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ON-BOARD SMALL-BODY SEMANTIC SEGMENTATION BASED
ON MORPHOLOGICAL FEATURES WITH U-NET

Mattia Pugliatti; Michele Maestrini] Pierluigi di Lizia* and Francesco Topputo®

Small-bodies such as asteroids and comets exhibit great variability in surface morphological
features. These are often unknown beforehand but can be exploited for hazard avoidance
during landing, autonomous planning of scientific observations, and for navigation purposes.
The detection and classification of such features is a laborious task that requires extensive
manual work done by experts in the field. This step renders online usage of images unfeasi-
ble for these applications. Such limitation could be overcome thanks to the recent advances
in the field of neural networks, which allow to recognize features automatically from an ac-
quired image. However, to train such networks, an annotated dataset needs to be generated
with care by field experts, thus requiring once again extensive work and human-in-the-loop.
In this work, a methodology that exploits an open-source rendering software, ray-tracing
masking, and simple image processing techniques is illustrated, which allows to automatize
the segmentation process and build up a robust database of labeled features (i.e. background,
surface, craters, boulders, and the terminator region) for small-bodies. A procedural code is
designed to generate images and their labels over 7 different small-body shapes for a total
of 12,550 images that are used to train a Convolutional Neural Network with a U-Net ar-
chitecture in the task of semantic segmentation. The performances of the network are then
analyzed in 4 different scenarios. First, the network is evaluated on a test set composed of
1,050 new images belonging to bodies seen during training. Secondly, the network is eval-
uated on 3, 000 synthetic images from 2 models that have not been encountered in training.
Afterward, one of these latter models is tested in a flyby trajectory scenario consisting of
56 images. The results of the first three tests show state of the art performances and the
capability of this method to generalize features across synthetic data. Finally, the network’s
performances are qualitatively assessed with a set of 59 real images from previously flown
missions, highlighting the current limits of this approach. These shortcomings suggest pos-
sible directions for future improvement, which are discussed in this work.

INTRODUCTION

Small-bodies such as asteroids and comets are characterized by their strong irregularities in shape, physical
properties, orbital characteristics, composition, and surface morphological features. The latter are often not
characterized in detail or cannot be defined at all from ground observations, which is especially the case for
craters and boulders. These features, however, could provide important information to be used in autonomous
on-board applications. The task to determine the type of features in an image is referred to as image semantic
segmentation. Several approaches have been developed to perform or exploit image segmentation for space
applications. For example, in [1] probabilistic fusion methods are developed for segmentation, detection, and
classification of geological properties for a martian rover application. Instead, in [2], a series of advanced
image processing techniques for enhanced flyby science are introduced. Amongst them, [2] introduces a
methodology for autonomous features detection supported by simple filtering and statistical-based classifica-
tion. Image segmentation is also performed, mainly to distinguish between features, surface, and background.
Similar techniques can also be used for the identification of plumes and jets from comets and moons as done
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in [3]. Bodies are modeled using convex-hulls and pixels lying outside the hull are classified based on pixel
intensity as belonging to the body’s surface or a plume. The success of the technique is based on the differ-
ence between the sharp edges of the body and the more diffuse edges of the plume, which shall not be able
to trigger an edge detection algorithm. With the advancement of Artificial Intelligence and deep-learning
architectures, applications for image segmentation have also being developed for various applications. In
[4] for example, a new successful architecture is introduced to perform image segmentation for biomedical
application. The intuition is twofold: to adopt a symmetrical architecture that lacks the fully connected layer
between encoding and decoding stacks and the idea to concatenate copy of trained encoder layers on the
decoder to retain features information. In [5] a set of 5 CNNs are designed to detect geological structure on
the surface of Mars at different scales. High-resolution images are taken by two cameras of the Mars Recon-
naissance Orbiter and image segmentation is performed with CNN and compared with other methods. It is
shown that CNN surpasses in accuracy other state of the art methods used for the same task-based on Support
Vector Machine. This architecture is used in works such as in [6] and [7] to obtain hazard maps from the
digital terrain map of the Moon. In these works, the U-Net is used to determine the horizontal coordinates of
a safe landing spot on the lunar surface in an innovative way to allow a Deep-Reinforcing Learning method to
perform a controlled landing on the surface. However, the aforementioned works do not fully appreciate the
complexity of the features existing on a small-body surface, often not considering more than 3 layers. Also,
an important trait they have in common is the lack of labeled data to be used for training. Most of the time
this data is characterized manually from real images or derived from height-maps.

In this work, an approach is proposed for the automatic labeling of surface morphological features on
small-bodies. This is exploited to generate a generalized sample of image-mask pairs that are used to train a
CNN, enabling semantic segmentation for on-board applications. A similar approach has also been proposed
in [8], where the 3D model of a satellite is rendered, together with automatic bounding boxes and ground
truth pixel segmentation masks of its main features. The dataset is then used to train a network for the task
of instance segmentation. The capability of assigning labels to pixels automatically unlocks new possibilities
for on-board applications such as more complex hazard avoidance during landing, autonomous planning of
scientific operations, and labeling of features of scientific interest as well as navigation purposes. The latter
has been explored as a continuation of this work in [9], where a method based on CNN and Normalized
Cross-Correlation is designed to work with small-body segmentation maps.

Blender, an open-source ray-tracing rendering software *, is used to generate high-fidelity images alongside
their corresponding pixel masks thanks to ray-tracing techniques. An arbitrarily large annotated database is
automatically generated and exploited for the training of a robust U-Net for semantic segmentation. The
aim of automatically generating synthetic annotated images for this task is to extend the capabilities of the
existing frameworks, to generalize for different models, and to better understand the complexity of the scene.
To assess the performances of the trained network four different test cases are envisioned and discussed in
this paper.

The paper is organized as follows. After presenting the automatic dataset generation pipeline in the next
section, an overview of the CNN used to perform the semantic segmentation task is provided. Subsequently,
the assessment of the results on the envisioned test cases is given in a dedicated section, which is followed by
some final considerations and cues for future work that conclude the paper.

DATASET GENERATION

The small-body models used in this work are obtained by applying procedural changes of the mesh and
improved textures to pre-existing low-poly asteroid models’*. The base models considered are: 67-P, Bennu,
Didymos, Golevka, Hartley, HW 1, Hygiea, Lutetia, and Thisbe.

After the mesh is modified to generate the desired level of roughness, craters are applied by extracting a

*https://www.blender.org/
Thttps://sbn.psi.edu/pds/shape-models/
*https://3d-asteroids.space/
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height-map from real craters on Earth*, an example for Barringer Crater can be seen in Figure 1.

Figure 1. Grayscale heightmap of Barringer Crater used as texture for the craters on
the small-body raw models.

A higher altitude is associated with brighter pixel values, as it can be seen from Figure 1. These images
can be used in a texture to displace a planar object height, producing a realistic-looking crater. Applying
random scaling, the generated craters are then stitched on the small-body models and distributed across its
surface. Subsequently, boulders are generated and applied to the 3D models. Exploiting Blender’s Particle
System tool, different families of randomly generated boulders are scattered on the surface. Each boulder has
been created using the Rock Generator add-on in Blender. A summary of the craters and boulders number
and size is provided in Table 1. After all morphological modifications have been put in place on the raw
shape models, they are used to generate a database of images and masks. For each base shape, three different
models are used to render image-mask pairs. The masks are constituted by 5 different layers (i.e. categories):
background, free surface, craters, boulders, and terminator region. The masks are obtained in Blender by
applying different object pass indexes and exploiting ray-tracing capabilities of the Cycles rendering engine.
The three models used are referred to as:

* Clean Model: it is a simple model without surface texture, it is used to generate the ground truth of
the terminator.

* Crater Model: it is a model of the asteroid with craters and textures applied, a boolean image with
only visible craters can be produced. In these models, the craters’ mesh is not merged with the body.

¢ Complete Model: it is a model of the asteroid with textures, craters, and boulders, which is used to
generate boolean images of the boulders and the free model surface, together with the full input image
that will be used by the U-Net.

Once these three models are produced for each body, random camera positions are sampled uniformly in a
spherical shell whose radius span [0.4Dy, 1.3Dy], where Dy is the approximate range at which the asteroid
saturates the FOV of the camera, which is assumed to be 10 deg. Notice that an ideal pointing to the center
of the small-body is assumed.

maximum size of asteroid
2tan (FOV/2)

Dy = (1)

Moreover, for each acquisition, the sun’s direction is selected randomly in an angular range from the
camera boresight of £90deg. In such a way, off-nominal illumination conditions are taken into account
without considering unrealistic image acquisition where the sun is behind the asteroid.

“https://tangrams.github.io/heightmapper/
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Thanks to the 3 models, all ground truth layers but the terminator is obtained. For the latter, a dedicated
processing pipeline is designed in Matlab®. First, a Canny edge extractor [10] is applied to the image gen-
erated from the Clean Model, which gives the edges detected in the image both between asteroid and space
and those produced by the terminator. To avoid considering spurious edges (i.e. those between asteroid and
space), an acceptance mask is computed which exploits the asteroid pass index mask which does not account
for shadows. However, this binary image would not exclude the body-space edges obtained via the Canny
extractor. To avoid including them, the boolean acceptance image is eroded using a morphological operation
with circular structuring elements [11]. A summary of the process is graphically provided in Figure 2.

()

Figure 2. Extraction of terminator region from Clean Model.

Once all the raw masks are generated for every camera-sun pair, the stack of 5 masks is piled together, as
in Figure 3. Note that the ground truth pixel masks obtained in this way may exhibit slight pixel intersection
over categories, hence when the masks are stacked together a hierarchy is used to define precedence among
layers. Intuitively, the hierarchy used in order of decreasing priority is: terminator, boulders, craters, surface,
background. An example of this stacking process is reported in Figure 4.

Figure 3. Complete image of the small-body model of Lutetia (a), together with its
raw segmentation maps: (b) free surface, (c) boulders, (d) craters, (e) terminator.

The generated images are not directly used as input to the neural network. Indeed, they are further modified
to account for noise and processing by adding a 0.1 mean 0.0001 variance Gaussian noise, followed by a 2D
Gaussian smoothing kernel with a standard deviation of 0.1.

*https://it. mathworks.com/products/matlab.html
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Figure 4. Segmented image stack constituting the truth mask to train the network.

This methodology of building models, rendering, and generating image-mask pairs allows to virtually
produce an arbitrary amount of annotated samples, limited only by the available computational resources. In-
dependently from the body shape, illumination conditions, features distributions, and scale it is then possible
to use this database to efficiently train a U-Net in the task of image semantic segmentation for small-body
morphological features.

Table 1. Summary of complete Blender models generated

Boulders no.

Base Model Craters no. .
small medium large

67-P 2 500 - 5
Bennu 3 1000 250 10
Didymos 4 800 30 5
Golevka 2 800 - 40
Hartley 3 5000 30 5
HW1 2 2000 40 5
Hygiea 5 1500 100 5
Lutetia 5 1000 350 -
Thisbe 5 1000 - 20

CONVOLUTIONAL NEURAL NETWORK FOR SEGMENTATION

The Network architecture selected for the segmentation task is inspired by the U-Net design [4]. This is
motivated by its simplicity in the implementation in Tensorflow and because its efficacy has been already
proven in segmentation tasks and space applications [6, 7, 4]. The network architecture used in this work is
summarized graphically in Figure 5. The U-Net architecture is similar to the one of an autoencoder, but with
tensors as input-output. The contracting portion of the network (the encoder) is composed of a succession
of convolution, Rectified Linear Unit (ReLu) activation, and pooling layers of increasing depth and reduced
size (i.e. height and width), while the expansive portion (the decoder) is made by a combination of transpose
convolution, ReLu, and upsampling layers of reducing depth and increasing size. This symmetric nature is
what gives the characteristic U shape. On top of this, the specific U-Net architecture introduced in [4] uses
layers that are copied from the encoder and stacked in the decoder and lacks a fully connected layer in the
middle separating encoding and decoding portions.
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Figure 5. Custom U-net architecture. The input is the raw image, the output is the
semantic segmentation of the content of the image.

For our particular case study, we implemented a custom architecture of the UNet. Our encoder follows
the typical architecture of a CNN and is taken directly from a pre-trained model of MobileNet V2 [12] on
the ImageNet dataset [13]. Its parameters are frozen during the training process to exploit the already tuned
network and reduce the training time and computational cost. Indeed, the encoding branch of the network
is responsible for extracting low-level features from the input image, which are often common for many
problems from very different domains. In particular, we have extracted 5 activation maps from the early
stages of the MobileNet network with dimension (height x width x depth): 4 x 4 x 320, 8 x 8 x 576,
16 x 16 x 192, 32 x 32 x 144, and 64 x 64 x 96. These are then exploited in the decoding branch. As far as
the decoder is concerned, it consists of 4 subsequent deconvolutions (or transpose convolution) stages. Each
stage of the decoder starts with a deconvolution of the input with 3 x 3 kernels, which doubles the height
and width of the input. Then, a ReLu activation is applied to the newly obtained feature map. The number
of filters used in the decoder determines the depth of the feature map at each deconvolution step and it halves
at each stage going from the initial 256, down to 32. In our network, the first deconvolution is applied to
the last feature map extracted from the decoder (i.e. the 4 x 4 x 320). The output of the first layer of the
decoder is then concatenated to the encoder feature map of coherent height and width (i.e. 8 x 8 x 576).
In this manner, it is possible to exploit the additional features obtained during the encoding of the input
image also for the decoding process to preserve higher accuracy during the upscaling. Afterward, to these
concatenated feature maps, a 20% dropout is applied to provide regularization during training. The obtained
stacked feature map is then used as the input to the next deconvolution, and the sequence (i.e. deconvolution,
activation, concatenation, and dropout) is repeated for all 4 stages of the decoder. To conclude, the described
layers of the network are followed by 3 additional convolutional layers obtained with 256, 128, and 64 filters
of size 3 x 3. Each layer is followed by a ReLu activation and 40% regularization dropout which grants
more flexibility to the network. The output feature map of the network head is a 128 x 128 x 5 feature
map, where each of the 5 layers of depth stores a probability that the pixel belongs to a certain class. By
applying a softmax across the depth of this feature map we can obtain the desired segmentation mask for the
input image. The resulting network has a total of 4,450, 757 parameters out of which only 2,607,813 are
trainable.

Training

In order to train the network, first we need to define metrics showing how good the prediction of the
network is when compared to the ground truth segmentation mask. One of the metrics used is the sparse
categorical cross entropy. For each pixel x we can create a softmax function p(x) as:
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where a(x) denotes the activation in the feature channel k at the given pixel x and K is the number of
classes (i.e. 5). The function I(x, k) is the delta Dirac function, which returns 1 if the pixel x belongs to the
category k, 0 otherwise. The loss will then be defined as the mean over all IV pixels of the negative logarithm

of p(x)

E=-—+ > tog () (3)

To assess the accuracy of the trained CNN, we introduce two additional metrics that are used during the
remainder of this work. First, we define global accuracy as the percentage of correctly classified pixels in
a predicted segmentation map. Secondly, we define the mean Intersection over Union (mloU), which is
particularly relevant for the case of segmentation and can be computed for each category as a simple ratio
between two areas. The numerator of this ratio is the area of overlap between the predicted pixel mask and
ground truth pixel mask. On the other hand, the denominator is the total area encompassed by these two
masks. Hence, for each pixel class, we can compute an IoU as

Area of Overlap
IoU = = 4
© Area of Union @)

The network is trained only once for all the following test cases. In particular, 7 arbitrarily selected models
have been chosen among the available ones to be used during the training of the network: 67-P, Bennu,
Didymos, Golevka, Hartley, Hygiea, and Lutetia. For each model, 1500 images are generated as described
in the dedicated Dataset Generation section . The preliminary dataset showed a shortcoming in the number
of craters that appeared during training. Hence, an additional 3, 100 images of the craters on the 7 asteroid
models have been added to the training set. A summary of the dataset is reported in Table 2, together with its
split among training set and validation set.

Table 2. Summary of the synthetic image-mask pairs constituting the training, validation and test set.

Training
Base Model Images Validation Set
Database  Additional Craters
67-P 1200 150 150
Bennu 1200 650 150
Didymos 1200 550 150
Golevka 1200 300 150
Hartley 1200 300 150
Hygiea 1200 650 150
Lutetia 1200 500 150
Tot. 11500 1050

The training parameters for the network have been identified after a large hyperparameter search. The
selected batch size is 100 images, and the network was trained for 300 epochs with 115 gradient steps per



epoch. The selected optimizer was Adam [14], with a learning rate of 5 x 10~%. The curves describing the
training process in terms of mloU, accuracy, and loss function are represented in Figure 6.
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Figure 6. Evolution of the values of accuracy (left), loss (center), and mIoU (right) ob-
tained during the training process. Both curves for the training (blue) and validation

(orange) sets are reported.

RESULTS

The trained CNN undergoes 4 test cases. Each of these tests has a dedicated dataset which is better
explained in Table 3. A summary of all the results of performance in terms of both Accuracy and mloU is
reported in Table 4 and Table 5. Notice that no manual labeling has been performed for D-4. Therefore, the

performance will be assessed qualitatively.

Table 3. Summary of the datasets used in the four test cases, identified as D- followed by the test

identification number.

Dataset Models Used in Training Number of Images
7 (67-P, Bennu, Didymos, Golevka,

D-1 Hartely, Hygiea, and Lutetia) v 1050

D-2 2 (HW1, and Thisbe) X 3000

D-3 1 (Thisbe) X 56

D-4 / X 59

Table 4. Table with a summary of accuracy for the different test cases expressed as a percentage.

Test case D-1 D-2 D-3 D-4
max min avg max min avg max min avg max min avg
Background 100.00 0.00 9232 100.0 0.00 96.35 100.00 5625 97.99 /
Surface 99.83  80.17 97.73 99.83 86.41 9828 100.00 49.25 96.16 /
Craters 100.00 0.00 37.68 100.00 0.00 19.69 100.00 0.00 8.07 /
Boulders 95.06 0.00 3137 79.78 0.00 2522 100.00 0.00 15.14 /
Terminator  100.00 0.00 80.71 100.00 0.00 66.23 100.00 0.00 65.36 /
Mean 95.03 95.09 97.65 /




Table 5. Table with a summary of IoU for the different test cases expressed as a percentage.

Test case D-1 D-2 D-3 D-4
max min avg max min avg max min avg max min avg
Background 100.0 10.00 89.35 100.00 7.69 92.82 100.00 50.00 95.99 /
Surface 99.67 7139 9233 9951 4478 9192 99.13 36.56 82.93 /
Craters 100.00 0.11 2831 100.00 0.10 17.00 100.00 0.57 15.58 /
Boulders 86.07 051 2783 69.73 0.78 2139 58.73 1.79  18.63 /
Terminator 100.00 0.61 66.67 100.00 0.15 5824 100.00 0.61 58.67 /
Mean 60.90 56.28 43.95 /
Test case 1

In this first test, the test dataset D-1 from Table 3 has been used. This test case is standard for CNNs
and consists of evaluating the performance of the CNN on a split of the dataset which was not used during
training. Hence, the base models which are included in this dataset are the same that were used to generate
the training dataset. As expected, the network achieves an accuracy of =~ 95%, which is consistent with
the validation data observed during training. The mIoU on this dataset is =~ 61%, which testifies a good
performance of segmentation. As an example, we report one of the best (Figure 7) and one of the worst
(Figure 8) performances obtained, a mosaic showing an overview of some images, predictions, and ground
truth is also provided in Appendix. We can already observe that the accuracy has little meaning in terms of
segmentation accuracy and that mIoU constitutes a far better metric. An additional issue which is evidenced
in Figure 8 and can be observed through the entire dataset, is that when moving far away from the surface,
the boulders and craters become less easy to spot, and the network fails to identify them. Indeed, as can be
observed from the cumulative performance curves of Figure 9, the categories of Boulders and Craters are
responsible for dragging the performance of the network down. The reason for this is due to the statistics
of the training set, where the categories best represented in terms of percentage of total pixel datasets are in
descending order: surface 52.35%, background 38.93%, and terminator 4.41%. Instead, the least represented
categories are the boulders with 0.88% and craters with (even after the injection of additional data) 2.43%.
Despite this justification, the observed performance drop cannot simply be explained by the pixel statistics.
Indeed, we must also consider that contrarily to the easier categories (background, face, terminator), the
possibility to identify craters and boulders strongly correlates with their size as well as the asteroid phase
angle. Therefore, these features are intrinsically harder to detect.

Input Image Mask Ground Truth Mask Predicted

Figure 7. Triplet of images showing input image, ground truth and predicted mask.
The image in question shows an accuracy of ~ 95% and a mloU of ~ 74%.



Input Image Mask Ground Truth Mask Predicted

Figure 8. Triplet of images showing input image, ground truth and predicted mask.
The image in question shows an accuracy of ~ 96% and a mIoU of ~ 41%.
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Figure 9. Cumulative performance curves indicating which percentage of the dataset
lies above a certain value of IoU (left) or accuracy (right) for dataset D-1.

Test Case 2

In this second test, the test dataset D-2 from Table 3 has been used. This test case is meant to determine
if the trained CNN is capable of generalizing the learned features across different (unknown) small-bodies.
Indeed, this second dataset consists of two artificial models that were not used to generate the training images.
The network achieves an accuracy of ~ 95%, which is consistent with the performance of D-1, whereas
the mIoU drops to ~ 56%, which still testifies that a good segmentation is retained. Therefore, we can
assume that the network did not overfit on the training models, and is capable of partial generalization on
similar synthetically generated data. As an example, we report one of the best (Figure 10) and one of the
worst (Figure 11) performances obtained, however a larger mosaic providing an overview of some images,
predictions, and ground truth is reported in Appendix. We can already observe a similar behavior to Test Case
1, with a slight reduction in mloU, which is to be expected given the novelty of the models. This second test
also highlights the same shortcomings of Test Case 1 in terms of the capability to identify the boulders due
to high scale variance. Indeed, also in this case it can be observed that craters and boulders are responsible
for dragging down the overall score (e.g. Figure 12).

Test Case 3

In this third test, the test dataset D-3 from Table 3 has been used. This test case is meant to provide some
insight into the behavior of the network during a fly-by trajectory. The spacecraft keeps an ideal pointing
towards the asteroid while passing by it. Most of the dataset (= 70%) has been taken on a range of distances

10



Mask Ground Truth Mask Predicted

Figure 10. Triplet of images showing input image, ground truth and predicted mask.
The image in question shows an accuracy of ~ 94% and a mIoU of ~ 72%.

Input Image Mask Ground Truth Mask Predicted

Figure 11. Triplet of images showing input image, ground truth and predicted mask.
The image in question shows an accuracy of ~ 97% and a mIoU of ~ 40%.

outside the training range of [0.4Dg, 1.3D], and this is reflected on the mIoU which is the lowest seen up
until this point (see Table 5). The behavior of the mloU during the trajectory is reported together with the
range from the asteroid in Figure 13. As expected, the best performance is retrieved in the range of distances
for which the network has been trained, however, the performance drop outside the training range is not steep.
This can also be observed in one of the best (Figure 14) and worst (Figure 15) performances on this dataset.
Additionally, a mosaic showing an overview of some images, predictions, and ground truth is provided in
Appendix.

Test Case 4

In the last test, the dataset D-4 from Table 3 has been used. This test case provides some insight into the
applicability of this approach to real case scenarios. To the best of our knowledge, no other analysis of this
kind is available in the literature. Despite the shortcoming of the proposed approach, this assessment provides
precious insights to improve the approach in future studies. Given that the data are not labeled manually, no
quantitative analysis has been performed, and only a qualitative assessment is obtained. The dataset contains
two types of images, the first being 9 entire images which are downsampled to comply with the input shape
requirement. On the other hand, the second larger part of the dataset (i.e. 50 images) consists of crops of

11
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Figure 12. Cumulative performance curves indicating which percentage of the
dataset lies above a certain value of IoU (left) or accuracy (right) for dataset D-2.

[

T T
0.8+ Training Range|

=~ (=2}
T T
L L

V)
T
I

Distance [Dy)

(=)

0 10 20 30 40 50
Flyby Epoch

Figure 13. Evolution of the mIoU during the flyby. Notice that the best performance
is retrieved in the range of distances for which the network is trained.

real images without any downsampling. The images include the following bodies: Itokawa*, Eros T, Vesta T,
Bennu ¥, and Ida *.

The results on the resized images presented very promising results, where the categories of terminator,
surface, and background are well classified. This behavior can be observed in Figure 17 as well as the first 9
images of the mosaic provided in Appendix.

However, these images also underlined the complete lack of identification of craters and boulders. As for
the first test cases, we decided to verify if the lack of identification of these categories depended on the relative
size of these features in the images. Therefore, we decided to take zoomed crops of the original images and
test our hypothesis. As observed from Figure 18, the major boulders are now identified sufficiently well.
Despite this improvement, we can still observe several shortcomings and mislabelling when the network is
applied to real images, which are evidenced in the mosaic reported in Appendix. For completeness, we also
report one of these failures in Figure 19, where the lack of precision in identifying the main crater and the

*http://jda.jaxa.jp/en/
Thttps://photojournal jpl.nasa.gov/
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Input Image
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Mask Ground Truth Mask Predicted

Figure 14. Triplet of images showing input image, ground truth and predicted mask.
The image in question shows an accuracy of ~ 96% and a mIoU of ~ 58%.

Input Image Mask Ground Truth Mask Predicted

..

Figure 15. Triplet of images showing input image, ground truth and predicted mask.
The image in question shows an accuracy of ~ 99% and a mIoU of ~ 17%.

confusion between craters and boulders appears evident. This analysis allowed us to determine that the crater
modeling is not realistic enough for real image application and requires more work. Besides, we deem that
the training could improve by augmenting our synthetic dataset with some real, manually labeled images.

CONCLUSION AND FUTURE WORKS

In this work, an approach is proposed for the automatic labeling of surface morphological features. The
methodology presented exploit Blender’s capabilities and ray-tracing techniques to extract layers such as
background, surface, craters, boulders, and terminator region. This capability is used to generate a database
of image-mask pairs that are used to train a CNN for on-board semantic segmentation. The CNN has been
designed using a U-Net inspired architecture. Accuracy and mloU have been used as metrics to assess the
CNN’s performances, which have been tested on 4 different test cases. The CNN demonstrated to be capable
to segment the images with a high value of accuracy, but more importantly with a good value of mIoU. The
CNN also demonstrated to be capable to generalize its performances on models that have never been seen
during training, with only a moderate drop in performances. The CNN also demonstrated that when applied
out of the range considered in the training, it performed poorly in a flyby scenario, while it performs as
expected within the training range. When tested with synthetic images the CNN has demonstrated to have
issues at detecting craters and boulders from higher distances. This is something that can be resolved in
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Figure 16. Cumulative performance curves indicating which percentage of the
dataset lies above a certain value of IoU (left) or accuracy (right) for dataset D-3.

Input Image Mask Predicted

Figure 17. Predicted mask for an image of Bennu.

future developments with adoptions of dynamic class-based weights factors. The performances of the CNN
also fall short in the segmentation of real images from previously flown missions. surface, background, and
terminator (that are generally easier to detect) are determined confidently, the same cannot be said about
craters and boulders. This could be attributed to a wrong representation of these features in the synthetic
images in contrast with the real ones. Future works are envisioned towards more accurate modeling of
craters, on the injection of real labeled images in the training dataset, and in the usage of weight, factors to
be used for training the CNN with particular attention to the most complex features.
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Input Image Mask Predicted

Figure 18. Predicted mask for an image of Itokawa.

Input Image Mask Predicted

Figure 19. Predicted mask for an image of Ida.
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APPENDIX: MOSAIC

Figure 20. Mosaic of 3 x 14 triplets showing input image, ground truth and predicted
mask for test D-1. Each triplet is composed of the input image (left), ground truth
segmentation mask (center) and predicted segmentation mask (right).
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Figure 21. Mosaic of 3 x 14 triplets showing input image, ground truth and predicted
mask for test D-2. Each triplet is composed of the input image (left), ground truth
segmentation mask (center) and predicted segmentation mask (right).
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Figure 22. Mosaic of 3 x 14 triplets showing input image, ground truth and predicted
mask for test D-3. Each triplet is composed of the input image (left), ground truth
segmentation mask (center) and predicted segmentation mask (right).
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Figure 23. Mosaic of 3 x 12 couples of images showing input image and predicted
mask for test D-4. Each couple is composed of the input image (left), and predicted
segmentation mask (right).
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