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Abstract—Spin Transfer Torque Magnetic RAM (STT-MRAM)
technology is one of the most promising alternative for Static
RAMs (SRAMs) for implementing on-chip memories. Compared
with SRAMs, STT-MRAMs benefit from higher density and
near-zero leakage power, nonetheless they impose high energy
consumption for reliable write operations. However in many
applications, absolute data integrity is not required; thus, acting
on the current applied in the write operations may represent
a novel knob for disciplined approximate computing to obtain
energy saving with a minimal quality loss in applications’ outputs.
This paper proposes CAST, a hardware/software approach to
adjust the energy/quality of write operations in STT-MRAM
caches in multi-core systems based on the content of requested
write operations. CAST utilizes fine-grained cache-line-level ac-
tuation knobs with different levels of quality for individual write
operations. This unique feature of STT-MRAMs allows to avoid
inter-application actuation interference suffered by SRAMs, and
makes the approach particularly suitable for systems running
multiple applications with mixed accuracy sensitivity. Moreover,
CAST exploits another peculiarity of STT-MRAMs represented
by the asymmetry and transition-dependency of the write error
rate, to further tune in a fine-grained manner the write current to
achieve an additional energy saving, even in full-accurate applica-
tions. Our evaluations on workloads of full-approximate, mixed-
criticality, and full-accurate applications demonstrate up to 57%,
34%, and 21% energy savings over a baseline STT-MRAM cache,
respectively, with an acceptable quality of the generated outputs.

Index Terms—STT-MRAM, Approximate computing, Energy
consumption, Mixed-criticality.

I. INTRODUCTION

W ITH the technology scaling trend we assisted in recent
years, deployment of Static RAMs (SRAMs) have

become considerably challenging in particular in the sub-
45nm feature size [1]. Indeed, it has been shown that the
low density of SRAM cells forces to dedicate approximately
60% of the area of today’s multi-core chips to the cache
memories; moreover, leakage power may contribute up to 80%
of the overall energy consumption of the cache memory [2].
Nonetheless, SRAMs highly suffer from further reliability
issues such as high susceptibility to soft-errors. As a result,
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SRAMs are becoming less appealing in the design of next-
generation computing systems, and, in particular, of embedded
systems facing with limited sources of energy. Considering the
mentioned deficiencies of SRAMs, more recent Non Volatile
Memorys (NVMs), such as Phase Change Memory (PCM),
Resistive RAM (ReRAM) or Spin Transfer Torque Magnetic
RAMs (STT-MRAMs), are becoming an attractive alternative
to design multi-core chips. Among the various technologies,
as discussed in the International Technology Roadmap for
Semiconductors report [3], STT-MRAMs seem to be the
most promising for implementing on-chip memories. In fact,
STT-MRAMs solve the fundamental limitations of SRAM
by offering a high-density, high-speed, non-volatile choice of
random access memory.

However, STT-MRAMs suffer from a critical reliability
issue, that is the stochastic switching [4]; during the write
operation, the applied write signal may be unable to change the
value of the STT-MRAM cell, thus leading to a write failure.
Write failure is an asymmetric phenomenon in STT-MRAMs
since 0 → 1 transition requires a higher current to make the
STT-MRAM cell to reliably commute the value than the 0→ 1
transition [5].

Previous attempts that addressed write failures to keep 100%
data integrity used a conservatively-high current for write
operations as well as incorporating Error Correction Codes
(ECCs) to recover the potential errors (e.g., [6], [7], [8]).
Furthermore, these approaches neglect the asymmetry and
transition-dependency of the write errors. The result is a rel-
evant energy consumption diminishing some of STT-MRAM
advantages over the SRAM.

However, in many contexts, the absolute correctness in the
elaborations is not mandatory, especially for such applications
that are resilient to a certain extent to errors. As an example,
Recognition, Mining, and Synthesis (RMS) applications, that
are widely used in embedded systems, could still process
information (mainly images or other types of signals) usefully
with error-prone elements or when affected by noise in the
input data [9]. For this reason, approximate computing [10] has
been investigated in the recent past as a technique to expose
the applications to a controlled level of errors in order to save
energy. In systems integrating STT-MRAMs, the regulation
of the current (or of the voltage1) applied during a memory
write operations may represent a novel knob to trade system’s
energy vs. result quality of the running application. This knob

1Do consider that, as discussed later, STT-MRAMs are a resistive memory;
therefore, the two types of actuation can be used interchangeably.
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Fig. 1: Comparison between SRAM and STT-MRAM caches
on voltage regulation knob (V).

is particularly well-suited in those applications, as the RMS
ones, working on a large data-sets which stresses the memory
hierarchy and causing a high energy consumption.

In recent years, various studies (e.g., [11], [12]) have consid-
ered knobs in on-chip memory sub-systems to define approxi-
mate computing techniques exploiting such error resilience for
energy saving. Voltage scaling has been already proposed as
actuation knob for defining approximate computing techniques
for SRAMs (e.g. [11], [13]). However, in SRAM technology
voltage scaling is applied per memory bank (i.e. per cache
way) while STT-MRAMs allow a more fine-grained actuation
at each cache line (i.e., at block granularity). Let refer to the
example in Fig. 1, which shows the distribution of the data
blocks of three running applications on a cache sub-system
organized in four ways and each way in several lines; indeed
STT-MRAMs open new possibilities especially when there
are various concurrently running applications: i) the voltage
knob actuations do not affect any other cache block unlike
the SRAMs which require flushing the overall cache way,
and ii) multiple applications with different degrees of quality
can share the same cache way without affecting each other’s
guaranteed level of quality.

On the other side, when considering STT-MRAMs, very few
works (e.g. [14], [15], [16], [17]) have considered hardware
knobs for approximation acting either at design-time or at run-
time. The design-time approach in [14] lacks of flexibility at
run-time. On the other hand, dynamic approaches in [15], [16]
adopted write signal durations as quality/energy knob. This
strategy may impose non-uniform access challenges to the
memories which may be intolerable for real-time applications
with predictability constraints. Finally, the only previous work
proposing a cache controller capable at exploiting write current
tuning for approximate computing in STT-MRAMs has been
proposed in [17]. However, none of them considered asym-
metric behavior of STT-MRAMs write operations.

In this paper, which is major extension of our previously
published work in [17], we propose CAST, a hardware/-
software approach to adjust the quality of write operations
in STT-MRAM caches in multi-core systems based on the
contents of the requested write operation. CAST is organized
in two steps. In the first step, CAST enables software pro-
grammers to declare approximate data objects in the source
code of the application along with an acceptable write quality
guarantees. This information is then passed to the hardware

and used during the execution to adjust the main STT-MRAM
specific quality-energy knob, i.e., write current. For approxi-
mate write operations, these knobs are set to the lowest current
that is sufficient to meet the programmer-specified acceptable
level of quality. In the second step, CAST adjusts the level of
write current based on the type of transition (0→ 1 or 1→ 0)
according to the requested quality level.

To summarize, the main contributions of this paper against
our previous proposal [17] are as follows:

● We designed an advanced cache write controller ex-
ploiting the STT-MRAM asymmetric write error rate to
efficiently manage the energy hungry STT-MRAM write
operations at different levels of approximation expressed
at the software level.

● We enhanced our previous controller architecture to im-
prove system performance and to reduce the modifica-
tions to the on-chip cache hierarchy.

● We performed a systematic analysis of the applicability of
the proposed controller to the various levels of the cache
hierarchy identifying the lower L2 and Last Level Cache
(LLC) to be the best-suited memories.

The rest of this paper is organized as follows. Sec-
tion II presents STT-MRAM background and its quality-
energy knobs. Then, Section III presents a motivational exam-
ple showing the potentialities of the proposed approach. The
details on the software and hardware mechanisms of CAST are
introduced in Section IV. An experimental evaluation of CAST
is presented in Section V demonstrating its effectiveness, while
a discussion of the related work is reported in Section VI.
Finally, Section VII concludes the paper.

II. STT-MRAM QUALITY/ENERGY TRADE-OFF KNOBS

This section provides the necessary background on the
STT-MRAM, discussing the structure of the memory cell and
the read/write operations. Then, we discuss the STT-MRAM
circuit-level knob to trade accuracy for energy.

A. Background on STT-MRAM

The standard STT-MRAM cell (1T-1J), depicted in Fig. 2,
includes a Magnitude Tunnel Junction (MTJ), and an access
transistor. MTJ consists of an oxide barrier layer that is
sandwiched between two ferromagnetic layers. One of the
ferromagnetic layers has a fixed magnetic field direction (i.e.,
reference layer), while the magnetic field direction of the
other (i.e., free layer) can be changed. Relative magnetic field
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Fig. 2: STT-MRAM 1T1J structure.
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Fig. 3: 32nm STT-MRAM cell switching probability for
different write current amplitude in 10ns write pulse.

TABLE I: STT-MRAM HSPICE model configurations.

Parameter Value (µ ± 3σ)
MTJ length 32nm
MTJ width 96nm
MTJ thickness 2.44nm
Relative initial angle 0 ± 35○/180 ± 35○

Transistors technology size 32nm ± 1nm

directions of these layers delivers different resistances used
to store values. If the magnetic field directions of the two
ferromagnetic layers are in a parallel state, MTJ delivers a
low resistance. Otherwise, it delivers a high resistance.

Read and write operations in a STT-MRAM cell are per-
formed by applying either a small current to read MTJ
resistance via sense amplifier, or a high current to change the
resistance (i.e., write a new value) in the MTJ, respectively.
The initial MTJ state affects the total energy required to
change its resistance [18]; for 0 → 1 transition, to change
the MTJ state from parallel (low resistance) to anti-parallel
(high resistance), more energy (power×time) needs to be spent
compared with amount of energy needed for the transition
in the opposite direction (1 → 0) [19]. Thus, the MTJ state
transition is asymmetric from energy consumption perspective.
MTJ state transitions are performed with an uncertainty due
to the stochastic nature of STT-MRAMs. Moreover, due to the
discussed asymmetry, providing the same level of current for
changing the MTJ state leads to different switching probabil-
ities for the two types of transitions based on the initial MTJ
state. Fig. 3 depicts the MTJ switching probability vs. applied
current at a constant write pulse width. This simulation is
executed with HSPICE and the STT-MRAM model introduced
in [20] by using the characterization reported in Table I. In
particular, the graph shows a difference of 120µA between the
two transition directions for the same switching probability.

B. Quality-Energy Knob

Write operations can be performed at different error proba-
bilities and consequently energy consumptions [21], [22]. As
stated in [23], the write failure probability for a single-bit cell
can be calculated by Equation 1:

Pwf(tw) = exp(−tw ×
2µBp(Iw − IC0)

(c + ln(Π2 ∆
4
)) × (em(1 + p2

))

) (1)
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Fig. 4: 32nm STT-MRAM cell write error rate vs. write
current in different MTJ state transitions (write pulse width
of 10ns).

where ∆ is the thermal stability factor, IC0
the critical MTJ

switching current at 0○K for the specific type of transition, c
the Euler constant, e the magnitude of electron charge, m the
magnetic momentum of the free layer, p the tunneling spin
polarization, µB the Bohr magneton, Iw the write current, and
tw the write pulse width. It is worth noting that, apart from the
constants, Equation 1 shows that the error probability depends
on three input parameters: the amount and duration of the
applied write current, Iw and tw respectively, and the critical
MTJ switching current IC0 . In particular, the error probability
is asymmetric w.r.t. the type of transition since IC0 is higher
for 0→ 1 transition than for the opposite one.

The write error probability in Equation 1 can be considered
as an expectation amount of the errors occurred in the overall
number of bit-wise write operations, that is the write error rate.
To retrieve the write error rates of STT-MRAM at different
write current amplitudes we used the same setup of the
previous experiment and we conducted several Monte Carlo
HSPICE simulations. Fig. 4 depicts the write error rate of a
32nm STT-MRAM cell at different write currents. The result
is that the set of write current vs. error rate pairs obtained for
each transition type can be interpolated with an exponential
curve with an inverse relationship. Moreover, it can be noted
that for the same current intensity, the error probability for the
0→ 1 is two orders of magnitude higher than for the opposite
one. In conclusion, based on Equation 1 and Fig. 4, we have
characterized Iw as an effective circuit-level knob to control
the quality-energy trade-off during a write operation.

It is worth mentioning that, similarly to the introduced
write actuation knob, theoretically, we can defined a cor-
responding one for read operations (as mentioned in our
first proposal [17]). However, from practical perspective, our
evaluation results, which will be demonstrated in Table V,
showed that write operation imposes about three orders of
magnitude higher energy consumption than read operation
in STT-MRAMs. Accordingly, since the read actuation knob
would not open significant room for energy saving, we ignore
it in this work.

III. MOTIVATIONAL EXAMPLE

The effectiveness of our CAST approach in saving energy
while delivering an acceptable output quality is here demon-
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strated on two image processing applications from MiBench/-
Susan benchmark suite [24], namely image smoothing and
edge detection, that are generally used as building blocks for
more complex RMS applications.

We set up a simulation environment for a multi-core
architecture with gem52 [25] where we enabled the LLC
with the possibility to set the amount of write current. We
selected the current values to be used during the memory write
operations according to four defined Quality Levels (QLs)
from QL0 to QL3 based on the characterization presented
in Fig. 4. QL0 represents the accurate write operation, i.e.,
with an error probability close to 0%; while QL1 to QL3
three increasing approximation levels of write operations. We
defined two different knob actuation strategies: the first one,
used in QuARK [17], assigns a fixed decreasing amount of
current to each QL to obtain a predefined error rate; the second
strategy, here adopted by CAST, defines two different current
intensities for each QL to be used for 0→ 1 and 1→ 0 memory
cell transitions, respectively, thus exploiting the peculiar error
rate asymmetry of write operations in STT-MRAMs. It is
worth mentioning that since QuARK is more conservative than
CAST, the current intensity used at a given QL is the same
used in CAST for 0 → 1 transition; in such a way the two
approaches provide the same worst-case write error rate and
subsequent output QL.

Table II presents the results of the simulation by reporting
for each application the produced output image, the corre-
sponding fidelity of the output and the energy saving in
percentage of each QL1-3 w.r.t. the golden reference using
accurate write, QL0. It is worth mentioning that for the two
approaches, the output images and corresponding fidelities
are almost the same due to the aligned configurations. As
expected, for both the two applications we notice that varying
the QL from 1 to 3 causes at the same time an increase in the
quality loss, measured in terms of Peak Signal-to-Noise Ratio
(PSNR) for the image smoothing and Root Mean Square Error
(RMSE) for the edge detection, and in the energy saving.

For image smoothing, results show that the PSNR of the
output image is well above the threshold of 30 dB in the worst
case quality level, QL3. Indeed, no perceptual differences can
be visually perceived among the output images reported in
the top part of the table, when using different QLs on this
application. Thus, a programmer can select QL3 for the LLC
write operations with a minimal quality degradation while
achieving a memory’s energy saving up to the 48% when using
QuARK knob actuation; this saving is even more increased
to 70% with CAST. On the opposite, the second part of
Table II reports that there is a noticeable quality degradation
in the output when QL3 is used for edge detection, with a
RMSE larger than 31. Since many applications cannot tolerate
this level of quality degradation, programmers can select a
more precise QL2 or QL1 in LLC and still benefit from the
lower energy savings spanning from 45% to 38% when using
QuARK strategy, and 72% down to 41% with CAST.

In conclusion, we have shown that since the applied current

2The details about the configuration of the STT-MRAM LLC, CAST and
gem5 are reported in Section V.

TABLE II: Output fidelities and energy savings delivered
by CAST and Quark with different knob settings for Image
Smoothing and Edge Detection benchmarks.

Image Smoothing 

Input 
QL0 

(Accurate) 
QL1 QL2 QL3 

PSNR - 82.3 49.1 39.6 
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CAST 5% 41% 70% 70% 
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QuARK 0% 38% 45% 47% 

CAST 4% 41% 72% 69% 

to a STT-MRAM cell during a write operation affects the write
error rate, the quality of write operations can be controlled by
selecting the appropriate current level during the application
execution. Hence, by considering the minimum amount of
write current to satisfy the application output quality threshold,
QuARK saves energy during the energy-hungry write opera-
tions in STT-MRAMs. Moreover, this result can be further
improved as here shown with CAST, if we properly exploit
the significant current gap between different write transitions
in STT-MRAMs discussed in Section II. In particular, by
properly lowering the current intensity to be applied in the
1→ 0 transition in order to obtain the same write error rate of
the opposite direction (that represents the worst-case scenario),
CAST achieves in this motivating example extra energy saving
up to 28% w.r.t. QuARK.

Nevertheless, unlike the QuARK, as shown in Table II,
CAST is capable of saving energy consumption even in
accurate write operation, which is QL0. Indeed, fixing the
same write error rate of accurate write operations at a specific
threshold for both transitions in CAST leads to energy saving
up to 5% in the less vulnerable transitions, i.e., 1→ 0.

Another relevant aspect that motivated the proposed ap-
proach is that not all the locations in the memory space of
a running application can be approximated. When considering
the two image processing applications, we can approximate
the data structures containing the intensities of the various
pixels of the processed images, since the actual output is
resilient to a certain level of errors. At the opposite we have
to guarantee the control variables of the program (e.g., the
loop counters) and further control values (e.g., the return value
stored in the memory stack during a function call) to be error-
free. Indeed, an error corrupting such variables may lead to
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a disruptive effect in the processing data or even a crash. In
our motivational experiments, we profiled the accesses to the
LLC; 65% of such accesses can be approximated in the image
smoothing and the 70% in the edge detection. Therefore,
the actual energy saving is restricted to such percentages
of memory accesses. When considering the state-of-the-art
coarse-grained approximate approach acting at the granularity
of the cache way (e.g., SRAM-based approaches [11], [13]),
this analysis should be more conservative by considering the
entire content of each single cache way. Thus, we counted
that when considering the content of the LLC at each clock
cycle of our simulations, only 11% and 49% of the time, for
the two applications respectively, a single cache way contains
uniform data w.r.t. the corresponding QL, thus considerably
reducing the corresponding energy saving. Such a situation is
even more exacerbated by the fact that a multi-/many-core
system generally executes several applications at the same
time, and, in our scenario, each of them may require a different
QL. In our example, image smoothing requires QL3 and edge
detection QL2. As a conclusion, CAST we here propose is
able to overcome such limitations by means of fine-grained
per-block knob actuations capable at managing independently
heterogeneous QL accesses from the same applications or even
from different ones.

IV. THE CAST APPROACH

This section presents CAST in detail. First, we will explore
the software support defined to connect applications to be run
to the CAST infrastructure. Then, CAST hardware infrastruc-
ture will be discussed by presenting the mechanisms that have
been integrated into the cache memory architecture.

A. Software Support

Data structures of a program can be categorized into crit-
ical (such as loop control variables, which corruption would
most likely lead to catastrophic failure or significant quality
degradation) or non-critical (variable storing elaborated data
whose quality degradation resulting from corruption would be
acceptable). This concept has been used before in [26] where
a simple partitioning of data – into critical and non-critical –
has been shown effective to improve DRAM energy efficiency.

To utilize CAST energy-saving opportunities, the program-
mer has to identify non-critical data structures and assign to
each of them a QL. Typically, non-critical data structures are
determined through a set of simulations using fault injection
and then measuring the quality of generated output against the
golden output. Frameworks such as Rely [27] and Accept [28]
could also assist a programmer in identifying non-critical data
structures in a program. While this paper focuses on the design
of the CAST architecture, future work will be devoted to the
definition of a companion methodology for the identification
of non-critical data structures and corresponding selection of
the proper QL for each of them.

These categorizations can be reflected in a program by an-
notating different data structures. One category of approaches
define type qualifiers and dedicated assembly-level store and
load instructions for this purpose [29], [27]. These approaches

TABLE III: CAST API.

Function Parameters Note

add_approx

BaseVA

Size
QL

Base virtual address of approx.
memory region
Size of the approx. memory region
Required quality guarantee

remove_approx
BaseVA

Size

Base virtual address of approx.
memory region
Size of the approx. memory region

unsigned *image;
int quality_level = QL0;
int light;
...
image = (unsigned int*)malloc(WIDTH*HEIGHT*sizeof(

unsigned));
if(approximation_enabled) {

light = get_environment_lighting();
if(light>= 0 && light < 30)

quality_level = QL0;
else if(light>= 30 && light < 70)

quality_level = QL1;
else /*i.e. light>= 70 && light <= 100*/

quality_level = QL2;
}
add_approx(image,WIDTH*HEIGHT*sizeof(unsigned),

quality_level);
...
load_image(image);
face_detection(image);
...
remove_approx(image,WIDTH*HEIGHT*sizeof(unsigned));
...

Fig. 5: A pseudo-code example showing how CAST APIs can
be used in a face detection application.

require major modifications to the compiler, Instruction Set
Architecture (ISA), and processor architecture. We consider
an alternative approach for CAST that uses dynamic decla-
rations that are enforced at run-time. Our approach is ISA-
independent, can be easily integrated in today’s processor
architectures, and requires minor modifications to the compiler
tool-chain. Indeed, we implemented the CAST Application
Programming Interface (API) within a special run-time library.
With this approach, hardware components of CAST become
memory-mapped interfaces. The run-time library uses normal
read/write instructions to transfer the information provided by
the API to the hardware.

CAST provides two API functions to the programmer:
add_approx and remove_approx, described in Table III.
The CAST API communicates with the CAST hardware
support (introduced in Section IV-B) to pass the information
about non-critical data structures and their acceptable QL, or
to remove the previously-declared approximation level. As
an example, Fig. 5 shows how CAST API can be used in
the source code of a hypothetical face-detection application.
According to [30], environmental lighting affects the quality
of the face detection algorithm. Thus, considering a reasonable
output quality in the worst-case environmental lighting (when
the lighting is either very low or very high), we can trade
quality for energy saving in the cases when lighting is in a
normal condition (between 30 and 70 in this example).

B. Hardware Support

To implement the hardware infrastructure of CAST, we
consider a multi-core system including private L1 caches and
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a shared L2 LLC, as shown in Fig. 6(a). In particular, we
propose to integrate CAST in STT-MRAM LLC as it uses to
contains a representative set of data with different QLs from
different applications run at different cores in a multi-core
system, as will be demonstrated by the analysis presented
in Section V. This characteristic of LLC provides a unique
opportunity to trade quality for energy consumption in energy-
hungry STT-MRAM write operations. It is worth mentioning
that CAST can be applied to any type of architecture spanning
from the single-core CPU, to homogeneous or heterogeneous
multi-core systems. In this paper, a homogeneous multi-core
system is considered for the sake of demonstration.

Handling the write requests in CAST is performed in two
steps. At the first step, the required QL for the arriving
write request is retrieved by the information provided through
software API. Since write requests are actuated on LLC only
when the block is replaced or requested from the L1 cache,
a dedicated hardware infrastructure is used to keep track of
the various requests and corresponding QLs. In the second
step, when the memory block is written, a dedicated circuitry
within the STT-MRAM memory tunes the voltage level for
each bit to be written to minimize the energy consumption
while achieving the minimum error rate required by the
corresponding QL. To present the hardware support of CAST
we will discuss the hardware modifications from the two
perspectives: 1) architecture-level modifications and 2) circuit-
level modifications. The former are applied to both the cache
controller and the communication infrastructure connecting to
the various cores to integrate CAST in the system. On the
other end, the latter is applied to the internal structure of the
cache memory to tune the STT-MRAM actuation knob during
the write operations.

1) Architecture-level Modifications for CAST: The overall
structure of the CAST architecture is shown in Fig. 6(b). Two
modules should be added to the typical cache architecture

of a multi-core system, i.e., (1) CAST table and (2) CAST
controller. Furthermore, we need to change the system inter-
connect to pass the QL information over it. Do note that CAST
does not alter the coherency protocols of the system’s cache
hierarchy since it only requires intra-cache modifications as it
appears in the figure.

The Base Architecture (BA) shown in Fig. 6(b) is actually
our first proposal presented in [17]. Such an architecture has
been later redesigned in a more efficient Performance Efficient
Architecture (PEA), shown in Fig. 6(c). As discussed later
in detail, the main difference between these architectures is
related to the way each Write-Back (WB) request is associated
with the required QL. In BA, for each WB request the required
QL is retrieved after comparing the address of the requested
block against the information provided in CAST table. In
contrast, in PEA, the required QL for each block is saved in a
reserved space for the future accesses to that block. Thus, in
this way, PEA omits the potential time-consuming comparison
operations in BA. In the following, first, the internal details of
the CAST table and CAST controller are presented and later
the different workflow in the block filling operations.
CAST table: The table, instantiated in each core of the system,
stores approximation commands received from the API calls.
When the add_approx is called during the execution of
the applications, the transmitted parameters (i.e., baseVA,
size, and QL) are stored in a row of the table. Then, calling
remove_approx removes the corresponding data row.

Every time that processor issues a memory access, this table
is searched to get the corresponding QL. Since CAST table
saves Virtual Addresss (VAs) while the memory hierarchy
components work with Physical Addresss (PAs) (in almost all
well-known architectures, e.g., ARM), CAST table is closely
coupled with Translation Look-aside Buffer (TLB) as shown
in Fig. 6(b) and Fig. 6(c). Thus, each time that a VA is passed
to TLB to determine its PA, the VA is also searched in CAST
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table in parallel. When the address is not found in the CAST
table, the maximum QL is returned. Finally, the PA that is
retrieved from TLB, enriched with the retrieved QL from
CAST table, is fed to the memory hierarchy components.
CAST controller: This module is responsible for controlling
the STT-MRAM quality-energy trade-off knob based on the
QL information that is provided by the CAST table. CAST
controller sits next to the cache controller and works in parallel
with it. CAST controller receives the QL set by the CAST table
and selects the corresponding minimum settings.

The difference between the functionality of BA and PEA
manifests during the cache fillings. In the following, we show
how each architecture behaves in these situations.
Cache filling in BA: Fig. 6(b) depicts the proposed CAST
BA. Cache fillings in BA perform as a request is missed in
the cache memory (e.g., L1 data cache) or a lower-level cache
memory executes a WB request. For the first request type
(missed in the lower-level cache memory) since the request
comes from the processor side, it equipped with its QL. In this
situation, CAST controller in LLC actuates the STT-MRAM
knob based on the received QL and perform the LLC cache
filling. For the later request type (WB from lower-level cache),
the process of cache filling depends on the level of the lower
cache. If the LLC lower cache is L1 data cache, in BA a set of
steps are performed to retrieve the QL of the requests which
are numbered in Fig. 6(b). A WB controller has been added to
the L1 data cache memory architecture to perform some part
of these steps.

1) When a WB request is generated in L1 data cache, WB
controller is responsible to pass the PA of the victim
block to CAST table.

2) The controller circuit in CAST table then generates VA
to PA requests of its entries for TLB and check the return
PA from TLB to find-out if the victim block VA is in
CAST table or not. Finally, the QL of the victim block
is determined.

3) The victim-block which is augmented with its QL is
passed to LLC by the WB controller.

4) The arrived WB request in LLC cache is written with
the specified QL by the aid of the CAST controller.

Considering WBs from lower-level memories (except L1 data
cache) to LLC, all of the arrived WB requests should be
satisfied with the highest QL since we cannot access the TLB
farther from L1 data cache to perform the mentioned steps.
Note that in CAST, all of the LLC WB operations to the
upper-level memories are performed just like the typical LLCs.
Cache filling in PEA: Fig. 6(c) depicts the proposed CAST
PEA. In case of L1 cache miss, just like BA, since the request
is already equipped with QL, PEA only needs to actuate the
STT-MRAM knob based on the corresponding QL. In PEA
filling operation, the received QL for each request is saved in
a specific field in LLC tag memory called Q (see Fig. 6(c)).
The main difference between CAST BA and PEA is behind
in the way that they behave for WB from lower-level cache.

Indeed, unlike the BA that perform a set of steps to retrieve
the QL of the victim block and pay performance penalty, PEA
uses the stored quality information in Q field. Furthermore,
unlike the BA, the approach that PEA uses for retrieving the
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Fig. 7: CAST circuit-level modifications to the LLC.

QLs of write requests is same for all of the lower-level caches
including L1 data cache. Generally, to retrieve the QL of the
WB requests, the proposed PEA depicted in Fig. 6(c) uses
the provided information by the Q field in the cache tag array
of LLC if the WB request is hit in LLC, otherwise the WB
request is satisfied in LLC with the highest QL.

Note that, since reading the Q and Tag fields are performed
in parallel, CAST does not impose any performance overhead
for WB requests, however it imposes a small area overhead to
save the QLs of the stored blocks next to Valid (V), and Dirty
(D) bits in the cache tag array of LLC. Moreover, if the main
memory supports QL adjustments for the LLC WB requests,
CAST can broadcast the Q field of the requested block in
the memory hierarchy of the system. Otherwise, all the WB
operations to the upper-level memories are performed just like
the typical LLCs

2) Circuit-level Modifications for CAST: Enabling the pos-
sibility of configuring the STT-MRAM knob, some modifi-
cations have been applied to the connections between the
CAST controller and the STT-MRAM cache, as shown in gray
in Fig. 7. CAST controller is responsible for providing the
appropriate voltage levels for the requested read and write
operations to the Source Line Driver (SLD) corresponding to
each cache data array bit column. To this end, CAST controller
performs the following tasks based on the type of arriving
request, i.e., read or write:
∎ Read request: For an arriving read request, CAST con-
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troller only passes the default read voltage level to all the SLDs
in the cache controller. Sense Amplifiers (SAs) in the cache
controller then use the current generated by voltage level to
determine the logic values stored in the MTJs based on their
measured resistance intensities.
∎ Write request: For an arriving write request, a dedicated

Transition Aware Write (TAW) manager chooses the write
voltage based on the requested QL and type of transition for
each cache data array MTJ, selected by the Address Decoder
module. To determine the appropriate voltage levels for SLDs,
we utilize a number of voltage Level Converters (LCs) similar
to the one introduced in [31]; each LC is tuned to provide the
voltage corresponding to a QL. We adopted the voltage LCs
design proposed in [31]; in any case, since STT-MRAM works
based on the resistance of MTJ, any other voltage or current
LC can be considered here. Moreover, for the same reason, the
considered voltage-based peripheral circuits can be replaced
with current-based ones.

To have m QLs, the CAST controller includes (2m−1) LCs.
Indeed no LC is required for the 0 → 1 transition at highest
QL since it is performed at nominal voltage. These LCs are
grouped in two classes, i.e., VDDH

, and VDDL
connected to

two multiplexers. When a request to update a block arrives, the
QL information (log2m bits) received by the CAST controller
is used by the two multiplexers to select the corresponding
voltages for 0 → 1 transitions and 1 → 0 ones, and to drive
the VDDH

and VDDL
rails. Finally, TAWs choose the suitable

voltage from VDDH
or VDDL

rails based on the requested
transition and passes it to the corresponding SLDs. According
to Fig. 7, the TAW module is implemented with a multiplexer.
Moreover, if the input bit is ‘1’ (VDDH

is selected) it means
that, based on the stored value in the targeted STT-MRAM
cell, either there will be a 0 → 1 transition or no transition
at all (1 → 1). Since our SLDs are equipped with Early
Write Termination (EWT) module [32], there is not any energy
consumption for 1→ 1 case. When the input bit is ‘0’ (VDDL

is selected), one of the two complementary situations will
occur based on the stored value in the targeted STT-MRAM
cell, i.e. 1 → 0 and 0 → 0, that will be managed in the same
way discussed above.

Since CAST controls STT-MRAM knob at cache block
granularity, the virtual address ranges provided by the API
should be aligned to the cache block boundaries, because the
cache blocks that contain a mix of critical and non-critical data
should not be approximated. An address alignment module
embedded in the CAST table performs the required alignment.

V. EXPERIMENTAL EVALUATIONS

In the following, we show experiments with a mix of
approximate and accurate applications to evaluate the CAST’s
capabilities in saving energy in the on-chip caches under
different levels of accuracy requested by applications.

A. Experimental Setup

1) Simulation Environment: To implement our scheme in
detail, we modified the cache architecture in the gem5 simula-
tion framework for multi-core architecture [25]. In particular,

TABLE IV: gem5 settings for the used multi-core system.

Parameter Value Parameter Value
ISA ARMv7-A L1 $ Size, Assoc. 32KB, 4
No. of Cores 4 L2 $ Size, Assoc. 1MB, 16

Cache Config. L1 (Private)
L2 (Shared, CAST-enabled) Cache Block Size 64B

TABLE V: Quality-energy transducer map for 1MB L2 CAST-
enabled STT-MRAM cache. Energy consumptions are reported
for 64-byte cache line.

Quality Read Energy Write Error
Rate

Write Energy
0→ 1

Write Energy
1→ 0

QL0 (Baseline) 44pJ 10−9 166nJ 87.9nJ
QL1 44pJ 10−5 74.7nJ 37.8nJ
QL2 44pJ 10−4 57.5nJ 28.5nJ
QL3 44pJ 10−3 42.6nJ 20.5nJ

we enabled CAST for L2 LLC as an exemplar. We used
gem5’s pseudo-instructions for implementing CAST’s lan-
guage extensions. Moreover, we enhanced gem5 to enable ran-
dom fault injection during the write operations in the L2 cache
memory based on the probability described in Equation 1 per
each single memory cell and with a uniform distribution over
different cell positions. In the experiments, we considered a
quad-core processor for embedded applications described in
Table IV.

2) Characterization of STT-MRAM Caches: To characterize
the cache model in gem5, we used Bit Error Rate (BER) and
access current data from HSPICE Monte Carlo simulations
and through the formulas retrieved by regression methods (de-
picted in Fig. 4). Then, we profiled an 1MB L2 STT-MRAM
cache in NVSim [33] to extract energy consumption and
characterize the gem5 cache model.

We defined 4 QLs, with increasing approximation level from
0 to 3; the details of error rates and energy consumption
are reported in Table V. In particular, we considered 10−9

as the practical error rate for write operations in full-accurate
mode, that is QL0, and we consequently computed from Fig. 4
the corresponding write current amplitude, and subsequent
energy consumption from the NVSim profiling. Then, we
selected for the approximate QLs three points on the same
plot having equidistant distance on the error probability (in
logarithmic scale), and we characterized them in a similar
way. It is worth noting that such points have been selected
for the sake of demonstration of the effectiveness of the
proposed approach. The definition of the QLs requires an
accurate characterization of the specific architecture under
design, also based on an extensive simulation of benchmarks
to investigate the write output quality vs. energy saving; since
this aspect is highly connected to the definition of the software
methodology mentioned in Section IV-A, it is left as a future
work. Finally, to evaluate the area and power consumption
overheads of the peripheral circuits in CAST controller we
used Synopsys Design Compiler®. It is worth noting that
due to our availability of the only 45nm technology for
Synopsys Design Compiler®, we rerun all characterizations
in this technology node.

3) Benchmarks: In our evaluations, we used the appli-
cations from the MiBench benchmark suites [24] listed in
Table VI. The first subset is composed of RMS applications
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TABLE VII: List of workload combinations.

Package Workload
Mixes Benchmarks Package Workload

Mixes Benchmarks Package Workload
Mixes Benchmarks

Full
Approximate

App1

Corner Detection (QL0∼3)
Sobel (QL0∼3)

Image Smoothing (QL0∼3)
Blackscholes (QL0∼3)

Mixed
Criticality

Mix1

Blackscholes (QL3)
Basicmath (QL0)

Scale (QL1)
Dijkstra (QL0)

Full
Accurate

Acc1

CRC (QL0)
Basicmath (QL0)
Dijkstra (QL0)

FFT (QL0)

App2

Blackscholes (QL0∼3)
Scale (QL0∼3)
Sobel (QL0∼3)

Image Smoothing (QL0∼3)

Mix2

Sobel (QL2)
FFT (QL0)

Edge Detection (QL3)
CRC (QL0)

Acc2

Sha (QL0)
Patricia (QL0)

CRC (QL0)
Basicmath (QL0)

App3

Sobel (QL0∼3)
Corner Detection (QL0∼3)

Scale (QL0∼3)
Edge Detection (QL0∼3)

Mix3

Sha (QL0)
Corner Detection (QL1)
Image Smoothing (QL2)

Patricia (QL0)

Acc3

Dijkstra (QL0)
Patricia (QL0)

Sha (QL0)
FFT (QL0)

App4

Blackscholes (QL0∼3)
Scale (QL0∼3)

Edge Detection (QL0∼3)
Image Smoothing (QL0∼3)

Mix4

Corner Detection (QL1)
Blackscholes (QL3)

Basicmath (QL0)
Sha (QL0)

Acc4

CRC (QL0)
Sha (QL0)
FFT (QL0)

Dijkstra (QL0)

TABLE VI: List of applications.

Benchmarks Domain Quality Metric

A
pp

ro
xi

m
at

e Corner Detection Image processing Mean Pixel Difference (MPD)
Edge Detection Image processing RMSE
Image Smoothing Image processing PSNR
Black Scholes Financial Analysis Average Relative Error (ARE)
Image Scale Image processing PSNR
Sobel Filter Image processing MPD

A
cc

ur
at

e

Basicmath Automotive –
CRC Telecommunications –
Dijkstra Network –
FFT Telecommunications –
Patricia Network –
SHA Security –

that can be approximated; for each of them, we also report the
corresponding quality metrics to evaluate the produced results.
We annotated RMS applications by inserting add_approx
and remove_approx in the source code for non-critical data
objects. Besides the approximate benchmarks, we also evaluate
the efficiency of CAST in dealing with accurate benchmarks,
reported in the second part of the table, to save the energy
consumption in 1→ 0 transitions.

4) Workload Combinations: To evaluate the efficiency of
CAST, we considered the effects of multi-programming in
a shared L2 cache equipped with CAST. To this end, we
introduced three packages of workload mixes, i.e., Full Ap-
proximate, Mixed Critical, and Full Accurate in Table VII.
The workloads in full approximate package were run in fixed-
quality mode in which we run each workload combination in
four QLs: QL0 (i.e., full-accurate, QL1, QL2 and QL3 (i.e.,
least-quality) configurations.

In contrast to the full approximate package, in the mixed-
critical package, we considered different levels of quality for
each benchmark in each combination. Our empirically-chosen
criteria to set the QL for each approximate application was
based on the user-level Quality of Service (QoS) desirability.
For instance, as shown in the motivational example, QL3
provided an acceptable QoS for Image Smoothing, while for
Edge Detection QL2 was more desirable. Note that these QLs
can be chosen by the user/designer w.r.t any other policies.
For accurate applications in each combination, we choose the
highest quality level, i.e., QL0.

According to support our discussions about the retrieved re-
sults, in Fig. 8, we explore the shared L2 cache access pattern
distribution for running the workload combinations mentioned
in Table VII. To this end, we can see that approximate transi-
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Fig. 8: L2 cache workload access patterns.

tions contribute to up to 67% of transitions in L2 cache when
running workloads from the full approximate package (App3).
Furthermore, approximate transitions also actively contribute
to the transitions of mixed critical workloads. For example,
over 53% of transitions in mix1 is approximate transitions.
From the full accurate package perspective, while workloads
like Acc2 does not provide a good opportunity to save energy
consumption in CAST, the other workloads provide energy-
saving opportunities for CAST controller because of their
considerable portion of 1→ 0 transitions.

B. Where to Use CAST?

The first experimental issue is to analyze the most suitable
place(s) to implement CAST in the cache memory hierar-
chy. To this end, we support our discussion by answering
a fundamental question, which is “How much room do we
have to apply our approximation technique in each memory
level?”. To answer this question, we conducted a systematic
analysis of the various levels of the on-chip cache hierarchy to
find out the possible opportunities for approximation at each
level. Besides the contribution of approximate accesses in the
STT-MRAM memory, we also analyzed the contribution of
each type of transitions to explore the usage efficiency of
asymmetric voltage actuation.

Fig. 9 contains the L1 data and L2 caches’ access infor-
mation for the benchmarks listed in Tables VI. It can be seen
from Fig. 9(a) that the contribution of 1 → 0 transitions is
much higher than 0→ 1 transitions for both approximate and
accurate applications. On average, over 96% of transitions
in the approximate application, and over 86% of transitions
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Fig. 9: Benchmarks’ access patterns: (a) L1 data cache, and
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in the accurate applications belong to 1 → 0 transitions.
Furthermore, considering approximate applications, we can
see in Fig. 9(a) that only about 4% of transitions in the L1
data cache is for approximate write requests. This happens
due to the high access frequency of the processor to lots of
critical data (i.e., loop counters, intermediate variables, etc.)
that should be resolved by L1 data cache. Thus, considering
approximate techniques that proposed their approaches for L1
data caches or level one ScratchPad Memories (SPMs), they
would not benefit from considerable energy saving.

Fig. 9(b) depicts the L2 access patterns over approximate
and accurate applications. Unlike the L1 data cache, it can
be seen in Fig. 9(b) that most of the transitions in L2 cache
are 0 → 1 transitions. On average, over 89% of transitions in
approximate applications and over 83% of transitions in the
accurate applications belong to 0→ 1 transitions. Considering
approximate applications we can see in Fig. 9(b) that over 56%
of transitions is for approximate write requests, on average. As
a conclusion L2 cache is the most appropriate place where
to apply approximation techniques like CAST while it is
discouraged to consider L1. Nonetheless, similar experimental
evidence may also be obtained for layers lower than L2.

This experimental evidence is also enforced by various
past studies on STT-MRAM adoption in on-chip memories,
such as cache and SPM; indeed they claim that utilizing
STT-MRAM is only practical for lower L2 and lower-level on-
chip memories [34], [35], because STT-MRAM has fundamen-
tal issues from performance, dynamic energy consumption,
and endurance. Accordingly, utilizing STT-MRAM for L1
caches that are frequently accessed by CPUs is not feasible.
Furthermore, when considering L1 SPMs implemented with
STT-MRAM, to address the mentioned issues we need to

add too many restrictions in SPM data mapping algorithm
which may highly affect the SPM utilization. To this end, we
proposed to implement CAST in cache levels lower than L1.

C. Experimental Results

In the following, we evaluate how our approach helps
energy saving in a system that its L2 is equipped with CAST.
We explore the efficiency of CAST from these perspectives:
1) energy saving, 2) delivered quality, and 3) performance
penalty. To this end, we compare CAST with QuARK [17]
and a baseline architecture that only benefits from EWT
mechanism [32] to save the energy. In order to have a fair
comparison, we disabled in QuARK the actuation knob during
read operations, even if its benefit is marginal. Finally, we
provide a discussion on the performance and area overheads
of proposed architectures in the CAST-enable L2.

1) Energy Saving: Fig. 10 depicts the energy consumption
of L2 in different scenarios. Since there are considerable
approximate accesses in L2, QuARK considerably reduces the
write energy consumption in the L2 cache for full approximate
and mixed-critical workloads. For these workloads, CAST
outperforms QuARK since it utilizes the transition aware
write voltage management in both accurate and approximate
1 → 0 transitions. Considering approximate benchmarks,
Fig. 10 confirms that QuARK and CAST can save write
energy consumption in L2 by up to 50% and 57% for the full
approximate workload package, respectively. Besides, for the
mixed-critical workload package, QuARK and CAST can save
write energy consumption in L2 by up to 27% and 34%, re-
spectively. Finally, for a full accurate workload package, while
QuARK cannot save energy consumption, CAST saves energy
consumption by up to 21%. Finally, based on the synthesis
results described in Section V-C4, the energy overhead of the
CAST controller is negligible (0.003%).

2) Quality: Fig. 11 depicts the CAST output quality when
running full-approximate benchmarks at various quality levels
for in L2. Each plot presents the results according to the
quality metric considered for each specific application (as
reported in Table VI. We may notice that in many cases there is
a quite significant variation of the output quality depending on
the selected QL that highly depends on the specific application;
for instance for the corner detection the quality lost is up to
the 7% at QL3 configuration, while for blackscholes it can be
reached up to 56% at the same configuration. Furthermore,
the quality lost acceleration from QL1 to QL3 is also differ in
various applications. For example, while in scale we observe
almost a uniform pattern in quality degradation when moving
from QL1 to QL3, for edge detection we see an aggressive
quality degeneration when moving from QL1 to QL3. Ac-
cordingly, the later application is more sensitive to CAST
actuation management. As a conclusion, by analysis such
results, the software engineer should select the appropriate QL
to guarantee to the user the desired QoS; based on how much
stringent/relaxed such requirements are the system will save
less/more energy.

3) Performance: We tested the performance of the two
architectures for deploying CAST in cache memories, i.e., BA,
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inherited from QuARK, and PEA. Considering a sequential
search operation at CAST table with two clock cycle latency
for each search access, Fig. 12 depicts the normalized per-
formance of the system in the two cases. It is possible to
note that BA imposes up to 47% performance overhead to
the system in comparison with PEA; this is mainly because
in the former we need to adjust the quality of the accesses
to CAST-enabled caches. The main reason to observe this
amount of performance degradation is due to CAST table
search to look up the quality levels of L1 cache write-back
accesses. Accordingly, the main contributor to the performance
overhead of CAST in BA is the total amount of write-backs
operations that should be served at different workloads. This
kind of issue is solved by the newly proposed PEA, presenting
no performance overhead during the quality adjustment.

Moreover, in BA, CAST does not impose any performance
overhead when a memory access hits the first level cache
since the CAST table and TLB lookups are performed in
parallel. The only situation where CAST imposes extra cycles
to execution time is when a dirty block in L1 data cache has
to be written back to L2.

In this case, the L1 data cache WB controller should set
the quality level of this write-back request for L2 cache
write operation. To this end, the PA of the target block in
L1 data cache should be searched in the VA entries of the
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Fig. 12: CAST’s performance at different configurations.

CAST table. Accordingly, for each entry of CAST table, the
corresponding PA are generated through TLB queries. Unlike
BA, in PEA since we save the quality level of each access in
the corresponding quality field of each block, we do not pay
any performance overhead for retrieving the quality levels of
write-back requests.

4) Discussion on Area Overhead: In the previous subsec-
tion, we see that BA may impose up to 47% performance
overhead to the design based on the amount of write-back
requests of each workload, in comparison with PEA design.
On the other hand, the higher performance of PEA design
achieved by imposing area overhead to save the QLs of cache
blocks at the provided Q fields in the tag memory. To calculate
the area overhead of PEA design comparing against BA, we
modeled the considered 1MB L2 cache in NVSim.

Fig. 13 depicts the occupied area of tag array, Q fields, and
data array in the BA design and the PEA one, respectively.

To calculate the area of the Q fields in the tag array of the
L2 cache we considered 2 bits for saving the quality levels of
each data block, 20 bits for tag address corresponding to each
data block, 1-bit dirty flag, and 1-bit validity flag. Accordingly,
Fig. 13(a) shows that the L2 BA design would occupy about
1.68mm2 of the chip. In particular, the data array of the L2
is the main contributor for occupying the area in L2. Indeed,
the tag array of L2 only occupies 11% of the L2 chip area,
and the remaining 89% was used by a data array. Considering
the PEA design, adding the Q fields to the tag part of the L2
requires about 1% of the L2 area as depicted in Fig. 13(b).
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Fig. 13: CAST BA and PEA L2 chip area comparison.

Finally, we designed the CAST controller peripheral circuits
and synthesized using Synopsys Design Compiler®. Indeed,
we synthesized the 7 LCs, their corresponding VDDL

and
VDDH

multiplexers, and the TAW modules in Synopsys De-
sign Compiler® to characterize them from area and power
perspectives. Then, we added the results to NVSim’s area (and
power) reports, obtaining an overhead of about 0.16% (and
0.003%) w.r.t. the basic cache architecture, which is negligible.

As a conclusion, PEA demonstrates to be more performance
effective with a negligible area overhead.

VI. RELATED WORK

In the past decade, several studies have explored approxi-
mate computing in the fields of computation and programming
language [10]. Considering the hardware platforms that exe-
cute the approximate computing applications, an approxima-
tion can also be applied to different components of the system,
including memory hierarchy.

Reviewing the previous efforts in applying approximate
computing approach to the memory hierarchy, we can classify
the literature studies into two groups. In the first group, there
are a bunch of studies that tried to analyze the vulnerabilities
of different parts of data structures across the programs [36],
[37]. In [36] a dynamic solution to check the output quality
of applications during the run-time was introduced. While the
paper proposed how to track the output quality, it did not
introduce any approach to tune the actuation knobs based on
the online measured output quality. These kinds of studies can
be utilized to provide a closed-loop approximate computing
approach if they are attached to the approaches that control the
actuation knobs across the hardware platforms. In [37], another
error resilience analysis approach, was proposed especially
for the convectional neural networks to find the vulnerability
of different layers. Unlike the first group, the studies in
the second group focused on managing the actuation knobs
across the hardware platforms for approximate data consider-
ing different goals like improvement in energy consumption
(e.g., [11], [15], [26], [14]), performance (e.g., [14]) or area
(e.g., [12], [38]). The proposed approaches either targeted on-
chip memories or off-chip memories.

On-chip memories which are typically implemented by
SRAM technology face two important challenges, i.e., high
static power, and low density. A promising approach to deal
with these challenges is to utilize the opportunities delivered

by a quality adjustment in approximate computing applica-
tions. To deal with the first challenge, the authors of [11] have
shown how several cache ways of a SRAM cache can operate
at a lower than the nominal voltage. These relaxed ways are
used to hold approximate data, and the protected ways are
used to hold critical data. On the other hand, authors of [12]
exploit the approximate similarity of data in last-level caches
to use the cache storage more efficiently and hence save static
and dynamic energy.

With the development of non-volatile memory technologies
in the recent years, several studies consider the potentials
of deploying non-volatile memories at the memory hierar-
chy of platforms running approximate computing applications
(e.g., [39], [40], [15], [38], [14], [26], [41]). Two recent
works [15], [16] have considered applying the idea of approx-
imation to STT-MRAM structures. The authors of [15] have
utilized similar energy-quality knobs that are used in CAST.
However, they are applied to scratchpad memories used in
a vector processor running a single application. We showed
that unlike the lower-level on-chip memories (like LLC) the
close-to-CPU on-chip memories like L1 caches and SPMs
do not provide significant opportunities for approximation
since the ratio of approximate accesses in these types of
memories are not considerable comparing with lower-level on-
chip memories.

In [16], the possibility of approximate computing in L2
STT-MRAM cache was investigated like our previous pro-
posal, i.e., QuARK. There are two differences between STAx-
Cache proposed in [16] and CAST. Firstly, they did not
consider write current actuation knob in their approach. Sec-
ondly, they did not utilize the opportunities of energy saving
delivers by the asymmetric write behaviors of STT-MRAMs.
There are also other efforts to propose approximate com-
puting approaches for STT-MRAM based cache memories
which are either not discuss specific actuation knob [40] or
not considered dynamic voltage scaling and just provided
a special STT-MRAM cell design and utilized it in their
architecture [42]. Furthermore, in [38], the authors propose an
approximation-aware Multi-Level Cells (MLCs) STT-MRAM
cache architecture to trade quality with large capacity delivered
by MLC STT-MRAM. The technique presented in [14] uses
approximate computing to tolerate the increased retention
failure rate caused by relaxing the thermal stability factor of
STT-MRAM.

Similarly, DRAM off-chip memories can reduce the power
spent on refresh cycles where bit flips are allowed [26], [43].
The work in [41] shows how approximate storage in persistent
memories, where cells are at the risk of wear out, can reduce
the number of flipped bits to prolong the device lifetime.

Finally, in [39] an offline Integer Linear Programming based
tuning of approximate knob across the STT-MRAM based
SPM and PCM based memory. The authors in [39] profiled
different scenarios for tuning the approximation knob and tried
to minimize the Error Per Second parameter of the memories
as low as possible, but they did not discuss the actuation knob
management that should be considered to conduct the best-
case scenarios.
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VII. CONCLUSION

This paper presents CAST, a hardware/software approach to
adjust the quality of write operations in STT-MRAM caches in
multi-core systems based on the contents of requested write
operation. Because the write error rate of STT-MRAM are
asymmetric and transition-dependent, controlling the amounts
of applied write current based on the write transition direc-
tions in CAST not only leads to energy saving in typical
applications but also introduces new opportunities for energy
saving by further manipulating energy-quality knobs in many
approximate computing applications. Our evaluations on sets
of full approximate, mixed-criticality, and entirely accurate
applications demonstrate up to 57%, 34%, and 21% energy
savings over a baseline STT-MRAM cache, respectively, with
an acceptable quality of the generated outputs.
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