apparent mass of approximately 35 kDa, which is consistent with theoretical molecular weight of 35.6 kDa. The specific activity against UDP-Gal and pNP-β-Lac (see assay conditions in the following section) was 66 mU mg⁻¹. This value is significantly lower than that reported for NmLgtC (5 U mg⁻¹) and NgLgtC (13 U mg⁻¹) for the synthesis of unmodified Gb3 antigen using UDP-Gal and lactose as donor and acceptor, respectively (1 U was defined as the amount of enzyme required for the formation of 1 μmol product per minute at 37°C). In view of a preparative application, the lower activity is certainly an issue, but not extremely critical, since activity and stability can be considerably improved with directed evolution and random mutagenesis approaches, as successfully done for most industrial enzymes. The most likely reasons for the lower activity of the NwLgtC preparation compared to reported homologues lie in the use of a modified substrate (pNP- β -Lac instead of Lac) and in the ammonium sulfate precipitation step. Even though the activity might be reduced by such treatment, # Gene cloning, protein expression and purification of NwLgtC **Figure 2.** Amino acid sequence alignment of LgtC galactosyltransferases (NmLgtC from *N. meningitidis*, NgLgtC from *N. gonorrhoeae*, NwLgtC from *N. weaveri*, CjCgtD from *C. jejuni*). Highly conserved residues are shown in black. Journal Name ARTICLE **Figure 3.** SDS-PAGE analysis of purified NwLgtC. M: protein marker; lane 1: purified NwLgtC. the loss is more than compensated by the fact that the final preparation can be obtained in large amounts, inexpensively and in a stable form (storage at 4°C, shipment at room temperature, etc.). ### **Biochemical characterisation of NwLgtC** The influence of pH, temperature and divalent metal ions on the activity of NwLgtC was studied by utilising pNP-β-Lac as acceptor. The enzymatic activity increased sharply from pH 4.5 to 5.5, then gradually until 7.0, with a maximum around 7.0-8.0, and decreased for higher values (Figure 4A). This behaviour is comparable with its homologues NmLgtC and NgLgtC. The optimal temperature for the activity of NwLgtC was found to be around 40°C (Figure 4B), which is identical with NgLgtC. The activity declined significantly at temperatures higher than 40°C, with almost no activity left at 70°C. The presence of a divalent cation was confirmed to be essential for the activity of the recombinant enzyme. Mn2+ was the best metal ion for such enzyme, followed by Mg²⁺ and Co²⁺ (Figure 4C), which is in agreement with its characterised homologues. NwLgtC was inactive in the presence of Ca^{2+} , Cu^{2+} or Zn^{2+} . Furthermore, the activity could be improved slightly by adding DTT (data not shown), which has also been observed for NmLgtC.²² A kinetic study of NwLgtC against UDP-Gal and pNP- β -Lac was performed, determining reaction conversions by HPLC. The apparent kinetic parameters were calculated by fitting the data to the Michaelis-Menten model using GraphPad Prism 7 (ESI, Figure S1). The K_m for UDP-Gal and pNP- β -Lac were 0.17±0.02 mM and 2.5±0.20 mM, and the corresponding $k_{\rm cat}$ were 0.64 ± 0.02 min⁻¹ and 1.11 ± 0.02 min⁻¹. Therefore, the catalytic efficiency values of the enzyme against UDP-Gal and pNP- β -Lac were 3.8 mM⁻¹ min⁻¹ and 0.45 mM⁻¹ min⁻¹, respectively. As a comparison, reported literature data for the homologue NwLgtC are: $k_{\rm cat}$ = 14.2 s⁻¹, K_m = 18 μ M, $k_{\rm cat}/K_{\rm m}$ = 0.81 μ M⁻¹ s⁻¹ against UDP-Gal; $k_{\rm cat}$ = 24.0 s⁻¹, K_m = 20 mM, $k_{\rm cat}/K_{\rm m}$ = 1.20 mM⁻¹ s⁻¹ against Lac.¹⁹ The increased efficiency reported is likely due to the use of the native acceptor Lac instead of the modified acceptor pNP- β -Lac. ### Donor substrate specificity study Initially, a panel of five commercially available nucleotide sugars (UDP-Gal, UDP-Glc, UDP-GalNAc, UDP-GlcNAc and UDP-GlcA) were tested to investigate the donor substrate specificity of NwLgtC, using Lac as the acceptor, under the previously optimised conditions. Only transfer from UDP-Gal was observed by MALDI-ToF analysis (ESI, Figure S12). In order to study substrate promiscuity in more detail, several nucleotide diphosphate galactose analogues (monodeoxygalactoses, monodeoxy-monofluorogalactoses and galactosamine) were synthesised by a one-pot multienzyme system involving galactokinase (SpGalK), galactose-1phosphate uridylyltransferase (EcGalPU) and UDP-sugar pyrophosphorylase (BIUSP), in the presence of catalytic amounts of UDP-Glc (Table 1). The formation of UDP-Gal and its analogues was confirmed by HRMS (ESI, Figures S2-S11). To evaluate these as donors for NwLgtC, disaccharides bearing an imidazolium-based tag (i.e., Lac-ITag and LacNAc-ITag) were utilised as acceptor substrates. These were produced by transferring a Gal unit by bacterial β1,4 galactosyltransferase to chemically synthesised Glc-ITag or GlcNAc-ITag, as previously reported.²⁹ Ionic liquid tagged glycosides are excellent probes for the screening and characterisation of glycoenzymes, since they ionise very readily and produce a dominant mass Figure 4. Biochemical properties of NwLgtC. A: effect of pH; B: effect of temperature; C: effect of divalent metal ions. ARTICLE Journal Name Table 1. Substrate specificity of NwLgtC against a panel of galactose donors and ITag-acceptors. | | | | | | X = OH | X = NHAc | |-----------|-----------------|----------------|----------------|----------------|------------------------|------------------------| | Substrate | R ¹ | R ² | R ³ | R ⁴ | Conv. [%] ^a | Conv. [%] ^a | | Gal | ОН | ОН | ОН | ОН | 76 | 13 | | Gal2D | Н | ОН | ОН | ОН | n.c. | n.c. | | Gal3D | ОН | Н | ОН | ОН | n.c. | n.c. | | Gal4D | ОН | ОН | Н | ОН | n.c. | n.c. | | Gal6D | ОН | ОН | ОН | Н | 65 | 9 | | Gal2F | F | ОН | ОН | ОН | n.c. | n.c. | | Gal3F | ОН | F | ОН | ОН | n.c. | n.c. | | Gal4F | ОН | ОН | F | ОН | n.c. | n.c. | | Gal6F | ОН | ОН | ОН | F | 41 | 1 | | GalN | NH ₂ | ОН | ОН | ОН | 24 | 1 | ^a Determined by MALDI-ToF analysis (n.c. = not converted). spectrometry signal. This allows for relative quantitative studies by MALDI analysis, by integrating the isotopic envelope peak area of starting substrate and product.^{30–33} According to the results obtained by MALDI-ToF (Table 1), NwLgtC could perform $\alpha 1,4$ -galactosylation on both Lac-ITag and LacNAc-ITag using not only galactose, but also 6-deoxygalactose, 6-fluorogalactose and galactosamine (ESI, Figures S13-S20). It is apparent that Lac-ITag acts as a much better acceptor than LacNAc-ITag, giving consistently higher conversion rates (Table 1). Additionally, it was found that Gal2D cannot be transferred by NwLgtC, in contrast with the reported behaviour of NmLgtC.²³ The lower conversions obtained for non-natural donors are very likely due to the decreased efficiency of LgtC in transferring those, rather than the poor conversion of the monosaccharide to the UDP-donor. The efficiency of the one-pot UDP-sugar synthesis was previously established, and also confirmed by HRMS. The fact that NwLgtC accepts UDP-GalN as a donor is of particular relevance since previous reports demonstrated the inability of other homologues (e.g. NmLgtC) to transfer GalN₃, a possible precursor of GalN. Thus, the use of NwLgtC opens up the access to galactosamine-containing Gb3 analogues. # Preparative scale synthesis of Gal6D-α1,4-Lac-β-pNP In order to demonstrate the applicability of the enzyme described herein to preparative synthesis, an extended version of the same three-step multienzyme system discussed above was employed to synthesise a non-natural analogue of Gb3 antigen (Scheme 1). Using Gal6D as precursor of the donor and **Scheme 1.** One-pot preparative scale synthesis of Gal6D- α 1,4-Lac- β -pNP using NwLgtC. Journal Name ARTICLE pNP-β-Lac as acceptor, the trisaccharide Gal6D-α1,4-Lac-β-pNP could be obtained in 50% conversion (as measured by HPLC), based on the acceptor. After the synthesis, the excess starting material Lac-β-pNP was removed by adding β-galactosidase and β-glucosidase. The pNP-trisaccharide was then separated from other monosaccharides and p-nitrophenol by preparative HPLC. Fractions containing product were collected and dried, affording 1.8 mg product (25% isolated yield, corrected for a small amount of an impurity that coeluted with the product). The structure of the compound was confirmed by NMR and HRMS characterisation (see ESI). # **Conclusions** In summary, a novel bacterial α 1,4 galactosyltransferase from N. weaveri was produced and characterised. The optimal pH and temperature were established (7.5 and 40°C) and the highest enzymatic activity was achieved in the presence of Mn²⁺. A kinetic study to establish the catalytic efficiency of the enzyme against UDP-Gal and pNP-β-Lac was carried out. The donor substrate scope of the enzyme was investigated using commercial and in situ synthesised donors, revealing that UDP-Gal, UDP-Gal6D, UDP-Gal6F and UDP-GalN as suitable donor substrates. Among them, to the best of our knowledge, Gal6F and GalN have never been reported as substrates for wild-type α 1,4 galactosyltransferases. The transfer of GalN is interesting because the amine group has the potential for orthogonal conjugation and further derivatisation (and because the possible precursor GalN₃ was previously shown not to be accepted by LgtC homologues). Furthermore, preparative scale synthesis of Gal6D- α 1,4-Lac- β -pNP was executed, giving 25% overall yield. Consequently, the current study provides a valuable addition to the array of biocatalysts for glycobiology, in particular for the synthesis of modified α 1,4-galactosides to be employed as probes and/or building blocks to study a range of infectious diseases. # **Conflicts of interest** There are no conflicts of interest to declare. # **Acknowledgements** This study was funded by BBSRC, EPSRC and Innovate UK: IBCatalyst programme [BB/M029034/1, BB/M028836/1 (SLF), BB/M028976/1 (MCG), BB/M028747/1 (WBT)], Marie Skłodowska-Curie Innovative Training Network [H2020-MSCA-ITN-2014-ETN-642870] and the European Research Council (ERC) [ProgrES-DVL-788231 (SLF), COG-648239 (MCG)]. We are grateful for the invaluable help provided by Dr. Matt Cliff and Dr. Reynard Spiess for NMR and HRMS analyses, respectively. # **Experimental section** ### **Materials** Galactose, galactosamine, pNP-β-lactose, ATP, UTP, UDPgalactose, UDP-glucose, UDP-N-acetylgalactosamine, UDP-Nacetylglucosamine, UDP-glucuronic acid, 2,4,6trihydroxyacetophenone (THAP), β-galactosidase and inorganic pyrophosphatase were purchased from Sigma-Aldrich. 2-3-deoxygalactose, 4-deoxygalactose, 6deoxygalactose, 2-deoxy-2-fluorogalactose, deoxygalactose, 3-deoxy-3fluorogalactose, 4-deoxy-4-fluorogalactose, 6-deoxy-6fluorogalactose were purchased from Carbosynth. βglucosidase was purchased from Megazyme. Alkaline phosphatase was purchased from Promega. All chemicals and commercially available enzymes were used without any further purification. Galactokinase from Streptococcus pneumoniae (SpGalK), galactose-1-phosphate uridylyltransferase from E. coli K12 (EcGalPU) and β1,4-galactosyltransferase from *N*. meningitidis (NmLgtB-A) ²⁹ were provided by Prozomix Ltd. The plasmid harbouring UDP-sugar pyrophosphorylase from Bifidobacterium longum (BIUSP) was provided by Prof. Josef Voglmeir (Nanjing Agricultural University, China). ### Protein expression and purification The gene of NwLgtC was synthesised by Twist Bioscience (San Francisco, USA) codon-optimised for E. coli expression. The synthesised DNA fragment was subcloned into plasmid pET28a, which was subsequently transformed into E. coli Top10 competent cells. A few colonies bearing the construct were confirmed by plasmid DNA isolation and gene sequencing. The pET28a-NwLgtC construct was transformed into E. coli BL21(DE3) competent cells. Small-scale expression was carried out to determine the production of soluble and active protein. The large-scale expression was performed by inoculating 400 mL autoinduction Terrific Broth medium in a 1 L flask and growing the culture at 25°C for 24 h (final OD₆₀₀ between 10 and 20). The cells were harvested by centrifugation (6000 g, 15 min, 4°C), resuspended in HEPES buffer containing NaCl (500 mM) and imidazole (10 mM), and lysed by sonication. The cell debris and intact cells were removed by centrifugation (8000 q, 30 min, 4°C). The protein was purified by immobilised metal affinity chromatography (IMAC) on a Ni2+-NTA column (GE Healthcare). The lysate was filtered through a 0.45 µm syringe filter and loaded on the column. Two wash steps were performed using the same buffer containing 10 mM and 50 mM imidazole, respectively. Then, the bound protein was eluted using the same buffer containing 500 mM imidazole. The fractions containing purified protein were combined and concentrated in a centrifugal filter. Protein precipitation was induced by addition of solid ammonium sulfate (to a final concentration of 3.2 M) and the resulting milky white suspension was stored at 4°C until use. ARTICLE Journal Name ### Amino acid sequence of NwLgtC α 1,4 galactosyltransferase cloned from *Neisseria weaveri* LMG 5135 (NwLgtC, UniProt: A0A3S5C3F9) (MGSSHHHHHHSSGLVPRGSH) MNIVFASDDNYASYLGVTIF SILMHNQNAEIDFYILDLGISAESREAVSQLVGSRGCSVSFV QVDKNDFIQMPQTIDYISIASYARLKVAEYLQDIDRALYLDV DILVTGSLQPLWETDLEGRYVGACFDPYVEFELPGYKNKIGL QEQDYYFNAGVLLMDLGKWRDYDVFAKTLAWLGGYRDVIQYQ DQDILNGIFKDKVKFLDCRFNFMPFERSRMKRAKKQSGFELH PLEKATVPVVITHYCGKEKAWHADCVHTNAYLFADIFRKLEH VPHGWTKSVCRVGMKNRWEKIFHSIKDKYFYSIY # **Biochemical characterisation of NwLgtC** Effect of temperature. A 50 μL reaction mixture containing pNP-β-Lac (1 mM), UDP-Gal (2 mM), MnCl $_2$ (10 mM), Tris buffer (50 mM, pH 7.5) and NwLgtC (23 μg) was incubated at varying temperatures (6-80°C) for 1 h. The reaction was quenched by heating at 95°C for 5 min, followed by cooling on ice. The starting material pNP-β-Lac was hydrolysed by β-galactosidase and the product was analysed by HPLC. All assays were performed in triplicates. Effect of pH. A 50 μL reaction mixture containing pNP-β-Lac (1 mM), UDP-Gal (2 mM), MnCl₂ (10 mM) and NwLgtC (23 μg) in different buffers (50 mM, pH 4.0-9.0) at 37 °C for 1 h. Quenching and analysis were carried out as described above. All assays were performed in triplicates. Effect of divalent metal ions. A 50 μL reaction mixture containing pNP-β-Lac (1 mM), UDP-Gal (2 mM), Tris buffer (50 mM, pH 7.5) and NwLgtC (23 μg) with different divalent metal ions (10 mM, Ca²+, Co²+, Cu²+, Mg²+, Mn²+, Ni²+ and Zn²+) or EDTA (10 mM) at 37 °C for 1 h. Quenching and analysis were carried out as described above. All assays were performed in triplicates. # Determination of kinetic parameters of NwLgtC Several 50 μ L reaction mixtures in Tris buffer (50mM, pH 7.5) were prepared, containing either different concentrations of the donor substrate UDP-Gal (i.e., 0.1, 0.3, 0.5, 0.7, 1, 2 mM) with a fixed concentration of pNP- β -Lac (2 mM), or different concentrations of pNP- β -Lac (i.e., 0.3, 0.5, 1, 2, 4, 6, 8 and 10 mM) with a fixed concentration of UDP-Gal (2 mM). The reactions were started by addition of NwLgtC (23 μ g) and incubated at 37°C for 1 h. The reactions were quenched by heating at 95°C for 5 min, followed by cooling on ice. Subsequently, unreacted pNP- β -Lac was hydrolysed by incubation with β -glucosidase and β -galactosidase. The kinetic parameters were obtained by fitting the data to the Michaelis-Menten equation using GraphPad Prism 7.03. ### Donor substrate specificity study Commercial nucleotide sugars as donors. A 20 μ L reaction mixture containing lactose (1 mM), UDP-sugar (1.5 mM, Gal, Glc, GalNAc, GlcNAc, GlcA), Tris buffer (50 mM, pH 7.5), MnCl₂ (10 mM) and NwLgtC (7 μ g) was incubated at 37°C overnight. The mixture was analysed by MALDI-ToF (positive mode) using THAP as matrix. Nucleotide sugars generated enzymatically in situ as donor: A 40 μL reaction mixture containing different monosaccharides (8 mM), ATP (10 mM), Tris buffer (50 mM, pH 8.0), MgCl $_2$ (10 mM), SpGalK (12 μg), UTP (10 mM), BIUSP (3 μg), EcGalPU (1.3 μg) and pyrophosphatase (2 U) was incubated at 37°C overnight to synthesise the UDP-sugars. ITag-Lac and ITag-LacNAc (0.5 mM) were synthesised by using the recombinant bacterial $\beta 1,4$ galactosyltransferase NmLgtB-A according to published protocol.[29] Subsequently, a 10 μL reaction mixture consisting of ITag-Lac or ITag-LacNAc (0.1 mM), UDP-sugars, MnCl $_2$ (10 mM), Tris buffer (50 mM, pH 7.5) and NwLgtC (30 μg) was incubated at 37°C overnight. The mixture was analysed by MALDI-ToF (positive mode) using THAP as matrix. The conversion rate was calculated by integrating the isotopic envelope peak areas. ## Preparative scale synthesis of Gal6D-α1,4-Lac-β-pNP A one-pot three-step telescopic reaction was utilised to prepare Gal6D- α 1,4-Lac- β -pNP. For the first step (phosphorylation of Gal6D) in a 50 mL Falcon tube a 5 mL reaction mixture was prepared, containing Gal6D (17 mg), ATP (85 mg), MgCl₂ (10 mM), MnCl₂ (10 mM), Tris buffer (50 mM, pH 8.0) and SpGalK (8 mg). The pH was immediately readjusted to 8.0 by addition of aq. NaOH (5 M), then the solution was incubated at 37°C overnight with gentle shaking. For the second step (UDP-Gal6D formation), 3 mL of a mixture containing UTP (110 mg), Tris buffer (pH 8.0, 50 mM), UDP-Glc (2 mM), BIUSP (3 mg), EcGalPU (1 mg) and pyrophosphatase (30 U) was added to the Falcon tube. The pH was immediately readjusted to 8.0 by addition of aq. NaOH (5 M), then the solution was incubated at 37°C overnight with gentle shaking. For the last step (α1,4 galactosylation with UDP-Gal6D), pNP-β-Lac (5 mg, 10.8 μmol), NwLgtC (22 mg) and alkaline phosphatase (250 U) were added to the Falcon tube, and the solution was incubated at 37°C with gentle shaking. The reaction was monitored by HPLC until no more improvements in conversion could be seen. Then, βglucosidase and β-galactosidase were added to hydrolyse the excess starting material pNP- β -Lac giving Gal, Glc and pNP. The product Gal6D-α1,4-Lac-β-pNP was purified by preparative HPLC, and characterised by NMR and HRMS. White solid, 1.8 mg, 27.4% isolated yield (including ~10% of an unidentified glycerol derivative that coeluted with the product), 25% corrected isolated yield (not taking into account the impurity present). ${}^{1}H$ NMR (500 MHz, D₂O): δ 8.21-8.17 (m, 2H, ArH), 7.19-7.15 (m, 2H, ArH), 5.22 (d, J = 7.8 Hz, 1H, H-a1), 4.78 (d, J = 4.1 Hz, 1H, H-c1), 4.46 (d, J = 7.7 Hz, 1H, H-b1), 4.40 (qd, J = 6.7, 0.9 Hz, 1H, H-c5), 3.96-3.92 (m, 1H, H-a6'), 3.90 (d, J = 3.4 Hz, Journal Name ARTICLE 1H, H-b4), 3.88-3.79 (m, 6H, H-a6", H-b5, H-b6', H-b6", H-c2, H-c4), 3.79-3.66 (m, 5H, H-a3, H-a4, H-a5, H-b3, H-c3), 3.63-3.58 (m, 1H, H-a2), dd (dd, J = 10.3, 7.9 Hz, H-b2), 1.09 (d, J = 6.6 Hz, 3H, H-c6). 13 C NMR (125 MHz, D₂O): δ 161.6 (Ar Cquat), 142.6 (Ar Cquat), 126.1 (Ar CH), 116.4 (Ar CH), 103.3 (C-b1), 100.1 (C-c1), 99.2 (C-a1), 78.1 (C-a4), 76.9 (C-b4), 75.5 (C-a5 or C-b5), 75.1 (C-a5 or C-b5), 74.1 (C-a3), 72.5 (C-a2), 72.0 (C-b2 or C-b3), 71.9 (C-c4), 71.8 (C-b2 or C-b3), 69.3 (C-c2), 68.3 (C-c3), 67.1 (C-c5), 60.2 (C-b6), 59.7 (C-a6), 15.2 (C-c6). HRMS (ESI): m/z for [M+Na]⁺ $C_{24}H_{35}NNaO_{17}$ ⁺ calcd. 632.1797, found 632.1802; [M+K]⁺ $C_{24}H_{35}KNO_{17}$ ⁺ calcd. 648.1537, found 648.1546. # References - 1 A. Varki, *Glycobiology*, 2017, **27**, 3–49. - D. Tsering, C. Chen, J. Ye, Z. Han, B. qian Jing, X. wei Liu, X. Chen, F. Wang, P. Ling and H. Cao, *Carbohydr. Res.*, 2017, 438, 39–43. - J. C. Paton and A. W. Paton, Clin. Microbiol. Rev., 1998, 11, 450–479. - 4 G. D. Armstrong, E. Fodor and R. Vanmaele, *J. Infect. Dis.*, 1991, **164**, 1160–1167. - T. Takeda, K. I. Yoshino, E. Adachi, Y. Sato and K. Yamagata, Microbiol. Immunol., 1999, 43, 331–337. - 6 X. Li, P. Wu, S. Cheng and X. Lv, J. Med. Chem., 2012, 55, 2702–2710. - 7 A. W. Paton, R. Morona and J. C. Paton, *Nat. Med.*, 2000, **6**, 265–270. - 8 R. A. Pinyon, J. C. Paton, A. W. Paton, J. A. Botten and R. Morona, *J. Infect. Dis.*, 2004, **189**, 1547–1555. - A. W. Paton, R. Morona and J. C. Paton, *Bioeng. Bugs*, 2010,1, 172–177. - R. J. P. M. Scholten, B. Kuipers, H. A. Valkenburg, J. Dankerts and W. D. Zollingertj, J. Med. Microbiol., 1994, 41, 236–243. - 11 G. D. Armstrong, P. C. Rowe, P. Goodyer, E. Orrbine, T. P. Klassen, G. Wells, A. Mac Kenzie, H. Lior, C. Blanchard, F. Auclair, B. Thompson, D. J. Rafter and P. N. Mc Laine, *J. Infect. Dis.*, 1995, **171**, 1042–1045. - 12 E. Fan, E. A. Merritt, C. L. M. J. Verlinde and W. G. J. Hol, *Curr. Opin. Struct. Biol.*, 2000, **10**, 680–686. - S. David and A. J. Acher, *Chem. Phys. Lipids*, 1978, 22, 197–206. - 14 K. C. Nicolaou, T. Caulfield, H. Kataoka and T. Kumazawa, *J. Am. Chem. Soc.*, 1988, **110**, 7910–7912. - S. I. Hashimoto, H. Sakamoto, T. Honda, H. Abe, S. I. Nakamura and S. Ikegami, *Tetrahedron Lett.*, 1997, 38, 8969–8972. - 16 H. C. Hansen and G. Magnusson, *Carbohydr. Res.*, 1998, **307**,233–242. - 17 L. J. Liotta, R. D. Capotosto, R. A. Garbitt, B. M. Horan, P. J. Kelly, A. P. Koleros, L. M. Brouillette and A. M. Kuhn, 2001, 331, 247–253. - W. W. Wakarchuk, A. Cunningham, D. C. Watson and N. M. Young, *Protein Eng.*, 1998, **11**, 295–302. - K. Persson, H. D. Ly, M. Dieckelmann, W. W. Wakarchuk, S.G. Withers and N. C. J. Strynadka, *Nat. Struct. Biol.*, 2001, 8, - 166-175. - F. Yan, M. Gilbert, W. W. Wakarchuk, J. R. Brisson and D. M. Whitfield, *Org. Lett.*, 2001, 3, 3265–3268. - 21 S. Koizumi, T. Endo, K. Tabata and A. Ozaki, *Nat. Biotechnol.*, 1998, **16**, 3–6. - J. Zhang, P. Kowal, J. Fang, P. Andreana and P. G. Wang, Carbohydr. Res., 2002, 337, 969–976. - 23 X. Zhao, Y. Zou, M. Xue, Z. Ma, S. Wang, P. G. Wang and M. Chen, Eur. J. Med. Chem., 2014, 80, 423–427. - 24 X. Chen, J. Zhang, P. Kowal, Z. Liu, P. R. Andreana, Y. Lu and P. G. Wang, J. Am. Chem. Soc., 2001, 123, 8866–8867. - Z. Liu, Y. Lu, J. Zhang, K. Pardee and P. G. Wang, *Appl. Environ. Microbiol.*, 2003, 69, 2110–2115. - 26 J. Zhang, P. Kowal, X. Chen and P. G. Wang, *Org. Biomol. Chem.*, 2003, 1, 3048–3053. - R. S. Houliston, S. Bernatchez, M. F. Karwaski, R. E. Mandrell, H. C. Jarrell, W. W. Wakarchuk and M. Gilbert, *Glycobiology*, 2009, 19, 153–159. - T. Kato, T. Oizumi, M. Ogata, A. Murakawa, T. Usui and E. Y. Park, *J. Biotechnol.*, 2015, **209**, 50–57. - 29 K. Huang, F. Parmeggiani, H. Ledru, K. Hollingsworth, J. Mas Pons, A. Marchesi, P. Both, A. P. Mattey, E. Pallister, G. S. Bulmer, J. M. Van Munster, W. B. Turnbull, M. C. Galan and S. L. Flitsch, *Org. Biomol. Chem.*, 2019, **17**, 5920–5924. - I. Sittel and M. C. Galan, *Bioorg. Med. Chem. Lett.*, 2015, 25, 4329–4332. - 31 M. C. Galan, A. T. Tran and C. Bernard, *Chem. Commun.*, 2010, **46**, 8968–8970. - 32 I. Sittel and M. C. Galan, *Org. Biomol. Chem.*, 2017, **15**, 3575–3579. - 33 M. C. Galan, A. T. Tran, K. Bromfield, S. Rabbani and B. Ernst, *Org. Biomol. Chem.*, 2012, **10**, 7091–7097. # **Graphical abstract** ## Keywords carbohydrates; globotriose; antigens; galactosyltransferases; biocatalysis