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In this paper we provide a criterion of essential self-adjointness for operators in the
tensor product of a separable Hilbert space and a Fock space. The class of operators
we consider may contain a self-adjoint part, a part that preserves the number of Fock
space particles and a non-diagonal part that is at most quadratic with respect to the
creation and annihilation operators. The hypotheses of the criterion are satisfied in
several interesting applications.
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1. INTRODUCTION

Let H1, H2 be separable Hilbert spaces. We consider the following space:

(1) H = H1 ⊗ Γs(H2) ;

where Γs(K ) is the symmetric Fock space based on K [see 7, 9, 24, for mathematical presen-

tations of Fock spaces and second quantization]. The symmetric structure of the Fock space

does not play a role in the argument: in principle it is possible to formulate the same criterion

for anti-symmetric Fock spacesH1⊗Γa(H2). We focus on symmetric spaces, the corresponding

antisymmetric results should be deduced without effort.

We are interested in proving a criterion of essential self-adjointness for densely defined

operators of the form:

(2) H = H01 ⊗ 1 + 1⊗H02 +HI ;

with suitable assumptions onH01,H02 andHI . Operators based on these spaces and with such

structure are crucial in physics, to describe the quantum dynamics of interacting particles and

fields.
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Self-adjointness of operators in Fock spaces has been widely studied, in particular in the

context of Constructive Quantum Field Theory [e.g. 13–15, 21, 25, 26] and Quantum Electro-

Dynamics [e.g. 1, 4–6, 16, 18, 20, 22, 27]. A variety of advanced tools has been utilized, for

even “simple” systems present technical difficulties to overcome: many questions still remain

unsolved.

In some favourable situations, however, it is possible to take advantage of the peculiar

structure of the Fock space and prove essential self-adjointness with almost no effort. The

idea first appeared in a paper by Ginibre and Velo [13]; and the author utilized it in [2, 11] for

the Nelson model with cut off: essential self-adjointness can be proved with less assumptions

than using the Kato-Rellich Theorem (and that becomes particularly significative in dimen-

sion two), see Section 4.2. Another remarkable application is the Pauli-Fierz Hamiltonian

describing particles coupled with a radiation field. For general coupling constants, essential

self-adjointness has been first proved in a probabilistic setting, using stochastic integration

[17, 18]. In this paper we prove the same result directly in Section 4.3, applying the criterion

formulated in Assumptions A0, AI and Theorem 3.1.

In the literature, self-adjointness of operators in Fock spaces has been studied using various

tools of functional analysis: the Kato-Rellich and functional integration arguments mentioned

above are two examples, as well as the Nelson commutator theorem [10]. For each particular

system, a strategy is utilized ad hoc: the more complicated is the correlation between H1 and

Γs(H2), the more difficult is the strategy. We realized that, if we take suitable advantage of

the fibered structure of the Fock space, the type of interaction between the spaces is not so

relevant. This was a strong motivation to study the problem from a general perspective. Due

to the variety of possible applications, an effort has been made to formulate the necessary

assumptions in a general form. Roughly speaking, the essential requirement is that the part

of HI that does not commute with the number operator of Γs(H2) is at most quadratic with

respect to the creation and annihilation operators. As anticipated, the space H1 does not play

a particular role, as long as HI behaves sufficiently well with respect to H01.

1. Paper organization.

In Section 1.2 we introduce the notation, and recall some basic definitions of operators

in Fock spaces. In Section 2 we formulate the necessary assumptions on the operator H.

In Section 3 we prove the criterion. In Section 4 we outline some of the most interesting
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applications. Finally in Section 5 we give some conclusive remarks, and an extension of the

criterion to semi-bounded quartic operators.

2. Definitions and notations.

• Let K be a separable Hilbert space. Then the symmetric Fock space Γs(K ) is defined

as the direct sum:

Γs(K ) =
∞⊕
n=0

K ⊗sn ,

where K ⊗sn is the n-fold symmetric tensor product of K , and K ⊗s0 := C.

• Let h : K ⊇ D(h)→ K be a densely defined self-adjoint operator on a separable Hilbert

space K . Its second quantization dΓ(h) is the self-adjoint operator on Γs(K ) defined by

dΓ(h)|D(h)⊗sn =
n∑
k=1

1⊗ · · · ⊗ h︸︷︷︸
k

⊗ · · · ⊗ 1 .

Let u be a unitary operator on K . We define Γ(u) to be the unitary operator on Γs(K )

given by

Γ(u)|K ⊗sn =

n⊗
k=1

u .

If eith is a group of unitary operators on K , Γ(eith) = eitdΓ(h).

• N := dΓ(1) the number operator of Γs(H2).

• H0 := H01 ⊗ 1 + 1⊗H02; the free Hamiltonian.

• If X is a self-adjoint operator on a Hilbert space, we denote by D(X) its domain, by

qX(·, ·) the form associated with X and by Q(X) the form domain.

• Let K be a Hilbert space; {K (j)}j∈N a collection of disjoint subspaces of K ; X an oper-

ator densely defined on K . We say that {K (j)}j∈N is invariant for X if ∀j ∈ N, X maps

D(X) ∩K (j) → K (j), and D(X) ∩K (j) is dense in K (j).

• Let K be a Hilbert space; {K (j)}j∈N a collection of disjoint closed subspaces of K such

that
⊕

j∈NK (j) = K . Then we call the collection complete, and we define the dense
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subset f0(K (·)) of K as:

(3) f0(K (·)) =
{
φ ∈ K ,∃n ∈ N s.t. φ ∈

n⊕
j=0

K (j)
}
.

Also, we denote by 1j(K (·)) the orthogonal projection on K (j), by 1≤n(K (·)) the orthog-

onal projection on
⊕n

j=0 K (j).

• Let K 3 f, g be two elements of a separable Hilbert space. We define the creation a∗(f)

and annihilation a(f) operators on Γs(K ) by their action on n-fold tensor products (with

a(f)φ0 = 0 for any φ0 ∈ K ⊗s0 = C):

a(f)g⊗n =
√
n 〈f, g〉K g⊗(n−1)

a∗(f)g⊗n =
√
n+ 1 f ⊗s g⊗n .

They extend to densely defined closed operators and are adjoint of each other: we denote

again by a#(f) their closures. For any f ∈ K , D(a∗(f)) = D(a(f)) with

D(a(f)) =
{
φ ∈ Γs(K ) :

∞∑
n=0

(n+ 1)‖〈f(x), φn+1(x,Xn)〉K (x)‖2K ⊗sn(Xn) < +∞
}
,

where φn+1 = φ
∣∣
K ⊗sn+1 ; also D(a(f)) ⊃ D(dΓ(1)1/2), D(a(f)) ⊃ f0(K (·)). They satisfy

the Canonical Commutation Relations [a(f1), a∗(f2)] = 〈f1, f2〉K on suitable domains

(e.g. f0(K (·))).

• We decompose Γs(H2) in its subspaces with fixed number of particles as usual: ∀n ∈ N,

define H
(n)

2 := H ⊗sn
2 , with the convention H

(0)
2 = C. Then {H (n)

2 }n∈N is a complete

collection of closed disjoint subspaces of Γs(H2) invariant for N .

• Let X be an operator on H . We say that X is diagonal if {H1 ⊗H
(n)

2 }n∈N is invariant

for X; X is non-diagonal if for all n ∈ N and φ ∈ D(X) ∩H1 ⊗H
(n)

2 , Xφ /∈H1 ⊗H
(n)

2 .

2. ASSUMPTIONS ON H

In this section we discuss Assumptions A0 and AI (A′I ). In Section 4 below they are checked

in concrete examples.

We recall that our Hilbert space H has the form

H = H1 ⊗ Γs(H2) ;
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while the operator is

H = H01 ⊗ 1 + 1⊗H02 +HI .

We separate the assumptions on H0 from the ones on HI , to improve readability. On HI

we require either Assumption AI or Assumption A′I . In AI the non-diagonal part of HI can

be more singular: that restricts the diagonal part to be at most quadratic in the creation

and annihilation operators. In A′I on the other hand is assumed more regularity on the non-

diagonal part of HI , allowing for a more singular diagonal part.

AssumptionA0. H01 andH02 are semi-bounded self-adjoint operators. We denote respectively

by −M1 and −M2 their lower bounds. Furthermore, ∀t ∈ R, {H (n)
2 }n∈N is invariant for eitH02 .

This is quite natural. In physical systems theHamiltonian is often split in a part describing

the free dynamics (usually a self-adjoint and positive unbounded operator), and an interaction

part. The invariance of the n-particles subspaces is also a usual feature of free quantum

theories: let h02 be a semi-bounded self-adjoint operator on the one-particle space H2; then

the second quantization dΓ(h02) is self-adjoint, and the group Γ(eith02) generated by it satisfies

the assumption.

Assumption AI . HI is a symmetric operator on H , with a domain of definition D(HI) such

that D(H0) ∩D(HI) is dense in H . Furthermore ∀φ ∈ Q(H01 ⊗ 1) ∩Q(1⊗H02) ∩H1 ⊗H
(n)

2 ,

(4) HI φ ∈
2⊕

i=−2

H1 ⊗H
(n+i)

2 .

Also, HI satisfies the following bound: ∀n ∈ N ∃C > 0 such that ∀ψ ∈ H , ∀φ ∈ Q(H01 ⊗ 1) ∩

Q(1⊗H02) ∩H1 ⊗H
(n)

2 :

|〈ψ,HIφ〉H |2 ≤ C2
2∑

i=−2

‖ψn+i‖2
H1⊗H

(n+i)
2

[
(n+ 1)2‖φ‖2

H1⊗H
(n)
2

+ (n+ 1)
(
qH01⊗1(φ, φ)

+q1⊗H02(φ, φ) + (|M1| + |M2| + 1)‖φ‖2
H1⊗H

(n)
2

)]
;

(5)

where we define ψn := 1⊗ 1n(H
(·)

2 )ψ.

Consider Assumption AI . First of all, HI has to be sufficiently regular, i.e. relatively

bounded by H0 (in some sense) when restricted to the subspaces H1 ⊗H
(n)

2 . Essentially, we

require that HI is at most quadratic in the annihilation and creation operators, as reflected

by the n-dependence in (5).
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Assumption A′I . HI is a symmetric operator on H , with a domain of definition D(HI) such

that D(H0) ∩D(HI) is dense in H . Furthermore ∀φ ∈ Q(H01 ⊗ 1) ∩Q(1⊗H02) ∩H1 ⊗H
(n)

2 ,

(6) HI φ ∈
2⊕

i=−2

H1 ⊗H
(n+i)

2 .

Also, HI = Hdiag +H2 with the following properties:

i) Hdiag is diagonal; H2 is non-diagonal.

ii) Hdiag satisfies the following bound. ∀n ∈ N ∃C(n) > 0 such that ∀ψ ∈ H , ∀φ ∈ Q(H01 ⊗

1) ∩Q(1⊗H02) ∩H1 ⊗H
(n)

2 :

|〈ψ,Hdiagφ〉H |2 ≤ C2(n)‖ψn‖2
H1⊗H

(n)
2

(
qH01⊗1(φ, φ) + q1⊗H02(φ, φ) + (|M1| + |M2|

+1)‖φ‖2
H1⊗H

(n)
2

)
.

(7)

iii) H2 satisfies the following bound. ∀n ∈ N ∃C > 0 such that ∀ψ ∈H , ∀φ ∈H1 ⊗H
(n)

2 :

|〈ψ,H2φ〉H | ≤ C(n+ 1)‖φ‖
H1⊗H

(n)
2

2∑
i=−2
i 6=0

‖ψn+i‖H1⊗H
(n+i)
2

.(8)

Assumption A′I is similar to Assumption AI . However since the non-diagonal quadratic

part H2 is more regular than before, we can be less demanding on the diagonal part Hdiag: it

has still to be bounded in a suitable sense by H0, but it can be non-quadratic with respect to

the creation and annihilation operators.

Remark 2.1. In some applications, there is a decomposition ofH1 invariant forH. For example,

it may happen that H1 is also a Fock space but H leaves invariant each sector with fixed

number of particles. In this situation, we can prove essential self-adjointness with little less

regularity on the assumptions. In particular, Assumption AI would be changed in:

HI is a symmetric operator on H , with a domain of definition D(HI) such that D(H0) ∩

D(HI) is dense in H . Furthermore there exists a complete collection {H (j)
1 ⊗Γs(H2)}j∈N

invariant for H0 and HI such that: ∀φ ∈ Q(H01 ⊗ 1) ∩Q(1⊗H02) ∩H
(j)

1 ⊗H
(n)

2 ,

HI φ ∈
2⊕

i=−2

H
(j)

1 ⊗H
(n+i)

2 .

Also, HI satisfies the following bound: ∀j, n ∈ N ∃C(j) > 0 such that ∀ψ ∈ H , ∀φ ∈
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Q(H01 ⊗ 1) ∩Q(1⊗H02) ∩H
(j)

1 ⊗H
(n)

2 :

|〈ψ,HIφ〉H |2 ≤ C2(j)
2∑

i=−2

‖ψj,n+i‖2
H

(j)
1 ⊗H

(n+i)
2

[
(n+ 1)2‖φ‖2

H
(j)
1 ⊗H

(n)
2

+ (n+ 1)
(
qH01⊗1(φ, φ)

+q1⊗H02(φ, φ) + (|M1| + |M2| + 1)‖φ‖2
H

(j)
1 ⊗H

(n)
2

)]
;

where we define ψj,n := 1j(H
(·)

1 )⊗ 1n(H
(·)

2 )ψ.

Theorem 3.1 would then read:
Assume A0 and AI (A′I ). Then H is essentially self adjoint on D(H01 ⊗ 1) ∩ D(H02 ⊗ 1) ∩

f0(H
(·)

1 ⊗H
(·)

2 ).

3. DIRECT PROOF OF SELF-ADJOINTNESS

In this section we present the criterion of essential self-adjointness . The strategy is to

prove that Ran(H ± i) is dense in H , by an argument of reductio ad absurdum. As already

discussed, the non-diagonal part ofHI is atmost quadratic with respect to the annihilation and

creation operators of Γs(H2), and that plays a crucial role in the proof. We prove Theorem 3.1

assuming AI ; the other case being analogous.

Theorem 3.1. Assume A0 and AI (A′I ). ThenH is essentially self adjoint onD(H01⊗1)∩D(H02⊗

1) ∩H1 ⊗ f0(H
(·)

2 ).

Proof. Let ψ ∈ H , z ∈ C with Imz 6= 0. Suppose that ∀φ ∈ D(H01 ⊗ 1) ∩ D(1 ⊗ H02) ∩H1 ⊗

f0(H
(·)

2 ):

(9) 〈ψ, (H − z)φ〉H = 0 .

Then it suffices to show that ψ = 0. This is done in few steps. Let n ∈ N and φn ∈ D(H01 ⊗

1) ∩D(1 ⊗H02) ∩H1 ⊗H
(n)

2 . For all n ∈ N, the space Q(H01 ⊗ 1) ∩ Q(1 ⊗H02) ∩H1 ⊗H
(n)

2

with the scalar product:

(10) 〈 · , · 〉Xn = qH01⊗1( · , · ) + q1⊗H02( · , · ) + (|M1| + |M2| + 1)〈 · , · 〉
H1⊗H

(n)
2

is complete, and therefore a Hilbert space. We denote it by Xn. Then (9) together with As-

sumption A0 imply, since φn ∈ D(H01 ⊗ 1) ∩D(1⊗H02):

(11) 〈ψn, φn〉Xn = (z + |M1| + |M2| + 1)〈ψn, φn〉H1⊗H
(n)
2

− 〈ψ,HIφn〉H .
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Use bound (7) and then Riesz’s Lemma on Xn: it follows that ψn ∈ Q(H01 ⊗ 1) ∩Q(1⊗H02) ∩

H1 ⊗H
(n)

2 for any n ∈ N.

Let φ ∈ Q(H01 ⊗ 1) ∩ Q(1 ⊗ H02) ∩ H1 ⊗ f0(H
(·)

2 ). Then ∃{φ(α)}α∈N such that ∀α ∈ N,

φ(α) ∈ D(H01⊗ 1)∩D(1⊗H02)∩H1⊗ f0(H
(·)

2 ); and ∀n ∈ N, φ(α)
n → φn in the topology induced

by ‖ · ‖Xn
. Furthermore ∀α ∈ N:

(12) 〈ψ, (H − z)φ(α)〉H = 0 .

Since ψn ∈ Q(H01 ⊗ 1) ∩ Q(1 ⊗ H02) ∩H1 ⊗H
(n)

2 , we can take the limit of (12) and obtain,

∀φ ∈ Q(H01 ⊗ 1) ∩Q(1⊗H02) ∩H1 ⊗ f0(H
(·)

2 ):

(13) qH01⊗1(ψ, φ) + q1⊗H02(ψ, φ) + 〈ψ,HIφ〉H = z〈ψ, φ〉H .

Hence we can choose φ = ψ≤n := 1 ⊗ 1≤n(H
(·)

2 )ψ in (13). Then, using Assumption A0 and

taking the imaginary part we obtain:

(14) Im(z)〈ψ≤n, ψ≤n〉 = Im(〈ψ − ψ≤n, HIψ≤n〉) .

Now, by Assumption AI (the equality holds on the suitable domain):

HI

(
1⊗ 1≤n(H

(·)
2 )
)

=
(
1⊗ 1≤n+2(H

(·)
2 )
)
HI

(
1⊗ 1≤n(H

(·)
2 )
)
.

Furthermore 1⊗ 1≤n+2(H
(·)

2 )(ψ − ψ≤n) = ψn+1 ⊕ ψn+2. Then Equation (14) becomes:

Im(z)〈ψ≤n, ψ≤n〉 =

2∑
i=1

Im(〈ψn+i, HIψ≤n〉) .

Using the symmetry of HI , and (4) we obtain:

(15) Im(z)〈ψ≤n, ψ≤n〉 = Im(〈ψn+2, HIψn〉+ 〈ψn+1, HIψn〉+ 〈ψn+1, HIψn−1〉) .

Now bound (15) using (5); then we obtain ∀n ∈ N:

|Imz|
n∑
i=0

‖ψi‖2 ≤ C
[
‖ψn+1‖

(
(n+ 1)

(
‖ψn‖+ ‖ψn−1‖

)
+
√
n+ 1

(
‖ψn‖Xn + ‖ψn−1‖Xn−1

))
+‖ψn+2‖

(
(n+ 1)‖ψn‖+

√
n+ 1‖ψn‖Xn

)]
≤ 2C(n+ 1)

[ 2∑
i1=0

‖ψn+i1‖2 +

0∑
i2=−1

(n+ 1)−1‖ψn+i2‖2Xn+i2

]
.

(16)

For all α > 0 define:

S :=

∞∑
n=0

‖ψn‖2 ; Sα :=

∞∑
n=0

(n+ α)−1‖ψn‖2Xn
.



9

ψ ∈ H , hence S is finite. We prove that also Sα is finite. Using equation (13) with φ = ψn we

obtain, for all n ∈ N:

(17) (n+ α)−1‖ψn‖2Xn
= (n+ α)−1(z + |M1| + |M2| + 1)‖ψn‖2 − (n+ α)−1〈ψ,HIψn〉 .

Now, we can use bound (5) on (n+ α)−1|〈ψ,HIψn〉|, obtaining

(n+ α)−2|〈ψ,HIψn〉H |2 ≤ C2(n+ α)−2
2∑

i=−2

‖ψn+i‖2
[
(n+ 1)2‖ψn‖2 + (n+ 1)‖ψn‖2Xn

]

≤ C2(α)
2∑

i=−2

‖ψn+i‖2
[
‖ψn‖2 + (n+ α)−1‖ψn‖2Xn

]
,

(18)

for some C(α) > 0. The only terms we need to deal with are (n+ α)−1‖ψn+i‖2‖ψn‖2Xn
. We use

the fact that for any ε, a, b > 0, ab ≤ 1
2(εa2 + 1

εb
2), obtaining

(19) (n+ α)−1‖ψn+i‖2‖ψn‖2Xn
≤ 1

2

(
ε(n+ α)−2‖ψn‖4Xn

+
1

ε
‖ψn+i‖4

)
.

Combining (19) with (18), and applying to Equation (17), we obtain the following bound: for

all ε, α > 0, ∃C(α, ε) > 0 such that

(20) (n+ α)−1‖ψn‖2Xn
≤ C(α, ε)

2∑
i=−2

‖ψn+i‖2 + ε(n+ α)−1‖ψn‖2Xn
.

Fix ε < 1, then for all α > 0, ∃C(α) > 0 such that ∀n̄ ∈ N:

(21)
n̄∑
n=0

(n+ α)−1‖ψn‖2Xn
≤ C(α)S ;

uniformly in n̄. Then we can take the limit n̄→∞ and obtain Sα <∞.

Remark. The bound of Equation (20) could seem to follow from an implicit smallness condition

on the interactionHI . As it will become clearerwith the examples of Section 4, it is not the case.

Roughly speaking, Assumption AI allows for interaction parts that are at most as singular as

(H0 + |M1| + |M2|)1/2(N + 1)1/2.

Now return to Equation (16). There exists n∗ ∈ N such that ∀n ≥ n∗:

1

2
S ≤

n∑
i=0

‖ψi‖2 ≤ S .

Hence summing in n∗ ≤ n ≤ n̄ on both sides of (16) we obtain for all n̄ > n∗:

1

2
S

n̄∑
n=n∗

(n+ 1)−1 ≤
n̄∑

n=n∗

(n+ 1)−1
n∑
i=0

‖ψi‖2 ≤ 2
C

|Imz|
(3S + S1 + S2) .

The bound on the right hand side is uniform in n̄: that is absurd, unless S = S1 = S2 = 0 ⇔

ψ = 0.
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Once essential self-adjointness is established, it is possible to give the following character-

ization of the domain of self-adjointness D(H).

Proposition 3.2. Assume A0 and AI (A′I ). If exists K self-adjoint operator with domain D(K)

such that:

i) D(H0) ∩D(K) is dense in H ; H1 ⊗ f0(H
(·)

2 ) is dense in D(K).

ii) There exists 0 < ε < 1 such that ∃C(ε) > 0, ∀φ ∈ D(H0) ∩D(K):

(22) ‖HIφ‖ ≤ ε‖H0φ‖ + C(ε)(‖Kφ‖ + ‖φ‖) .

Then D(H) ∩D(K) = D(H0) ∩D(K).

Proof. Using bound (22), we have ∀φ ∈ D(H0) ∩D(K):

(23) ‖Hφ‖ ≤ (ε+ 1)‖H0φ‖ + C(ε)(‖Kφ‖ + ‖φ‖) .

Then D(H) ⊇ D(H0) ∩D(K). Now let φ ∈ D(H) ∩D(K): using (22)

(24) ‖H0φ‖ ≤ ε‖H0φ‖ + ‖Hφ‖ + C(ε)(‖Kφ‖ + ‖φ‖) ;

since ε < 1, D(H0) ⊇ D(H) ∩D(K).

4. APPLICATIONS

It is possible to apply Theorem 3.1 in several situations of mathematical and physical in-

terest. We present and discuss some of them in this section; not before a brief discussion of the

“boundaries” of Theorem 3.1: it may be interesting to see how its proof fails when we consider

operators that are more than quadratic in the annihilation/creation operators; and to define a

quadratic operator that is not sufficiently regular for Assumption AI (A′I ) to hold. According to

this purpose, we will consider simple toy models on Γs(C). We denote by a# the corresponding

annihilation/creation operators.

Let’s consider a simple trilinear Hamiltonian on Γs(C):

H3 = a∗a+ a∗a∗a∗ + aaa .

The free part is H0 = a∗a, and the interaction part is HI = a∗a∗a∗ + aaa. Assumption A0 is

satisfied, and Assumption A′I is slightly modified: i now ranges from −3 to 3, and bounds (7)

and (8) are replaced by the simple bound:

|〈ψ,HIφ〉|H ≤ C(n+ 1)3/2‖φ‖H (n)

(
‖ψn+3‖H (n+3) + ‖ψn−3‖H (n−3)

)
.
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The proof of Theorem 3.1 carries on, almost unchanged, up to Equation (16) that would now

read

|Imz|
n∑
i=0

‖ψi‖2 ≤ C(n+ 1)3/2‖ψn+3‖2 .

However if we now take the sum in n from n∗ to n̄ (where n∗ is such that 1
2‖ψ‖

2 ≤
∑n

i=0‖ψi‖2 ≤

‖ψ‖2 for all n ≥ n∗) we cannot conclude that ‖ψ‖ must be zero, because the series
∑∞

n=0(n +

1)−3/2 converges. Hence the proof fails, and analogously would fail for any higher order poly-

nomial of the annihilation/creation operators.

On the other hand, we introduce now a quadratic model for which Assumption AI (A′I ) fails

to hold, and thus Theorem 3.1 cannot be applied. For the following operator on L2(R)⊗ Γs(C)

Assumption AI is satisfied:

H∂a = −∂2
x + a∗a− i∂x(a∗ + a) + a∗a∗ + aa ,

where H0 = −∂2
x + a∗a and HI = −i∂x(a∗ + a) + a∗a∗ + aa. If, however, the derivative operator

is coupled with the quadratic term

H∂aa = −∂2
x + a∗a− i∂x(a∗a∗ + aa) ,

AI (A′I ) is no longer satisfied. The interaction in this case would be of typeH1/2
0 N , and therefore

too singular: Theorem 3.1 does not hold for H∂aa.

Throughout the section we will adopt the following notations, in addition to the ones of

Section 1.2. Let K a Hilbert space; we denote by L(K ) the set of bounded operators on K

and by | · |L(K ) the operator norm. It is also useful to define the annihilation/creation operator

valued distributions a#(x), x ∈ Rd. Let f ∈ L2(Rd), a#(f) the annihilation/creation operators

on Γs(L
2(Rd)). Then the operator valued distributions a#(x) acting on L2(Rd), with values on

Γs(L
2(Rd)), are defined by:

(a∗, f) ≡
∫
Rd

a∗(x)f(x)dx := a∗(f) ; (a, f) ≡
∫
Rd

a(x)f̄(x)dx := a(f) .

They satisfy the commutation relations (inherited by the CCR) [a(x), a∗(y)] = δ(x− y).

1. Hamiltonians of identical bosons.

The criterion applies to operators in the Fock space Γs(K ), for any separable Hilbert space

K . Simply choose H1 ≡ C and H2 ≡ K ; then C ⊗ Γs(K ) ≈ Γs(K ) up to an unitary isomor-

phism.
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An example is given by the following class of operators. Let K = L2(Rd); h0 a positive

self adjoint operator on L2(Rd) (the one-particle free Hamiltonian). Furthermore, let V1 ∈

L2(Rd), V2, V3 ∈ L2(R2d), with V2 = V 2, and V4(·) : Rd → R, such that V4(x) = V4(−x) and

V4 (h0 + 1)−1/2 ∈ L(L2(Rd)). Consider

H = dΓ(h0) +

∫
Rd

(
V1(x)a∗(x) + V 1(x)a(x)

)
dx+

∫
R2d

(
V2(x, y)a∗(x)a(y) + V3(x, y)a∗(x)

a∗(y) + V 3(x, y)a(x)a(y)
)
dxdy +

1

2

∫
R2d

V4(x− y)a∗(x)a∗(y)a(x)a(y)dxdy .

(25)

We make the following identifications: H01 ≡ 0, H02 ≡ dΓ(h0), Hdiag ≡
∫

(V4a
∗a∗aa + V2a

∗a),

H2 ≡
∫

(V1a
∗+V 1a)+

∫
(V3a

∗a∗+V 3aa). Assumption A0 is trivial to verify; and Assumption A′I
follows from standard estimates on Fock space: let ψ ∈ Γs(L

2(Rd)), φn ∈ L2
s(R

nd) ∩Q(dΓ(h0)),

n ∈ N, then

|〈ψ,Hdiagφn〉| ≤
(
n‖V2‖2‖φn‖ + |V4 (h0 + 1)−1/2|L(L2(Rd))

(
n3/2‖(dΓ(h0))1/2φn‖

+n2‖φn‖
))
‖ψn‖ ;

(26)

|〈ψ,H2φn〉| ≤ 2
(√

n+ 1‖V1‖2 + (n+ 1)‖V3‖2
)
‖φn‖

2∑
i=−2
i 6=0

‖ψn+i‖ .(27)

Hence we can apply Theorem 3.1; and prove essential self-adjointness of H in D(dΓ(h0)) ∩

f0(L2(Rd)(·)). We can also apply Proposition 3.2 withK ≡ N3, i.e. D(H)∩D(N3) = D(dΓ(h0))∩

D(N3). Observe that if d = 3, the well-known many body Hamiltonian with Coulomb pair

interaction

HC = dΓ(−∆)± 1

2

∫
R6

1

|x− y|
a∗(x)a∗(y)a(x)a(y)dxdy ,

is just the special case h0 = −∆, V1 = V2 = V3 = 0 and V4 = ±|x|−1.

2. Nelson-type Hamiltonians.

We consider now the dynamics of different species of particles (or fields) interacting. A

typical example is the Nelson Hamiltonian. It was introduced in a rigorous way by Nelson

[20] to describe nucleons in a meson field, and studied by several authors [e.g. 1, 8, 10, 12].

Let H = L2(Rpd) ⊗ Γs(L
2(Rd)): the first space corresponds to n non-relativistic particles;

the second to a scalar relativistic field. Let ω be a positive self-adjoint operator on L2(Rd) (the

dispersion relation of the relativistic field), V ∈ L2
loc(R

d,R+) an external potential acting on

the particles. The interaction between the particles and the field is linear in the creation and

annihilation operators a# corresponding to the field. Let v : R2d → C such that
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• (1−∆x)−1/2‖v(x, ·)‖2
L2
(k)

(Rd)
(1−∆x)−1/2 ∈ L(L2

(x)(R
d));

• for all k ∈ Rd, v(x, k)(1 − ∆x)−1/2 ∈ L(L2
(x)(R

d)), with |v(x, ·)(1 − ∆x)−1/2|L(L2
(x)

(Rd))
∈

L2
(k)(R

d).

Then we define the Nelson Hamiltonian:

(28) HN =
( p∑
i=1

−∆xi + V (xi)
)
⊗ 1 + 1⊗ dΓ(ω) +

p∑
i=1

a∗(v(xi, ·)) + a(v(xi, ·)) .

The function v describes the coupling between the particles and the relativistic field. The

assumptions above imply that it has a good behaviour both for high and small momenta; in

particular in three-dimensions it acts as an UV cutoff function.

Remark. The model of Nelson [20] was much more specific: d = 3, ω(k) =
√
k2 + µ2 with µ > 0,

V = 0 and v(x, k) = λ(2π)−3/2(2ω(k))−1/2e−ik·x1| · |≤σ(k) with λ, σ > 0. With these assumptions,

v ∈ L∞(R3, L2(R3)), ω−1/2v ∈ L∞(R3, L2(R3)); then HN (the Nelson model with UV cut off) is

self-adjoint by the Kato-Rellich Theorem. However, if we consider d = 2 and µ = 0 (massless

relativistic field), the Kato-Rellich Theorem is not applicable because ω−1/2v /∈ L∞(R2, L2(R2))

due to an infrared divergence. Instead assumptions A0 and A′I are still satisfied, thus Theo-

rem 3.1 can be used.

In order to check Assumptions A0 and AI on (28), we make the (straightforward) identifica-

tions: H1 ≡ L2(Rpd), H2 ≡ L2(Rd),H01 ≡
∑

i−∆xi +V (xi),H02 ≡ dΓ(ω),HI ≡
∑

i a
∗(v(xi, ·))+

a(v(xi, ·)). We do not need to introduce a decomposition of H1. Assumption A0 is satisfied: for

all V ∈ L2
loc(R

d,R+), −∆ + V (·) is a positive self-adjoint operator, and the vectors with fixed

number of particles are invariant for the evolution associated with the positive self-adjoint op-

erator dΓ(ω). Furthermore, sinceH01⊗1 and 1⊗H02 are positive self-adjoint commuting oper-

ators, H0 is a positive self-adjoint operator with domainD(H0) = D(H01⊗1)∩D(1⊗H02). As-

sumption AI is also satisfied by usual estimates: ∀ψ ∈H , ∀φn ∈ L2(Rpd)⊗L2
s(R

nd)∩Q(H01⊗1),

n ∈ N,

|〈ψ,HIφn〉| ≤
√

2p
(
2
√
n‖|v(x, ·)(1−∆x)−1/2|L(L2

(x)
)‖L2

(k)
+ |(1−∆x)−1/2‖v(x, ·)‖2L2

(k)

(1−∆x)−1/2|1/2L(L2
(x)

)

)(∥∥∥( p∑
i=1

−∆xi

)1/2
φn

∥∥∥+
√
p‖φn‖

) 1∑
i=−1
i 6=0

‖ψn+i‖ .
(29)

Then HN is essentially self-adjoint on D(H0) ∩ f0(L2(Rpd)⊗ L2(Rd)(·)).



14

Let HN |s be the restriction of HN to L2
s(R

pd) ⊗ Γs(L
2(Rd)). It is possible to extend HN |s to

Γs(L
2(Rd))⊗ Γs(L

2(Rd)) in the following way. Define

(30) H̃N = dΓ(−∆ + V )⊗ 1 + 1⊗ dΓ(ω) +

∫
Rd

ψ∗(x)
(
a∗(v(x, ·)) + a(v(x, ·))

)
ψ(x)dx ,

where ψ# are the creation and annihilation operators corresponding to the first Fock space.

Then HN |s and H̃N agree on the p-particle sector L2
s(R

pd) ⊗ Γs(L
2(Rd)) of Γs(L

2(Rd)) ⊗

Γs(L
2(Rd)). The self-adjointness of H̃N still follows from Theorem 3.1 using the bound (29):

it is sufficient to choose for H1 ≡ Γs(L
2(Rd)) the decomposition in finite particle vectors

{H (j)
1 ⊗Γs(H2)}j∈N ≡ {L2

s(R
jd)⊗Γs(H2)}j∈N. Let H0 ≡ dΓ(−∆ +V )⊗ 1 + 1⊗ dΓ(ω), then the

domain of essential self-adjointness for H̃N is D(H0)∩ f0(L2(Rd)(·)⊗L2(Rd)(·)). Let N1 and N2

be the number operators corresponding to the first and second Fock space respectively. Then

applying Proposition 3.2 we also obtain D(H̃N ) ∩D(N2
1 +N2

2 ) = D(H0) ∩D(N2
1 +N2

2 ).

3. Pauli-Fierz Hamiltonian.

The last example considered is an operator describing the dynamics of rigid charges and

their radiation field interacting. The model was introduced by Pauli and Fierz [23], and has

been extensively studied by a mathematical standpoint. See Spohn [27, and references thereof

contained] for a detailed presentation.

LetH (spin) = (⊗pC2[ d
2

])⊗L2(Rpd)⊗Γs(C
d−1⊗L2(Rd)), H = L2(Rpd)⊗Γs(C

d−1⊗L2(Rd)): the

first space corresponds to p spin-1
2 particles, the second to spinless particles. Let χ ∈ L2(Rd),

V ∈ L2
loc(R

pd,R+), ω = |k|, mj > 0, qj ∈ R for all j = 1, . . . , p. Furthermore, let eλ : Rd → Rd

such that for almost all k ∈ Rd, k · eλ(k) = 0 and eλ(k) · eλ′(k) = δλλ′ for all λ, λ′ = 1, . . . , d− 1.

Then we define the electromagnetic vector potential in the Coulomb gauge as

(31) A(x) =
d−1∑
λ=1

∫
Rd

eλ(k)
(
a∗λ(k)χ(k)eik·x + aλ(k)χ̄(k)eik·x

)
dk ;

where a#
λ are the creation and annihilation operators of Γs(C

d−1⊗L2(Rd)) satisfying the canon-

ical commutation relations [aλ(k), a∗λ′(k
′)] = δλλ′δ(k − k′); the (spinless) Pauli-Fierz Hamilto-

nian on H is then

(32) HPF =

p∑
j=1

1

2mj

(
−i∇j ⊗ 1 + qjA(xj)

)2
+ V (x1, . . . , xp)⊗ 1 + 1⊗

d−1∑
λ=1

∫
Rd

ω(k)a∗λ(k)aλ(k)dk .

The function χ plays the role of an ultraviolet cut off in the interaction, and is usually inter-

preted as the Fourier transform of the particles’ charge distribution. Let {σ(µ)}dµ=1 the 2[ d
2

]×2[ d
2

]
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matrices satisfying σ(µ)σ(ν) + σ(ν)σ(µ) = 2δµνId. Also, denote by σ(µ)
j , j = 1, . . . , p the operator

on (⊗pC2[ d
2

]) acting as σ(µ) on the j-th space of the tensor product. Then the spin-1
2 Pauli-Fierz

Hamiltonian on H (spin) = (⊗pC2[ d
2

])⊗H can be written as:

(33) H
(spin)
PF = 1⊗HPF +

i

2

p∑
j=1

qj
∑

1≤µ<ν≤d
σ

(µ)
j σ

(ν)
j ⊗

(
∂

(µ)
j A(ν)(xj)− ∂(ν)

j A(µ)(xj)
)

;

where A(µ)(x) is the µ-th component of the vector A(x).

The quadratic form corresponding to the Pauli-Fierz Hamiltonian is bounded from below,

so it is possible to define at least one self-adjoint extension by means of the Friedrichs Exten-

sion Theorem. This type of information is not completely satisfactory, since infinitely many

extensions may exist, each one dictating a different dynamics for the system. For small val-

ues of the ratios q2
j /mj between charge and mass of the particles, and if χ, χ/√ω ∈ L2(Rd), a

unique self-adjoint extension is given by KLMN Theorem. For arbitrary values of the ratios

q2
j /mj , it is possible to prove essential self-adjointness of bothHPF andH(spin)

PF (for the spin op-

erator we need in addition ωχ ∈ L2(Rd)) by means of Theorem 3.1, under the sole assumption

χ ∈ L2(Rd). As discussed in Section 1, an analogous result (on a slightly different domain)

has been obtained with an argument of functional integration by Hiroshima [18]. If the de-

pendence on x of A(x) is more general, functional integration methods may not be applicable;

however Theorem 3.1 still holds.

In the following discussion we will focus on a simplified model, for the sake of clarity.

Assumptions A0 and AI are checked on HPF with p = 1, m = 1/2 and q = −1, i.e.: H ≡

L2(Rd)⊗ Γs(C
d−1 ⊗ L2(Rd)) and

(34) H ≡
(
i∇x ⊗ 1 +A(x)

)2
+ V (x)⊗ 1 + 1⊗

d−1∑
λ=1

∫
Rd

ω(k)a∗λ(k)aλ(k)dk .

Observe that, since we are in the Coulomb gauge,∇x ·A(x) = 0 hence [−i∇x⊗1, A(x)] = 0 on

a suitable dense domain. Rewrite H in the following form, to identify the free and interaction

parts:

H =
(
−∆x + V (x)

)
⊗ 1 + 1⊗

d−1∑
λ=1

∫
Rd

ω(k)a∗λ(k)aλ(k)dk + 2iA(x) · (∇x ⊗ 1) +A2(x) .(35)

We identify H01 ≡ −∆ + V , H02 ≡
∑

λ

∫
Rd ωa

∗
λaλ and HI ≡ 2iA · (∇⊗ 1) + A2. Assumption A0

is satisfied, as in the Nelson model (28) above. For the interaction part, we have the following



16

bounds: ∀ψ ∈H , ∀φn ∈ L2(Rd)⊗ (Cd−1 ⊗ L2(Rd))⊗sn ∩Q(H01 ⊗ 1), n ∈ N,

(36)

|〈ψ,A(x) · (∇x ⊗ 1)φn〉| ≤
√

2(d− 1)‖χ‖2
√
n+ 1‖(|∇x| ⊗ 1)φn‖

1∑
i=−1
i 6=0

‖ψn+i‖ ;

|〈ψ,A2(x)φn〉| ≤ 2(d− 1)‖χ‖2(n+ 1)‖φn‖
2∑

i=−2

‖ψn+i‖ .

Hence Assumption AI is satisfied. Then H is essentially self-adjoint on D(H0) ∩ f0(L2(Rd) ⊗

(Cd−1 ⊗ L2(Rd))(·)).

Remark. Neither non-negativity of the Pauli-Fierz operator nor smallness of the coupling con-

stant are necessary to prove essential self-adjointness by means of Theorem 3.1. Using oper-

ator methods (commutator estimates), self-adjointness ofHPF with V = 0 has been proved for

general coupling constants in [16], but the non-negativity was needed to associate a unique

self-adjoint operator to the quadratic form. Theorem 3.1 relies on different assumptions, and

takes advantage of the fibered structure of the Fock space: boundedness from below of the oper-

ator is, in general, not necessary. In fact, the Hamiltonians considered in Sections 4.1 and 4.2

are possibly unbounded from below, as well as the following extension (37) of the Pauli-Fierz

Hamiltonian to infinite degrees of freedom (for the particles). As outlined in Section 5, if we

assume boundedness from below, Theorem 3.1 can be extended to operators quartic in the

creation/annihilation operators (see Assumptions BH , BI and Theorem 5.1).

Let mj = 1/2, qj = −1 and V =
∑p

i=1 Vext(xi) +
∑

i<j Vpair(xi − xj) such that Vext ∈

L2
loc(R

d,R+), Vpair(x) = Vpair(−x) and Vpair(1 − ∆)−1/2 ∈ L(L2(Rd)). Under these assump-

tions define HPF |s as the restriction of (32) to L2
s(R

pd) ⊗ Γs(C
d−1 ⊗ L2(Rd)). The physical

interpretation is a system of p identical bosonic charges subjected to an external potential,

interacting via pair interaction and with their radiation field. As we did for the Nelson model

in (30), we can extend HPF |s to Γs(L
2(Rd))⊗ Γs(C

d−1 ⊗ L2(Rd)):

H̃PF =

∫
Rd

ψ∗(x)
{(
i∇x ⊗ 1 +A(x)

)2
+ Vext(x)

}
ψ(x)dx+

1

2

∫
R2d

Vpair(x− y)ψ∗(x)ψ∗(y)

ψ(x)ψ(y)dxdy + 1⊗
d−1∑
λ=1

∫
Rd

ω(k)a∗λ(k)aλ(k)dk .

(37)

We would like to prove essential self-adjointness by means of Theorem 3.1. Identify H01 ≡∫
ψ∗(−∆ + Vext)ψ; H02 ≡

∑
λ

∫
Rd ωa

∗
λaλ; HI ≡

∫
ψ∗(2iA · (∇⊗ 1) +A2)ψ+ 1

2

∫
Vpairψ

∗ψ∗ψψ; and

{H (j)
1 ⊗ Γs(H2)}j∈N ≡ {L2

s(R
jd) ⊗ Γs(C

d−1 ⊗ L2(Rd))}j∈N. Then Assumptions A0 and AI are

satisfied using bounds analogous to (36) and (26) (for Vpair), for each fixed j ∈ N. Hence H̃PF

is essentially self-adjoint on D(H01 ⊗ 1) ∩D(1⊗H02) ∩ f0(L2(Rd)(·) ⊗ (Cd−1 ⊗ L2(Rd))(·)).
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5. CONCLUSIVE REMARKS

The examples of the preceding section are not exhaustive: we focused on them because

of their relevance in physical and mathematical literature. The application to operators on

curved space-time, or to anti-symmetric systems may also lead to results of interest.

The Assumptions A0, AI and A′I are easy to check: in the examples above follow from ba-

sic estimates of creation and annihilation operators. The proof of Theorem 3.1 itself is not

complicated, and relies on the direct sum decomposition of Γs(H2) and the structure of the

interaction with respect to the latter. Hence this criterion gives, in our opinion, a simple yet

powerful tool to prove essential self-adjointness in Fock spaces, tailored to take maximum

advantage of their structure.

If we assume that H is bounded from below, we can take inspiration from Masson and

McClary [19] and extend our criterion to accommodate quartic operators. The modified as-

sumptions and theorem would then read:

Assumption BH . H is a densely defined symmetric operator on H = H1 ⊗ Γs(H2) bounded

from below. H01 and H02 are self-adjoint operators bounded from below such that ∀t ∈ R,

{H (n)
2 }n∈N is invariant for eitH02 .

Assumption BI . HI is a symmetric operator on H , with a domain of definition D(HI)

such that D(H0) ∩ D(HI) is dense in H . Furthermore exists a complete collection {H (j)
1 ⊗

Γs(H2)}j∈N invariant for H0 and HI such that: ∀φ ∈ Q(H01 ⊗ 1) ∩Q(1⊗H02) ∩H
(j)

1 ⊗H
(n)

2 ,

(38) HI φ ∈
4⊕

i=−4

H
(j)

1 ⊗H
(n+i)

2 .

Also, HI satisfies the following bound: ∀j, n ∈ N ∃C(j) > 0 such that ∀ψ ∈ H , ∀φ ∈ Q(H01 ⊗

1) ∩Q(1⊗H02) ∩H
(j)

1 ⊗H
(n)

2 :

|〈ψ,HIφ〉H |2 ≤ C2(j)
4∑

i=−4

‖ψj,n+i‖2
H

(j)
1 ⊗H

(n+i)
2

[
(n+ 1)4‖φ‖2

H
(j)
1 ⊗H

(n)
2

+ (n+ 1)2
(
qH01⊗1(φ, φ)

+q1⊗H02(φ, φ) + (|M1| + |M2| + 1)‖φ‖2
H

(j)
1 ⊗H

(n)
2

)]
.

(39)

Theorem 5.1. Assume BH and BI . Then H is essentially self adjoint on D(H01⊗ 1)∩D(H02⊗

1) ∩ f0(H
(·)

1 ⊗H
(·)

2 ).
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Remark. An attempt to extend the results of [19] can be found in [3]. Theorem 5.1 is a gen-

eralization of both: it can be applied to more singular situations and a more general class of

spaces.

The proof of Theorem 3.1 can be adapted to Theorem 5.1, making use of the inferior bound

for H. We remark that Assumption BH , by itself, implies that H has at least one self-adjoint

extension: it may be tricky to prove for general operators. Theorem 5.1 essentially states

that for regular enough quartic interactions, existence of a particular self-adjoint extension

(the Friedrichs one) is equivalent to its uniqueness. It may have interesting applications in

CQFT: e.g. the d-dimensional (bounded from below) Yd and (λϕ(x)4)d models with cut offs

have interactions that are at most quartic and regular. It is our hope that the ideas utilized

in this paper could contribute to improve the mathematical insight on interacting quantum

field theories, and could be developed to study self-adjointness of more singular systems.
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