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Abstract. We investigate the important clinical problem of predicting prognosis-related
breast cancer (BRCA) molecular subtypes using whole-transcriptome information present
in The Cancer Genome Atlas Project (TCGA) dataset. From a Machine Learning per-
spective, the data is both high-dimensional with over nineteen thousand features, and
extremely small with about one thousand labeled instances in total. To deal with the
paucity of information we compare classical, deep and semi-supervised learning ap-
proaches on the subtyping task. Specifically, we compare L1-regularised Logistic Re-
gression, a 2-hidden layer Feed Forward Neural Network and a Variational Autoen-
coder based semi-supervised learner that makes use of pan-cancer TCGA data as well
as BRCA data from a second source. We find that the classical supervised technique
performs at least as well as the deep and semi-supervised learning techniques, although
learning curve analysis suggests that insufficient unlabeled data may be being provided
for the chosen semi-supervised learning technique to be effective.

1 Scientific Background
Over the last two decades, an accurate classification into prognostically relevant

molecular subtypes has been recognized as crucial for deeper understanding of BRCA
heterogeneity, improving patient outcome prediction, developing tailored treatments
and supporting therapeutic decision making [1, 2]. A significant body of evidence
has confirmed the prognostic meaning and predictive ability of the intrinsic molec-
ular subtypes: Luminal A, Luminal B, Her2-enriched, Basal and Normal-like [2, 3],
which were discovered in the early 2000s through unsupervised hierarchical clustering
on BRCA microarray gene expression profiles [1]. To date, the subtypes are commonly
identified using the PAM50 method [4], which implements the Prediction Analysis for
Microarrays (PAM) classification algorithm and examines specifically the differential
expression of a signature of 50 genes. Yet, many other genes could play relevant roles
in defining discriminant patterns of gene expression across intrinsic subtypes. Conse-
quently, genome-wide analysis of RNA-Sequence data could yield a substantial con-
tribution by taking advantage of larger gene expression spaces. Recently, the number
of publicly available BRCA samples profiled with RNA-Sequencing has dramatically
increased. And although the PAM50 technique has been extensively adopted to catego-
rize microarray and PCR-based gene expression data, only recently it has been applied
to some RNA-Seq BRCA datasets [5]. Thus, only a small portion of available BRCA
RNA-Seq gene expression data is labeled with intrinsic subtypes and hence usable for
supervised learning. Furthermore, two main issues can affect classifier performance in
learning intrinsic subtypes from these available RNA-Seq data: 1) the number of in-
stances usable for training is always much smaller than the huge amount of genes in the
feature space; and 2) the limits and uncertainties of the PAM50 method are inherited to
some extent by any supervised method trained with PAM50 labeled data.
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Figure 1: First two components of Principal Component Analysis of the two datasets
used in this study. All samples (left); only Breast cancer samples (right).

In such a complex scenario, we implemented two baseline supervised methods to per-
form RNA-Seq BRCA sample classification into intrinsic subtypes: an L1-regularised
Logistic Regression and a Fully Connected Feed Forward Neural Network, for which
we examined several architectures. Furthermore, we considered semi-supervised learn-
ing techniques, both to leverage on available unlabeled RNA-Seq BRCA samples and to
evaluate the possible gain of including deep learning methods to tackle the BRCA intrin-
sic subtyping task. Particularly, we focused on Variational Autoencoders (VAEs) and
Conditional Variational Autoencoders (CVAEs), since they can learn better continuous
well-structured latent spaces by mixing deep learning with Bayesian inference. Hence,
in this study we investigated the performance of these innovative deep approaches com-
pared with baseline methods, exploring different architectures, hyper-parameters and
regularisation techniques. Furthermore, for each approach we evaluated to what extent
its accuracy is influenced by the dimension of the available labeled training samples, as
to better assess the role and contribution of the semi-supervised learning methods.

2 Materials and Methods
2.1 Datasets
We used RNA-Seq data from the TCGA and ARCHS4 [6] public datasets. Both of

them were downloaded from the ARCHS4 website as raw read counts of HiSeq 2000,
HiSeq 2500 and NextSeq 500 platforms. We used the expression data for the 19,036
genes that are common to both datasets. For all the TCGA samples, subtype labels
were traced on cBioPortal1 and mainly come from PAM50 classification performed by
Ciriello et al [5], leading to a total of 1053 labeled samples (546 Luminal A, 208 Luminal
B, 179 Basal, 81 HER2 and 39 Normal-like). This classification is not available in
ARCHS4 experiments, which we used as unlabeled data. In order to use the data from
both sources, we computed the reads per million (RPM) of each gene gi in each sample
sj as: RPM = # reads mapped to gi

total reads for sample sj
∗106, and then applied log and min-max normalization.

After normalization, we performed Principle Component Analysis (PCA) on the
combined dataset (TCGA+ARCHS4) and also on the respective breast cancer subsets,
visualizing the first two components in Figure 1 to check their compatibility. Given the
significant overlap between the first two components in both cases, no highly significant
batch effects exist; thus, we used the two different datasets in the same experiment.

2.2 Supervised learning
We first explored traditional supervised learning approaches, which by definition

resort to labeled data in order to learn the model parameters. In the following paragraphs
we describe the two supervised methods used.

L1-regularised Logistic Regression: In order to deal effectively with the very large
number of input dimensions (19,036 genes) with respect to a very small number of

1https://www.cbioportal.org/

https://www.cbioportal.org/
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Figure 2: The three network architectures under comparison: Logistic Regression with
L1-regularisation (left), a Fully-connected Feed Forward Neural Network (centre), and
a Variational Autoencoder with additional Softmax layer (right).

training instances (817 samples), we used multi-class Logistic Regression (LR) with a
sparsity inducing L1 penalty to prevent over-fitting to the training data. L1-regularised
LR minimizes the following cost function:

L(θ) = −

[
n∑

i=1

K∑
k=1

1
{
y(i)=k

}
log

exp(θ(k)>x(i))∑K
j=1 exp(θ

(j)>x(i))

]
+ λ

K∑
j=1

||θ(j)||1 (1)

where n and K denote the number of instances and classes, respectively, θ(k) is the
vector of model parameters for class k, λ is the shrinking factor of the regularisation
term and y(i), x(i) are the class and feature vectors of the i-th sample, respectively. We
used the L1-regularised LR model implemented in the scikit-learn Python package2.

Feed-Forward Neural Network: In the recent years powerful toolkits have been de-
veloped for Neural Network approaches to classification. These toolkits make use of
sophisticated techniques (such as dropout, batch normalization, fast stochastic gradient
descent routines, and extensive use of validation data) that can effectively control over-
fitting in over-parameterized models. Thus, we compare the LR approach with fully-
connected Feed-Forward Neural Networks of varying structures (Figure 2) (number and
dimensions of hidden units), with ReLu as activation function for the hidden units and
sigmoid for the output ones. The networks were implemented in Keras3, and trained us-
ing Categorical Cross Entropy loss: L(θ) = −

∑n
i=1

∑K
k=1 1

{
y(i)=k

}
log p̂(k|x(i); θ)

where p̂(k|x(i); θ) denotes the model’s predicted probability for class k on instance i.

2.3 Semi-supervised learning
For the cancer subtype prediction, we have very few labeled gene expression in-

stances to work with (817 labeled samples) compared to the very large feature space
of genes to consider. One method for mitigating this problem consists in making use
of available unlabeled gene expression data, using semi-supervised learning techniques.
Semi-supervised learning refers to a set of machine learning methodologies that lever-
age (usually) large quantities of unlabeled samples in conjunction with typically small
amounts of labeled data to improve the model performance on prediction tasks. The
usefulness of semi-supervised learning is based on the assumption of continuity [7] be-
tween the unlabeled and labeled data, which requires that data points lying nearby in
the feature space tend to have the same label.

Semi-supervised learning techniques often make use of clustering or dimensionality-
reduction techniques to model the feature space, such that the class label information
from the small number of labeled training instances can be generalized to unlabeled
parts of the feature space.

Variational Autoencoder: A popular deep learning method for modeling unlabeled
data is the Variational Autoencoder (VAE) [8]. Autoencoders are neural networks that
are trained to perform dimensionality reduction. The network is structured to map high-
dimensional input data down into a low-dimensional representation and then back out

2https://scikit-learn.org/stable/
3https://www.tensorflow.org/guide/keras/

https://scikit-learn.org/stable/
https://www.tensorflow.org/guide/keras/
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Architecture Unlabeled Data Labeled Data Accuracy (std-dev)
Logistic Regression with L1-reg (19k→5) – TCGA BRCA 0.884 (±0.031)
Feed Forward NN (19k→300→100→5) – TCGA BRCA 0.876 (±0.027)
Feed Forward NN (19k→100→20→5) – TCGA BRCA 0.867 (±0.036)
VAE + Softmax (19k→300→100→5) TCGA TCGA BRCA 0.865 (±0.029)
VAE + Softmax (19k→100→20→5) TCGA TCGA BRCA 0.863 (±0.019)
VAE + Softmax (19k→300→100→5) ARCHS4 BRCA TCGA BRCA 0.875 (±0.022)
VAE + Softmax (19k→100→20→5) ARCHS4 BRCA TCGA BRCA 0.872 (±0.035)
CVAE + Softmax (19k→300→100→5) TCGA TCGA BRCA 0.851 (±0.022)
CVAE + Softmax (19k→100→20→5) TCGA TCGA BRCA 0.764 (±0.113)

Table 1: Comparison of prediction performance on validation data for different models,
architectures and datasets, using 5-fold cross-validation. Numbers in parenthesis denote
the dimension of the layers in the neural network architectures.

to the original dimension. Weights are learnt such that the reconstructed data is as close
to the original input data as possible. Variational Autoencoders include an additional
stochastic sampling step over the low-dimensional representation, before generating the
output. This sampling process provides superior regularisation and interpretability of
the latent representation.

We made use of a Variational Autoencoder for semi-supervised learning as follows.
We first trained the autoencoder in an unsupervised manner to minimise reconstruction
error in terms of binary cross-entropy4. We then added a Softmax layer to the low-
dimensional representation (the concatenation of the mean and variance vectors5) and
trained the weights of the Softmax to maximise prediction performance on the labeled
BRCA data (see the network architecture on the right in Figure 2). While learning the
Softmax weights we also fine-tuned the encoder component of the autoencoder on the
supervised task since that was observed to improve performance markedly over keeping
the encoder weights fixed6.

Conditional Variational Autoencoder: As an extension of Variational Autoencoders,
Conditional Variational Autoencoders (CVAE) [9] differ from Variational Autoencoders
as they allow us to condition the induced low-dimensional feature space on different
types of inputs. In our case, by conditioning on tissue type, we aimed at obtaining a
feature space for the BRCA samples that is more suitable for the classification task,
when compared with normal VAEs. The procedure to use CVAEs for classification was
the same as the one explained for normal VAEs.

3 Experiments
In the following subsections we discuss the experiments performed during this study.

3.1 Experimental settings
Evaluation metrics: We compute Accuracy on the validation and test datasets, de-

fined as the proportion of correct predictions made: Acc = 1
n

∑n
i=1 1

{
y(i) = ŷ(x(i))

}
where ŷ(x(i)) and y(i) denote the predicted and true class for the ith datapoint.

Hyperparameter tuning and cross-validation: The various parameters of the shal-
low and deep learning models include the regularisation parameter, number of epochs,
learning rate and dropout rates. An extensive parameter search was done for all of the
considered architectures, specifically for Logistic Regression: different values of the
regularisation parameter (λ = 10i, i ∈ {−3,−2, . . . , 4}); and for deep learning models:
different learning rates (0.0005, 0.001, 0.01), number of epochs (25, 50, 75, 100) and
input/hidden dropout rates (0, 0.2, 0.4, 0.6, 0.8).

4We experimented with MSE, but observed better prediction performance with binary cross-entropy.
5We also investigated sampling the hidden representation, but observed no performance improve-

ment.
6We leave an investigation of combined classification + autoencoder loss to future work.
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Figure 3: Learning curves for the evaluated classifiers on the validation data.

All considered models were evaluated using 5-fold cross-validation7, reporting as
aggregated performance score the mean accuracy across folds.

3.2 Experimental results
Model selection: Table 1 contains the cross-validation results for each considered

model, using the corresponding best hyperparameters found. We note that regularised
LR provides the highest overall average accuracy across the validation data, but the
performance for all other models (except for CVAE) lies within one standard deviation.

Sensitivity to quantity of training data: In Figure 3, we provide learning curves on
the validation data for four of the methods under comparison (L1-regularised Logistic
Regression, a Feed-Forward Neural Network, and a Variational Autoencoder trained
on the ARCHS4 BRCA subset and the pan-cancer TCGA datasets)8. The curves show
the effect on performance of reducing the amount of labeled training data available
to the algorithm, while keeping the same proportion of BRCA subtypes. We note
that performance in all cases increases with the amount of labeled training data. Im-
portantly, however, at low quantities of training data the relative performance of the
semi-supervised methods (particularly using the pan-cancer TCGA data) improves with
respect to logistic regression. A possible explanation for this effect is that for small
amounts of labeled data, the relatively larger amount of unlabeled data is able to pro-
vide a stronger regularisation effect (extracting relevant correlation information) across
the whole-transcriptome, which can be exploited by the (weaker) subsequent classifier.
If the case, this would suggest that larger quantities of unlabeled data may be needed to
provide performance benefits from semi-supervised learning.

Performance on held-out test data: Having selected the most effective methods and
architectures on the validation data8, we evaluated them on the test data (Table 2), which
was a held-out subset of the TCGA BRCA data, consisting of 236 samples. The higher
accuracy results on the test data can be justified by minor differences on the distribution
of the classes between the two subsets. However, since they were labeled by indepen-
dent laboratories using slightly different pipelines, we decided not to re-balance them.

Architecture Unlabeled Data Labeled Data Accuracy
Logistic Regression with L1-reg (19k→5) – TCGA BRCA 0.936
Feed Forward NN (19k→300→100→5) – TCGA BRCA 0.907
VAE + Softmax (19k→300→100→5) TCGA TCGA BRCA 0.911
VAE + Softmax (19k→300→100→5) ARCHS4 BRCA TCGA BRCA 0.903

Table 2: Comparison of prediction performance on test data for chosen architectures.

Confusion Matrices: In Table 3, the confusion matrices for the models evaluated
over the test set are presented. It can be verified that the Basal samples are the easiest
to classify, whereas Normal-like are the ones with a larger percentage of miss-classified

7We used scikit-learn StratifiedKFold method to preserve the percentage of samples for each subtype.
8The CVAE was dropped from further analysis due to poor performance on the validation data.
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Actual
labels

LR + L1 predicted labels
Ba H2 LA LB NL

Ba 43 0 0 0 0
H2 0 16 0 0 0
LA 0 1 126 4 0
LB 0 0 2 30 0
NL 0 3 4 1 6

Actual
labels

FFNN predicted labels
Ba H2 LA LB NL

Ba 43 0 0 0 0
H2 0 14 1 1 0
LA 0 0 119 11 1
LB 0 0 1 31 0
NL 0 1 5 1 7

Actual
labels

VAE (ARCHS4) + Softmax
predicted labels

Ba H2 LA LB NL
Ba 41 0 0 1 1
H2 0 13 2 1 0
LA 0 0 123 8 0
LB 0 0 3 29 0
NL 0 0 7 0 7

Actual
labels

VAE (TCGA) + Softmax
predicted labels

Ba H2 LA LB NL
Ba 42 0 0 1 0
H2 0 14 1 1 0
LA 0 3 121 7 0
LB 0 0 1 31 0
NL 0 1 6 0 7

Table 3: Confusion Matrices on the test data: Logistic Regression with L1-regularisation
(top left), Feed Forward NN (top right), VAE + Softmax trained on ARCHS4 (bottom
left) and VAE + Softmax trained on TCGA (bottom right). Ba, H2, LA, LB and NL cor-
respond to Basal, Her2-enriched, Luminal A, Luminal B and Normal-like, respectively.

samples. It is also shown that the wrongly classified Luminal A and Luminal B sam-
ples occur mostly among each other. All of the results obtained in this analysis are in
accordance with the literature on the subject [2].

4 Conclusion
We investigated breast cancer subtype prediction from whole-transcriptome informa-

tion present in TCGA, comparing L1-regularised Logistic Regression, a 2-hidden layer
Feed Forward Neural Network and a Variational Autoencoder based semi-supervised
learner that makes use of pan-cancer TCGA data or BRCA data from ARCHS4. We
found the regularised LR to perform at least as well as the deep and semi-supervised
learning techniques, although learning curve analysis suggests that the latter may have
been provided with insufficient unlabeled data for it to be effective. The source code of
the implemented analysis is available at: https://github.com/DEIB-GECO/brca subtype
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