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NAVIGATION ABOUT IRREGULAR BODIES THROUGH
SEGMENTATION MAPS

Mattia Pugliatti*, Francesco Topputo†

Optical navigation about small-bodies can be performed at different scales and
with different techniques during proximity operations. Traditional methods how-
ever are influenced by pixel intensity due to illumination conditions and often
provide a navigation solution only when coupled with filtering techniques. In this
work, a navigation method for small-body applications is presented that makes
use of segmentation maps. By converting a grayscale image into its segmented
equivalent the pixel content is highly reduced but at the same time its meaning is
enriched since the pixel value is providing direct information on feature type and
distribution across space. This is exploited in an autonomous navigation method
in two steps. A Convolutional Neural Network is designed to generate a rough es-
timate of the position of a spacecraft in a small-body fixed reference frame, whose
surrounding has been divided into 1176 classes. A Normalized Cross-Correlation
technique is then applied to the reduced search space to generate a precise posi-
tion estimate. The methodology proposed is trained and validated on a database of
segmented synthetic maps of 49716 samples of Didymos and Hartley each, while
a series of 5 scenarios are tested. The CNN is capable to predict the correct class
with an accuracy of 75.94% and 68.60% respectively for Didymos and Hartley,
while the overwhelming majority of the other cases are predicted just next to the
correct classes. The CNN is robust to various illumination conditions, is capable
to work outside the range of distances considered during training, performs well
when predicted masks are used, and also selects independently the type of features
to rely on for classification depending on the body. When coupled with NCC, a
position estimate with a relative error below 5 − 8% the range from the asteroid
can be achieved.

INTRODUCTION

Missions toward small-bodies such as asteroids and comets are becoming increasingly interesting,
pushed by scientific, planetary defense, and resource exploitation motivations [1]. These bodies are
thought to enclose valuable information on the primordial state of the Solar System, which can be
used to improve our knowledge of planetary systems formation. Their extensive presence in the
Solar System poses both a threat to our planet and at the same time offers plenty of opportunities
for resource exploitation or for technology demonstration.

This trend of increasing interest towards small-bodies has been mutually supported by a trend
in miniaturization for deep-space applications [1, 2, 3], enabling low-cost and high-risk CubeSat
missions. Standalone missions such as M-ARGO [4] and NEAScout [5] have been proposed to
rendezvous with an asteroid. Various secondary payloads are being designed to visit Didymos
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system either for a shorter period of time such as for the LiciaCube mission [6] or for a longer
period as for the case of the two Hera’s CubeSats, Milani [7] and Juventas [8].

To cut operational costs and to increase spacecraft safety, missions toward small-bodies often in-
corporate autonomous capabilities. Because images can easily be available on-board the spacecraft
with simple and low-cost solutions, these are often fundamental in enabling autonomy, especially
regarding on-board state estimation. To tackle these new challenges an increasing variety of tech-
niques have been developed in the framework of autonomous optical navigation about irregular
bodies for proximity operations.

Center of Brightness (CoB) methods are simple, robust, and easy to use [9], but they lack accuracy
when highly irregular shapes are considered or when high phase angles with the Sun are used due to
large Center of Mass (CoM) offset. To overcome these limitations, modified versions that introduce
corrective terms as a function of the illumination conditions that move the CoB towards the CoM
can be adopted [10, 11].

Figure 1: Examples of synthetic images and their segmentation maps of asteroid Didymos and
comet Hartley considered in this work taken with 10◦ FOV at various ranges.

Centroid Apparent Diameter [12, 13] (CAD) techniques based on ellipse or limb fitting [11, 14]
and Lambertian Sphere Correlation (LSC) [15] combine line-of-sight information with the body’s
real dimension knowledge and apparent size to generate a directional range. In CAD techniques a
geometrical figure, such as a circle or an ellipse, is fit with the detected limb of the small-body. The
center of the geometrical figure adopted is then used as an approximation of the object CoM while
from simple scaling laws a comparison between the real and apparent diameter of the body is used
to generate a range. A well-known non-iterative CAD method that works with tri-axial ellipsoids is
described in [13]. LSC uses a spherical model as a proxy of the real object and tries to achieve a
maximum correlation between the binarization of the real image and a library of Lambertian sphere
templates [15]. These are either stored on-board or rendered online.

However, these techniques assume regularly shaped objects. Thus, they are often preferred for
regular targets as planets and moons. Nonetheless, attempts have been made to extend them also
for irregular objects, most notably [14]. CoB, CAD, and LSC are not able to generate alone a
relative state with respect to an asteroid fixed reference frame, instead, they only provide line-of-
sight information, eventually complemented with relative range. In order to extract the spacecraft
position with respect to an asteroid fixed reference frame, a priori information about the state shall
be provided and then filtered with optical and attitude observations.
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Correlation methods can be used to overcome this limitation if the irregular shape model is
known. The outline can be extracted as a feature and then matched with a pre-existing catalog
[16] or the whole body shape can be binarized and cross-correlated with a library of shapes gen-
erated from different point of views [17]. Both methods could potentially provide the spacecraft
state in an asteroid fixed reference frame, but they could suffer fatal ambiguities from opposite
points of view as the outline may correlate with multiple peaks over opposite regions of the search
space. To overcome this limitation, features extracted from grayscale images could complement the
information provided by the outline alone.

All the aforementioned methods can only be applied if the body’s outline is resolved in the image
and fits within the FOV of the camera. At closer distances, features based methods are usually
preferred. These methods can be relative to the object and based on features re-projection and
filtering such as in [15] or generate the full state autonomously using correlation. The Rosetta
mission approach based on local maplets of selected features is illustrated in [18]. Small scale
high-resolution elevation maps called maplets centered on specific landmarks are spread across the
surface of the comet. Combining together a 3D map, an albedo map, and a photometric model it is
then possible to predict the landmark appearance at varying illumination conditions. This is used
to render the maplet and perform correlation. The methods developed for the Osiris-Rex mission
instead is based on natural features rendering and correlation, as illustrated in [19]. An approach
used in the Hayabusa 2 mission that makes uses of artificial landmarks left on the surface of the
body is instead detailed in [20].

Figure 2: Macro-steps of the proposed method for small-body navigation with segmentation maps.

Most of these techniques have in common the usage of a model to be rendered (on-board or
on-ground) for correlation with real images. The more complex is the model and the procedure to
use, the computationally more expensive is to run the technique on-board. For example, the optical
navigation performed in Rosetta required in its initial operational steps a semi-supervised approach
with human-in-the-loop that was performed on-ground in order to achieve very high accuracy [18].
Correlation, as well as pixel-intensity based metrics, are highly influenced by the illumination con-
dition, which shall accurately be modeled in order to have robust navigation solutions. Moreover,
to be used on-board with a certain degree of confidence, it may be necessary to initialize them in a
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basin of convergence as close as possible to the true solution. This is helpful to reduce the search
space size and to make them more computationally efficient.

Recent trends in optical navigation explore the use of artificial intelligence and in particular deep
learning to tackle these challenges and bypass traditional image processing techniques, providing
directly the estimated state of the spacecraft as output. For example in [21] a single layer feed-
forward network, also known as Extreme Learning Machine, is used to determine a spacecraft
horizontal coordinates over a lunar terrain with an ideal nadir pointing. A subsequent work went
even further by bypassing the navigation and generating control as output directly from images [22].

The main advantage of these techniques is the embedding of a complex task within the weights
and bias of a network architecture. This comes at the cost of a large amount of realistic data needed
for training.

This work proposes a novel method for on-board autonomous navigation based on segmentation
maps. The method is enabled by Deep-Learning, in the form of a CNN, that is used to predict
the class of the estimated state of the spacecraft in an asteroid fixed reference frame, followed up
by a refinement step using a NCC based method, as illustrated in Figure 2. Didymos asteroid and
Hartley comet are considered. Instead of working with binary or grayscale images, the method uses
segmentation maps. Because pixel intensity is now associated with semantic meaning, an image
can be deconstructed into its main components (background, surface, craters, boulders, terminator
region) and this information is used for navigation.

The paper is organized as follows. The dataset generation and the class subdivision is illustrated
in the next section. Subsequently, the key components of the navigation method are presented,
followed up by a section discussing the concept of telescopic range. The assessment of the results
on the 5 test scenarios considered is given in a dedicated section, followed up by some conclusion
and final considerations for future works.

DATASET GENERATION

Didymos and Hartley are considered as representatives of regular and irregular small-bodies. For
simplicity Dimorphos, the secondary body of the Didymos binary system [23], is not considered in
this work. A camera sensor with a FOV of 10◦ is assumed and the space around each shape model is
normalized based on the distance at which the maxim bounding box of the model touches the edges
of the image. This normalization distance is referred to as D0.

To account for a realistic proximity operation scenario, some constraints are set. The lower and
upper boundaries for the range are set to 0.7 and 1.3 to encompass both scenarios in which only fea-
tures are visible or when the body global outline can be fully discerned in the image. Furthermore,
it is assumed that the spacecraft would most likely lie within an equatorial region with an elevation
bounded between φ = ±45. Enforcing these constraints the spherical shell structure illustrated in
Figure 3 is obtained.

A total of 1176 are carved from this structure in polar coordinates. Intervals of 0.1, 15◦ and 15◦

are considered respectively for the range, equatorial and elevation angles (R − θ − φ), generating
respectively 7 macro-classes for range and elevation angles and 24 macro-classes for the equatorial
angle.

For each class, varying illumination conditions are considered assuming the sun direction to be
lying in the equatorial plane of the spherical shell and with admissible phase angles between ±90◦.
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Figure 3: Structure of the 1176 classes considered distributed over the spherical shell. The red and
blue ones are the innermost and outermost one from the small-body. The green and cyan ones are
the top and bottom classes with the maximum elevation. In between there are the other classes that
are not shown for clarity.

In such a way, impractical image acquisitions where the sun is eclipsed by the small-body are
avoided. The pointing is considered ideal. A various set of images are obtained and are summarized
in Table 1.

Table 1: Number of images per test case for each small-body shape
Set Number of images Position Sun

Train 1 8232 Centered (Class) Regular
Train 2 35280 Uniform (Class) Uniform
Valid 1 1500 Uniform (All) Uniform
Valid 2 4704 Uniform (Class) Uniform
Test 1 5000 Uniform (All) Uniform
Test 2 432 Trajectory Trajectory

Train 1 set is composed of 7 image-mask pairs per class (taken at the center of the class in polar
coordinates) with 7 equally spaced phase angles. Valid 1 and Test 1 are taken with randomly selected
positions satisfying the spherical shell constraints and with random illumination conditions. Train
2 and Valid 2 sets are obtained by selecting 30 and 4 random positions respectively within each
class with random illumination conditions. Test2 is made by positions taken from a trajectory
representative of an operational scenario around Didymos.

The image-mask pairs are generated synthetically using Blender*, an open-source, easy to use,
flexible software supporting python scripting. Both are 128 × 128 pixel wide, the images are in
grayscale while the segmentation masks assume 5 different discrete levels (0,64,128,191, and 255)

*https://www.blender.org/
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corresponding respectively to the background, body surface, craters, boulders, and terminator re-
gion. The interested reader can refer to [24] for the methodology used to generate the masks.

In this work, mostly segmentation maps are used. These detail the positioning of morphological
structures in the image, as it is possible to see in Figure 1. Several approaches can be used to
perform such segmentation. In this work, the one presented in [24] is considered, where a U-Net
architecture is designed and tested over several small-bodies. These maps are envisioned to be used
for hazard avoidance and landing, for autonomous scientific acquisition and planning, and, as in the
case of this work, for navigation.

METHODOLOGY

An on-board method is proposed that is capable of estimating a spacecraft position with respect to
an asteroid fixed reference frame exploiting segmentation maps of a previously well-known small-
body. The method is divided into two parts, as illustrated in Figure 2. In the first one, a CNN is
used to provide a rough estimate of the position. In the second one, a NCC based algorithm is used
to refine the CNN estimate once a basin of convergence has been identified.

The space around the small-body is divided into 1176 classes and the CNN is employed as a
classifier with the main purpose to greatly reduce the parameter’s search space for the NCC to be
applied. Classification was preferred with respect to regression for the possibility to have the top-
predicted classes accompanied by the lower scoring ones to build up class distributions. These
can be used to illustrate how much the predictions are spread across different classes to build up a
confidence region that accompanies the predicted solution. In this method, the CNN acts both as a
navigation method robust to various conditions and a proxy of an on-board rendering tool, as in its
725880 parameters is embedded the appearance of more than 43512 128× 128 segmentation maps
and their class distributions.

Previous works also preferred classification over regression, as for the cases of [25], in which
a CNN is used to estimate the position of a spacecraft with respect to the Moon using images
distributed across classes over a digital terrain map. Another interesting application comes from the
work in [26], in which image geolocation is performed with cells spread across the planet’s surface
whose dimensions are a function of the density of the images. In this way, not only it is possible
to see the most likely locations, but also the ones that correlate most with it due to geographical
similarity.

However, the classification framework has one major drawback: by design, it cannot achieve
high accuracy. Even when the correct class is identified, the maximum error is only guaranteed
to be smaller than half the class dimensions. This poses an important limitation, that is overcome
easily with the adoption of the NCC based method.

The advantage of using segmentation maps in place of grayscale images is due to the fact that
pixel-intensity variations due to illumination conditions do not play a direct role and that simple,
low-resolution models can be considered for online rendering.

Convolutional Neural Network

A CNN is a particular type of deep neural network commonly applied for image analysis. It has
been largely used as the standard for image classification and many other tasks involving spatial
input [27]. A schematic representation of a typical CNN is illustrated in Figure 4.

6



The architecture considered in this work has been designed in TensorFlow 2.1 [28] exploiting
for the convolutions layers the architecture of the MobileNetV2 network [29], an advanced CNN
architecture for image classification.

Figure 4: Schematic representation of the CNN architecture for classification. The Input is a seg-
mentation map, the output is the associated class. The convolutional layers perform several image
processing tasks to correlate spatial information, the neural network layers sort out this information
to generate a class identifier.

The hyper-parameters search has been divided into two parts following an approach highlighted
in [30] and adopting the philosophy described in [31]. In the first one, without any regularization
in place, an optimal set in the parameter space for the learning rate, batch size, α, depth of dense
layers is performed for a very short amount of time. After optimal regions of these parameters are
identified, epochs are increased and regularization is introduced in the form of dropout rates and
image shift. This process is repeated by refining the parameter space alongside a reduction of the
number of cases and an increase in the training epochs. During the whole procedure, global metrics
are considered for both training and validation accuracy as well as the convergence speed. The most
promising ensembles of the network are then fine-tuned to achieve the desired performances.

Table 2: Hyper-parameters of the CNN architectures used in this work.
Parameter Value
Optimizer Adam

Loss function Sparse Categorical Cross Entropy
α (MobileNetV2) 0.35

Dropout rate (1) 30% (Didymos), 15% (Hartley)
Dropout rate (2) 50%

Learning rate 0.0005
β1 0.9
β2 0.999

Pixel shift 5
Batching strategy mini-batch

Batch size 128
Steps per epoch 339
Training epochs 100

The same architecture is used for Didymos and Hartley, with different weights and biases and
different tuning of the hyper-parameters, summarized in Table 2. The CNN architecture and the

7



accuracy and loss during training are illustrated in the Appendix. The weights and bias used are the
ones achieving maximum accuracy on the validation sets.

Normalized Cross-Correlation

In a correlation procedure, an image is taken in the environment and is confronted with a set of
images either saved in a database or rendered online. The first one can be referred as the real image
while the latter as the template.

Because the parameters of the templates can be controlled, they can be varied to maximize the
similarity between templates and real images. To assess this similarity different metrics can be used.
In this work a correlation metric derived from [32] is adopted:

γ =

∑
ij(Rij ∗ Tij)√∑
ij R

2
ij ∗

∑
ij T

2
ij

(1)

Because in this work correlation is performed between segmentation maps, albedo difference
between template and real map does not play a direct role. It could do so indirectly if the segmenta-
tion method used is not robust enough to variations of the illumination conditions. For this reason,
the formula has been modified to avoid such sensitivity. For practicality, the correlation metric is
computed in the spatial domain and not in the frequency one.

The correlation is expected to be handled on-board, for this reason, the model used for rendering
the templates is simpler than the one used to emulate the real segmentation maps processed from
images taken in the environment. In practice this is obtained by relaxing the rendering settings,
changing the material properties, the mesh structure, removing the terminator layer, and also by
considering only the biggest boulders, as can be seen from Figure 5.

Figure 5: Comparison between the real segmented maps (Left) and the template ones with maxi-
mum correlations at iterations 1, 2 and 3. The correlation coefficient varies from left to right from
0.58, 0.69 and 0.75 while the error from 281, 111 and 21 m respectively.

For comparison, a rendering of the real segmentation map takes roughly 15s, while the rendering
of the simplified model just 0.3s considering a Cycles CPU rendering with an Intel(R) Core(TM)
i7-8700 CPU @ 3.20GHz.

Other important assumptions that have been taken in this work are that the illumination conditions
are given and that the correlation search space is only driven by variations inR−θ−φ components.
The pointing is assumed ideal, even though the CNN can accommodate non-ideal pointing. For a
real application, these parameters shall also be considered as part of the search space.
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The procedure used is the following. As a starting point, the predicted class from the CNN and
all the classes immediately next to it are used to define the initial intervals of the search space. A
random distribution of 100 points is then generated in polar coordinates within this region and the
correlation coefficients are computed using Equation 1 between real and template maps. The point
with the highest correlation is saved and a new iteration is performed by reducing the search space
interval of each component to 1/3 of the original one. The new interval is used and the procedure is
repeated for a total of 3 iterations, making sure that the point with the absolute best coefficient gets
to survive from one iteration to the next.

Variants of the method with different interval reduction strategies, in Cartesian coordinates and
with pixel-intensity based metrics have also been tested but did not show promising results when
compared to the NCC metric.

TELESCOPIC RANGE

The normalization on the space around Didymos and Hartley can be useful to generalize the
results to different range-camera settings. However, the CNN cannot be applied as it is outside the
boundaries imposed by the spherical shell in Figure 3. A method to extend the functioning range of
the CNN is therefore introduced in this section: the telescopic range.

Figure 6: Example of telescopic range applied to an image in which Didymos is seen from a range
much further away than the one considered for training.

Whenever an image is taken from a distance larger than 1.35D0, a series of simple image process-
ing tasks is performed to transform the image appearance to one that will be suitable for the CNN.
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A combination of cropping, down-sampling and re-scaling is used to do so. The main assumption
is that apart from scaling, the appearance of the bodies do not differ too much due to perspective
changes given by different ranges-FOV configurations.

The procedure is illustrated in Figure 6. When an image is taken, a bounding box of side m
is identified around the object. If this value correspond to an object seen with 0.65 < R < 1.35
then a simple down-sampling is performed to reduce the image size to the input needed by the
segmentation method, in this case 256 × 256 pixels. If this is not the case, but m > 256, then the
image is cropped around the object with the box of side m. The scale factor between the original
image size and m is then recorded. The cropped snippet is now down-sampled until a size of
256 × 256 pixels is obtained. A segmentation method is then performed on the image to obtain a
mask with dimension 128×128 pixels. The CNN and NCC techniques are then applied to the mask
to predict R, θ, and φ. The predicted values of R is then the only one that need to be scaled back
and is multiplied by s and D0 to obtain the dimensional range R′. This R′ − θ′ − φ′ set is now
capable to describe the spacecraft state in an asteroid fixed reference frame in world dimensions,
even though the original image format was not suitable for the CNN. A case in which the telescopic
range is tested is presented in the results section for an operative orbit about Didymos.

RESULTS

In this section, the method presented in this work is tested on 5 different scenarios, summarized
in Table 3.

In all datasets but in D-3 the segmentation maps used are the true ones, while in D-3 the predicted
ones with the U-Net described in [24] is used. The CNN performances are assessed with datasets
D-1, D-2, D-3, and D-4 while the NCC with D-5.

Table 3: Summary of the datasets used in the five test cases, identified as D- followed by the test
identification number.

Dataset Models Section name Number of maps
D-1 Didymos, Hartley Test set 5000, 5000
D-2 Didymos, Hartley Reduced maps 15000, 15000
D-3 Didymos, Hartley Predicted maps 5000, 5000
D-4 Didymos Close-proximity operations 432
D-5 Didymos, Hartley Normalized Cross-Correlation 1000, 1000

Test set

Dataset D-1 is made by 5000 segmentation maps of Didymos and Hartley from Test 1 of the
dataset generation step. With this dataset, the CNN achieves an accuracy of 75.94% with Didymos
and of 68.60% with Hartley. However, the standard definition of accuracy is not capable to describe
fully a more complex behavior of the classifier.

In the specific classification task presented in this work, spatial proximity between classes is im-
portant but is not encoded with the class label. Classes next to each other do not represent different
species of objects but do represent the same object seen from a slightly different perspective. Thus,
a classification next to the correct class shall not be discarded as a completely wrong classification,
because it demonstrates the capability of the CNN to provide a solution close to the correct one. In
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order to take this into account, a metric that also consider proximity between classes is designed in
this work: the Inter-Class Distance or ICD.

Figure 7: Various examples to illustrate the concept of ICD from the blue cube: blue (ICD0), red
(ICD1), green (ICD2). a) central class surrounded by 26 ICD1. b)lateral class surrounded by 17
ICD1 and 9 ICD2. c) edge class surrounded by 11 ICD1 and 15 ICD2.

The ICD is defined as the minimum number of classes that shall be passed through that connect a
given point P in a class A with another point Q in a class B. A movement from one class to another
is allowed if the two shares either a face, an edge or a vertex. The concept is illustrated in Figure
7. If you imagine a Rubik’s cube composed by 27 smaller cubes and consider a point in the center
cube (the one in which the spherical joint is hidden), then the remaining 26 cubes can be reached
with a single jump. Because of the characteristic topology of the spherical shell considered in this
work, only 3 scenario are possible to start the count of the ICD from each class, as schematized in
Figure 7. A matrix describing the ICD relationships of each class with the other 1176 − 1 ones of
the spherical shell is generated.

The accuracy is then defined considering the ICD metric. The a[ICDn] is the accuracy over
the classes with an ICD equal to n while the notation a[ICDn+] and a[ICDn−] are used for
the cumulative accuracy taking into account all classes respectively above or within a distance of
ICDn.

Table 4: CNN performances expressed with the ICD metric for dataset D-1.
Metric Didymos Hartley

a[ICD0] 75.94 68.60
a[ICD1] 23.96 31.28

a[ICD2+] 0.08 0.12

The performances of the CNN with this new metric are summarized in Table 4. It is possible to
see that roughly 99.92% and 99.88% of the classifications happen in the correct class or within 1
class from the correct one. Very few cases (4 and 6 respectively) happen at classes much further
away from the correct ones. Moreover, illumination conditions seem to be relevant for Didymos
prediction with an ICD1, while the same cannot be said for Hartley, as can be seen in Figure 8.

This is an important result since it demonstrates that the CNN is definitely capable to reduce the
search space of the estimated position by grouping almost all cases in or next to the correct class
and a considerable number of cases in the correct one.
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Figure 8: Histograms of the number of prediction with ICD1 for Didymos and Hartley as function
of the phase angle.

Reduced maps

Dataset D-2 is made by 3 subsets of 5000 segmentation maps each of Didymos and Hartley.
The point of view and illumination conditions are the same as D-1, but the 3 subsets are obtained
by removing craters and boulders (No features), by removing only craters, and by removing only
boulders. In this way, it is possible to isolate the impact that single layers have on the classification.
Table 5 and Table 6 summarize the cumulative accuracies for Didymos and Hartley.

Table 5: CNN performances expressed with the ICD metric for dataset D-2 on Didymos.
Metric No features No craters No boulders
a[ICD0−] 2.2 66.2 5.1
a[ICD1−] 11.8 97.5 21.0
a[ICD2−] 20.2 97.8 29.6
a[ICD3−] 37.5 98.4 45.7
a[ICD4−] 57.3 98.7 60.9
a[ICD5−] 72.8 99.0 74.6
a[ICD6−] 88.1 99.7 90.5
a[ICD7−] 100.0 100 100

From this test is possible to understand, after training, which layers play a role and which not.
Didymos classifications are heavily influenced by craters while boulders constitute the most influ-
ential layer. On the other hand, Hartley classifications are not so heavily affected by boulders and
are completely indifferent to craters. In this case, the backbone of the classification seems to rely
on the body outline.

When boulders and craters are not considered and the camera is so close to the body that the
background layer does not appear, the only remaining layers, surface, and terminator may not be
enough to determine the position. This seems to be more relevant to Didymos than to Hartley.
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Table 6: CNN performances expressed with the ICD metric for dataset D-2 on Hartley.
Metric No features No craters No boulders
a[ICD0−] 60.8 69.1 61.8
a[ICD1−] 99.3 99.8 99.4
a[ICD2−] 99.5 99.9 99.6
a[ICD3−] 99.6 99.9 99.6
a[ICD4−] 99.6 99.9 99.7
a[ICD5−] 99.6 99.9 99.7
a[ICD6−] 99.6 99.9 99.7
a[ICD7−] 100.0 100 100

Predicted masks

Dataset D-3 is generated by taking the images associated with the masks of D-1 and evaluate
them over the U-Net described in [24]. The purpose of this test is to demonstrate that the CNN can
be trained with the true masks and that it can then be deployed for a real application and still work
fine with the predicted masks.

Table 7: CNN performances expressed with the ICD metric for dataset D-3 on Didymos.
Metric Didymos Hartley Metric Didymos Hartley
a[ICD0] 52.5 48.1 a[ICD0−] 52.5 48.1
a[ICD1] 38.3 48.9 a[ICD1−] 90.8 97.1
a[ICD2] 0.8 1.4 a[ICD2−] 91.5 98.5
a[ICD3] 1.4 0.3 a[ICD3−] 93.0 98.8
a[ICD4] 1.4 0.2 a[ICD4−] 94.3 98.9
a[ICD5] 1.6 0 a[ICD5−] 95.9 99.0
a[ICD6] 2.1 0.1 a[ICD6−] 98.0 99.1
a[ICD7] 2. 0.9 a[ICD7−] 100 100

As it is possible to see from Table 7, the CNN suffered a drop in performances when predicted
masks are used, but overall high values of a[ICD1−] have been retained. An interesting possibility
that is not investigated in this work is to re-train the CNN with the predicted masks to overcome
such drop.

Close-Proximity operations application

Dataset D-4 is made by 432 images of Didymos taken from the trajectory illustrated in Figure
9 with a FOV of 16 × 16◦ from a 1024 × 1024 sensor. The orbit is a preliminary trajectory that
has been considered for the Milani mission [7] and is used in this work to provide an example of a
typical geometry that can be encountered in the proximity of a small-body.

The trajectory displayed in Figure 9 is composed of an inner arc of 1 day immediately followed
by an outer arc of 2 days. Didymos rotational period is assumed to be 2.22 hours. Images are taken
every 10 minutes with ideal pointing in a 3-day loop, for a total of 432 image-mask pairs. The
results of the CNN are represented in polar coordinates in Figure 10, while the estimated positions
are superimposed on the true trajectory in Figure 9.
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Figure 9: Close-proximity orbit example around Didymos (red) and estimated positions with the
CNN (blue). The trajectory is illustrated in the Asteroid-Sun fixed reference frame, with the X axis
pointing towards the Sun. a),b) and c) illustrate the trajectory seen from a 3D perspective, YZ plane
and XY plane respectively.

Figure 10: Predicted (blue) and true (red) equatorial, elevation and range values as function of time
for the close-proximity trajectory.
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As it possible to see in Figure 10, a relevant portion of the trajectory happens outside the [0.65−
1.35]D0 interval considered during training. Whenever the range exceed the upper limit of this
interval, the telescopic range concept illustrated before is used. The CNN worked out well for what
concern prediction of the equatorial angle θ and range R. The CNN also worked as expected for
the prediction of the φ angle. However, the intervals used for the latter do not fit well enough the
trajectory values, that develops around φ = ±15◦.

Normalized Cross-Correlation

Dataset D-5 is a subset of D-1 made by 1000 random masks of Didymos and Hartley to which the
NCC method described in the methodology section is applied. The mean positioning error achieved
with Didymos and Hartley is respectively 63.49 m and 301.06 m, after an outlier rejection with
success rates of 95.30% and 92.20%. In Figure 11 is possible to see the relative percentage error
with respect to the true range εr as a function of the predicted range in adimensional space for
both bodies. The mean relative percentage error is respectively 1.37% and 2.15% for Didymos and
Hartley. The normalized range of the two bodies is respectively D0 = 4.81 km and D0 = 14.41
km.
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Figure 11: Relative percentage error as function of the range R from the bodies. The normalized
range D0 corresponds to R = 1.

CONCLUSION AND FUTURE WORKS

This work proposed a novel method for on-board autonomous navigation based on segmentation
maps. The method is enabled by a combination of deep-learning and correlation methods. A CNN
is used to predict the class of the estimated state of the spacecraft in an asteroid fixed reference
frame, this estimation reduces the search space for a NCC based method to be applied for a more
accurate navigation solution. Didymos and Hartley have been considered and the performance of
the methodology has been tested in 5 different scenarios.

Practical assumptions for the CNN are to have available on-ground a segmented model of the
asteroid for the generation of the synthetic masks and that the trajectory develops below certain
elevations, constrained by the spherical shell considered. The first can be addressed as a traditional
shape model in which the most prominent boulders and craters are highlighted. This further com-
plexity on the model on-ground is justified by the fact that segmentation maps used on-board are
not subject to pixel-intensity variations and that it would be possible to use simpler, low-resolution
models for on-board rendering. The practical assumptions for the NCC based method are that the
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pointing is ideal and illumination conditions are assumed to be known (either estimated from Sun
sensors or image processing) and that only the camera position is changed during online rendering.

The CNN demonstrated to be capable to generate robust predictions, but most importantly has
demonstrated to be capable of grouping these in the space immediately around the correct classes.
Depending on the small-body considered, the CNN was shaped through training on the importance
of the layers of the segmentation maps to be considered to produce a position estimate. It was found
that surface features such as boulders play a key role for Didymos, while the same cannot be said
about the network trained over Hartley, which has shown a classification based on the other layers.
This different behavior seems to be linked with the regularity of the shape models. It was assessed
that a moderate drop in performance can be expected when predicted masks are considered instead
of true masks. When put to the test with the geometry of a real close-proximity trajectory, the CNN
demonstrated to have good predicting performances even when images had been modified to be
translated within the training region. Important limitations have also been observed in this scenario
due to the small set of φ considered. Finally, the NCC method has demonstrated that when coupled
with the CNN one can greatly increase the positioning accuracy of the latter and provide a robust
estimate.
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Figure 12: Example of the NCC coefficient as function of the error from iteration 1 (red), 2 (green)
and 3 (blue).

The methodology proposed does not distinguish directly between features in the classical sense
(such as boulders and craters) and outline. Each layer of the segmentation map is instead considered
as a type of feature. In this way, the classical distinction between features and outline based methods
is not respected and the method can be applied on a variety of ranges from the body, independently
from the image apparent size in the FOV, without a change in the algorithm nor in the settings.

One issue that has been encountered with the adopted NCC method is related to the fact that the
minimum error is not guaranteed to coincide with the maximum NCC coefficient, as it is possible to
see from one case in Figure 12. This aspect is crucial in defining a correct metric for an optimization
procedure that minimizes the error and future work will be directed in this area.
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Training could be improved from considerations of the ICD and by reduction of the number
of samples per class. It has been observed that in order to have high-values of a[ICD0] on the
validation and test sets it was important to increase the distances between classes. One way to do
this is by increasing the sample density in each class as well as network complexity. However, more
efficient alternatives could be to define specific loss functions that encapsulate the ICD or to deploy
annealed classes with fuzzy borders.

Future work will be focused on a re-design of the NCC based method, with a better design of
features extracting and matching techniques and potentially also other deep learning architectures
in its place. Also different and more irregular bodies shall be considered for testing, to better
understand if certain trends generalize to different shapes and features.
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APPENDIX: CNN ARCHITECTURE AND TRAINING

Table 8: Architecture of the CNN considered in this work. The total number of parameters is
725880, of which 14080 are not trainable.

Layer (type) Output Shape Param #
input (InputLayer) (None, 128, 128, 1) 0

input transform (Functional) (None, 128, 128, 3) 0
MobileNetV2 0.35 128 (Functional) (None, 4, 4, 1280) 410208

GAP (Global average) (None, 1280) 0
dropout 1 (Dropout) (None, 1280) 0

dense 1 (Dense) (None, 128) 163968
dropout 2 (Dropout) (None, 1280) 0

dense 2 (Dense) (None, 1176) 151704
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Figure 13: Accuracy (left) and loss (right) on the train (blue) and validation (red) sets of the CNN
for Didymos.
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Figure 14: Accuracy (left) and loss (right) on the train (blue) and validation (red) sets of the CNN
for Hartley.
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