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Abstract

Solving the electric activity of the heart posses a big challenge, not only
because of the structural complexities inherent to the heart tissue, but also
because of the complex electric behaviour of the cardiac cells. The multi-
scale nature of the electrophysiology problem makes difficult its numerical
solution, requiring temporal and spatial resolutions of 0.1 ms and 0.2 mm
respectively for accurate simulations, leading to models with millions degrees
of freedom that need to be solved for thousand time steps. Solution of this
problem requires the use of algorithms with higher level of parallelism in
multi-core platforms. In this regard the newer programmable graphic pro-
cessing units (GPU) has become a valid alternative due to their tremendous
computational horsepower. This paper presents results obtained with a novel
electrophysiology simulation software entirely developed in Compute Unified
Device Architecture (CUDA). The software implements fully explicit and
semi-implicit solvers for the monodomain model, using operator splitting.
Performance is compared with classical multi-core MPI based solvers oper-
ating on dedicated high-performance computer clusters. Results obtained
with the GPU based solver show enormous potential for this technology with
accelerations over 50× for three-dimensional problems.
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1. Introduction

In the last decades, mathematical modelling and computer simulations
have become a useful tool for tackling problems in like science and engi-
neering, among which heart electrophysiology. In this regard, modelling the
electric activity of the heart, under physiological and pathological conditions,
has attracted the attention of a number of researchers [1] since ventricular
tachycardia and fibrillation are among the major causes of sudden death [2].
Since direct measurements are many times limited to only surface signals,
multi-scale numerical simulations where the electrical activity at the surface
as well as in the myocardium can be related to the underlying electro-chemical
behaviour of the cell, helps to gain further insights into the problem. In ad-
dition, mathematical modelling and computer simulations have become a
useful tool for training and educational purposes. In this regard, near real-
time GPU-based simulators give the possibility the user to interact and they
have been successfully employed to train bachelor students [3].

The electric activity of the heart is usually studied using the well known
bidomain model [4, 5]. It consists of an elliptic partial differential equation
and a parabolic partial differential equation coupled to a system of stiff non-
linear ordinary differential equations describing the ionic current through the
cellular membrane. This model can be simplified to the so called anisotropic
monodomain equation [4], a parabolic reaction-diffusion equation describ-
ing the propagation of the transmembrane potential coupled to a system of
ordinary differential equations describing the cellular ionic model. The mon-
odomain model represents a much less computationally expensive model for
the electric activity of the heart, and has been extensively used [6, 7, 8, 9].

The high computational cost of the bidomain and monodomain models
is due to the stiffness of the system of ordinary differential equation describ-
ing the transmembrane ionic current which introduces different space and
time scales. The depolarization front is localised in a thin layer of less than
a millimetre, requiring therefore discretizations of the order of tenth of a
millimetre in order to accurately resolve the depolarization front, implying
models with millions of degrees of freedom to simulate the heart. The time
scale is another fundamental issue in cardiac simulations. The time constants
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involved in the kinetics of cellular models range from 0.1 to 600 ms, requiring
in some phases of the process the use of time steps of the order of a hundredth
of a millisecond. Hence, solving a single heart beat requires thousands time
steps.

A number of alternatives have been proposed to solve this problem. In
this particular, the multi-length scale nature of the problem has inspired the
development of adaptive techniques where the mesh is allowed to change with
time coupled with adaptive time integration schemes to improve the compu-
tational performance [10, 11, 12, 13]. However, dynamic loading for these
adaptive schemes is still cumbersome, limiting their application in massive
parallel architectures. Recent efforts [14, 15, 16] suggest the use of multilevel
meshes, fixed in time, along with adaptive time schemes which take advantage
of the different kinetics of the ionic currents. This allows for reductions of up
to two orders of magnitude in CPU time with respect to traditional explicit
algorithms. However, these techniques use the fine mesh (lower level mesh)
for solving the partial differential equations (responsible for the propagation
of the depolarization front).

Despite of the efforts of designing more efficient schemes, the solution of
the electrophysiology problem requires the use of algorithms with higher level
of parallelism in multi-core platforms. In this regard, the next generation of
high-performance computing (HPC) platforms promise to deliver better per-
formance in the PetaFLOPS range. However, achieving high performance
on these platforms relies on the fact that strong scalability can be achieved,
something challenging due to the performance deterioration caused by the
increasing communication cost between processors as the number of cores
increases. That is, with increasing number of cores, the load assigned to
each processor decreases, but the communication between different proces-
sors associated with the boundaries of a given partitioned domain increases.
Therefore, when communication costs domain, no further benefits are ob-
tained from adding additional processors. An alternative to the multi-core
platforms is emerging in the newer programmable graphic processing units
(GPU) which in recent years has become a highly parallel, multithreaded,
many-core processor with tremendous computational horsepower [17, 18].
GPUs outperform multi-core CPUs architectures in terms of memory band
width, but underperforms in terms of double precision floating point arith-
metic. However, GPUs are built to schedule a large number of threads, thus,
reducing latencies in their multi-core architecture.

Sanderson et al. [19] proposed a general purpose, graphics processing unit
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(GP-GPU)-based approach for the solution of advection-reaction-diffusion
models. They report an increase of performance of up to 27 times for an
explicit solver when used on three dimensional problems. Regarding cardiac
electrophysiology, previous studies have reported speedups by a factor of 32
for the monodomain model [20] using an explicit finite difference scheme with
a rather simple transmembrane ionic model. In their study Sato et al. [20]
have established the solution of the PDE equation as the bottle neck of
the computation with GPU. However, in their studies older NVidia GT8800
and GT9800 GX2 cards only supporting single precision floating point op-
erations were used, that greatly limited the computations of the parabolic
system. Chai et al. [21] succesfully solved a 25 million nodes problem on
a multi-GPU architecture using the mono domain model and a four state
variables model. Bartocci et al. [22] have performed an implementation of a
finite difference explicit solver for cardiac electrophysiology. They evaluate
the effect of the ionic model size (number of state variables) on the perfor-
mance in simulating 2D tissues, and compare single precision and double
precision implementation. They provided acceleration with respecto to real
time. For small ionic models and the single precision implementation they
report simulations faster that real time for small problems, whereas for highly
detail models, with larger number of state variables, they report simulation
times between 35 and 70 times larger than real time. Rocha et al. [23] im-
plemented and an implicit method on the GPU. Spatial discretization of the
parabolic equation was performed by mean of the Finite Element Methods
(FEM) keeping full stiffness matrices. Promising acceleration ratios were
achieved with two dimensional (2D) bidomain tissue models using an un-
preconditioned CG method. However, with unstructured three dimensional
(3D) bidomain simulations, the number of iterations required for convergence
became prohibitive. In a more recent work Neic et al. [26] showed that 25
processors were equivalent to a single GPU when computing the bidomain
equations. This new capability to solve the governing equations on a rela-
tively small GPU cluster makes it possible to one day introduce simulation
using patient specific computer models into a clinical workflow. On a more
recent work, Vigueras et al. [27] have port to the GPU a number of compo-
nents of a parallel c-implemented cardiac solver. They report accelerations
of 164 times of the ODE solver and up to 72 times for the PDE solver.
They have also achieved accelerations of up to 44 times for the mechanics
residual/Jacobian computation in electromechanical simulations.

This paper presents results obtained using a novel electrophysiology sim-
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ulation software entirely developed in Compute Unified Device Architecture
(CUDA). The software implements semi-implicit and explicit solvers in dou-
ble precision for the monodomain model, using operator splitting and FEM
for spatial discretization. The potentiality of the GPU code simulations is
demonstrated by running strong scalability benchmarks in 1D, 2D, and 3D
problems, including realistic geometries of human heart and atria. Perfor-
mance results are compared with a multi-CPU based software [9].

The remainder of the paper is organised as follows. Section 2 describes
the basic equations defining the electrophysiology problem, and the basic
algorithm. Section 3 details the GPU implementation and data structure.
Section 4 describes the scalability benchmark examples. Section 5 details the
main results obtained, and section 6 concludes with some discussion and a
summary of the most relevant contributions.

2. The numerical algorithm

This section describes the proposed numerical algorithm for solving the
reaction-diffusion system.

2.1. Governing equations and basic algorithm

The reaction-diffusion system describing the monodomain model for car-
diac electrophysiology is given by [4]

∇ · (D∇V ) = Cm

∂V

∂t
+ Jion(V,u) + Jstm(t), (1)

∂u

∂t
= f(u, V, t), (2)

where, V is the transmembrane potential, Cm is the cell capacitance, D is
the second order symmetric and positive definite conductivity tensor, Jstm(t)
is a time dependent stimulation current, Jion(V,u) the transmembrane ionic
current, and u(x, t) is a vector of state variables related to the ionic model
(gates and concentrations), f is a vector valued function also dependent on
the ionic model, and t refers to time.

Equation (1) is subjected to the following Neumann boundary conditions

n · (D∇V ) = 0, (3)

where n is the outward pointing unit normal to the computational domain.

5



An efficient way of solving Equations (1-3) is by applying the operator
splitting technique [28]. The basic steps for a time tk are summarised in the
following.

• Step I: Using V (tk) as the initial condition to integrate equation

Cm

∂V

∂t
= −Jion(V,u)− Jstm(t),

∂u

∂t
= f(u, V, t),

for t ∈ [tk, tk +∆t] (4)

• Step II: Use the result obtained in Step I as the initial conditions to
integrate

Cm

∂V

∂t
= ∇ · (D∇V ), for t ∈ [tk, tk +∆t] (5)

2.2. Spatial-temporal discretisation

When performing Step II, the computational domain must be discretised
in space by a mesh of either finite elements or finite differences to approximate
the dependent variables of the problem, V and u, which allows writing Eq. (5)
as

MV̇ +KV = 0, (6)

minimise where M and K are the mass and stiffness matrices respectively,
obtained by assembling individual element matrices over the entire compu-
tational domain.

The most well known algorithms for integrating in time the semi-discrete
system (6) are members of the generalised trapezoidal family of methods [29].
Let Vk and V̇k denote vectors of the transmembrane potential and its time
derivative at each nodal point of the mesh at time tk, where k is index of the
time step, then at time tk+1 we can write

MV̇k+1 +KVk+1 = 0, (7)

Vk+1 = Vk +∆tV̇k+θ, (8)

V̇k+θ = (1− θ)V̇k + θV̇k+1, (9)

where θ ∈ [0, 1] is a scalar parameter. Equations (7) through (9) can be
combined to obtained an algebraic system of equations to determine Vk+1.
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When using the operator splitting algorithm for solving the monodomain
model, equations (1) and (2) are solved in two steps. First, the electrophys-
iological cellular model

V∗ = Vk
−∆t

(

Jion(V
k,u) + Jstm(t)

)

, (10)

is solved at each mesh point to obtain an intermediate transmembrane poten-
tial vector V∗ (Step I). Even though a forward Euler scheme has been used in
(10), any other ODE solver can be used to calculate V∗. With this interme-
diate solution at hand, along with equations (8) and (9) and MV̇k = −KVk

from the previous converged time increment, equation (7) becomes

M
Vk+1 −V∗

∆t
= −K

(

θVk+1 + (1− θ)Vk
)

, (11)

or alternatively
K̂Vk+1 = b̂, (12)

where K̂ is everything that multiplies onto Vk+1, and b̂ contains the other
terms in equation (11). Equation (12) is solved for the entire domain to
obtained Vk+1 (Step II).

Hence, the basic algorithm at time tk+1 can be summarised, as:

• Step I: Use Vk as the initial condition to integrate equation (10) to
obtain V∗

• Step II: Use the result obtained in Step I to solve (12) for Vk+1

For different values of the parameter θ, different time integration schemes
are obtained for integrating the discretisdiscretiseed homogeneous parabolic
equation system (11):

θ = 0 Forward Euler (conditionally stable).
θ = 0.5 Crank-Nicolson scheme (unconditionally stable).

θ =
2

3
Galerkin Scheme (unconditionally stable).

θ = 1 Backward Euler (unconditionally stable).

Crank-Nicolson scheme is second order accurate in time, whereas the other
are first order accurate in time. However, for θ > 0.5 integration schemes are
unconditionally stable.
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As mentioned before, Step I can be performed using a backward differ-
ence approximation in time (implicit integration), or a forward difference
approximation in time (explicit integration). Implicit integration requires
the solution of a nonlinear system of equations at each point of the mesh
making it computationally costly. However, it ensures the stability of the
numerical solution. On the contrary, explicit integration is computationally
cheaper but imposes more stringent conditions on the size of the time step
in order to avoid numerical instabilities.

2.3. Integration of the mass matrix

For the standard finite element formulation, the elemental mass matrix,
Me for equation (11), is given by [29]

Me
ij =

∫

Ωe

NiNjdx,

where Nj is the shape function of node j of the element e, and Cm = 1 has
been assumed, without loss of generality,

When the shape functions N used to compute Me are the same used to
approximate the potential V , the resulting non-diagonal matrix is known as
the consistent mass matrix. Using a consistent mass matrix implies that a
linear system of equations has to be solved for V k+1 when an explicit scheme
is used in (11). In order to improve numerical efficiency, the proposed algo-
rithm evaluates Me using a mass preserving nodal quadrature [30]. Nodal
quadrature is based on the use of different base functions to those used to
approximate the transmembrane potential, V . This approximation with dif-
ferent shape functions is admissible since it satisfies the finite element criteria
of integrability and completeness [30]. In the implementation, we have con-
sidered a nodal quadrature to evaluate Me with Ni = JiI, being Ji the
element Jacobian evaluated at node i.

3. Parallel implementation in GPU

The CUDA implementation consists of two subprograms: i) a CPU part
or host subprogram, and ii) a GPU part or device subprogram as shown in
Fig. 1. The host subprogram prepares all structures require for the GPU exe-
cution, and then moving data from CPU main memory to the GPU memory.
In addition, the host subprogram controls the execution and launches the de-
vice subprogram. The device subprogram is organised in kernels, with each
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kernel executed in parallel by each GPU thread. In the discretised scheme,
there are two main contributors to the computational cost: solving the sys-
tem of ODEs (reaction term) at each mesh point (Step I), and solving the
linear system of equations associated with the parabolic PDE (Step II). In
order to maximise performance, all vectors and matrices associated with the
system of equations and the ionic model reside in GPU memory. Only the
transmembrane voltage vector, V, is transferred back to the CPU memory
when the data has to be saved on disk in order to minimise the commu-
nication time. In addition, in order to minimise memory storage, all data
is stored using sparse matrix structures. The entire implementation of the
solver i.e., ODE and PDE solvers, is performed in double precision, since pre-
vious studies indicate an important loss of accuracy [22] when using single
precision to integrate the ionic model in Step I.

INPUT

DATA

SOLVER 1D, 2D, 3D

SPARSE STRUCTURES:

Matrices M, K

Indexation ARRAYS

IONIC MODELS

ARRAY STRUCTURES:

STATES, ModelConst, 

Stimulation, Masks

1

1

1

1

Model n...

KERNEL 

SOLVER

KERNEL 

IONIC MODEL

1

1

CPU GPU

MAPPED

SPARSE STRUCTURES: 

K, M, Indexation ARRAYS

CUSP LIBRARIES

MAPPED

ARRAY STRUCTURES: 

STATES, ModelConst,

Stimulation, Masks

Model 1 Model 2

Figure 1: CUDA program model.

3.1. ODE solver.

The C/C++ code describing the ionic model for GPU implements the
Rush-Larsen integration scheme for the gating variables [11] in order to im-
prove accuracy. The exact same code was executed in CPU and GPU in
order to validate the implementation.
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Figure 2: Structure of the vector of state variables for the ionic model, u, and the trans-
membrane potential, V .

When executed in GPU, the transmembrane potential and the state vari-
ables (SV) for all nodes in the model are stored in a unique vector in the
global GPU memory. Fig. 2 shows an example for the case of a discretised
model with nn nodes and an ionic model with nst state variables. This data
structure allows all GPU threads within a thread block to have access to
continuous memory blocks during execution, guaranteeing data coalescence
in memory and maximizing performance [17]. On the contrary, constants
associated to the ionic model required to evaluate (4) are kept in the shared
GPU memory.

In more complex cardiac models having a large number of SV, use of a
single kernel to integrate the ionic model may not be possible because the
number of registers available per thread is insufficient (this is the case in small
cards as the Nvidia GTX295). In this case, the solution of the ionic model will
require a sequence of multiple kernel invocations, with each kernel devoted
to the solution of a group of SV. Because a kernel invocation may modify the
input of the following kernel, it is necessary to resolve these dependencies by
duplicating the variables that are common input among the kernels. Since
every kernel invocation introduces an overhead in computing time, but also
in memory requirements, an optimise implementation is required to find the
best trade-off between kernel splitting, memory use, and kernel invocation
overhead.

The influence of thread divergence was also considered in our implemen-
tation. On the GPU threads within a block run concurrently only if they
execute the same instruction. In this regard, synchronisation between threads
may be reduced in a conditional statement since the threads may follow dif-
ferent branches causing a reduction in parallelism. In the implemented mod-
els, conditional statements were substituted by Heaviside functions allowing
mimicking the conditional as a product between a literal and the condition
of the Heaviside function (implemented as a multiplication with a predicate).
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3.2. Parabolic solver

The linear system given in (12) was solved on GPUs using the CUSP
and Thrust libraries developed by Nvidia [31]. CUSP is implemented for a
single GPU and natively supports a number of sparse matrix formats provid-
ing specific subroutines for an easy passage between different sparse matrix
formats. The library includes highly optimised matrix-vector multiplication
algorithms and iterative solvers. In addition, a variety of preconditioners
based on algebraic multigrid (AMG) and approximate inverse operators are
ready available in the library. In our implementation, mass and stiffness ma-
trices, M andK respectively, are assembled in parallel in the GPU and stored
in compressed sparse row (CSR) format at host memory. These matrices are
then transformed to an efficient sparse matrix format when transferred in
the GPU memory for computations.

The performance of the linear solver in CUDA is highly conditioned by
the efficiency of the sparse matrix-vector multiplication, which depends on
the sparse matrix format used to store the matrix during computations in
the GPU memory. The CUSP library offers five different sparse matrix for-
mats that cane used when solving a liner system of equations. Namely: i)
Coordinate format (COO), a simple storage scheme for which the required
storage is proportional to the number of non zeros in the matrix; ii) CSR
format, a natural extension of the COO format with a simple compression
scheme applied to the repeated row indices found in the COO format; iii)
Diagonal format (DIA), is a not general purpose format, but represents an
efficient storage scheme for matrices arising from structured meshes; iv) ELL
format represents a storage scheme well suited for vector architectures. More
general than DIA, ELL efficiently encodes semi-structured and unstructured
meshes when the maximum number of nonzeros per row does not greatly
differ from the average; v) Hybrid (HYB) format, is a hybrid ELL/COO for-
mat which stores the majority of matrix entries in ELL and the remaining
entries in COO. This allow to explore the well-suited structure of ELL for
vector architecture with the storage efficiency of COO. Our implementation
has consider different sparse matrix format at GPU level in order to evaluate
their performance on structured and non-structured meshes.

4. Benchmarking

Separate benchmarking tests were performed to evaluate the ODE solver
and the parabolic solver. The speed-up and accuracy of the ODE solver was
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evaluated on three models of action potential: i) A 4 SV model proposed by
Bueno-Orovio et al. [32] (BCF); ii) the model for ventricular cardiomyocytes
proposed by ten Tusscher and Panfilov (TP06) [8] comprising 19 SV; and iii)
the model for atrial cardiomyocytes proposed by Maleckar et al. [33] (MLK)
with 29 SV. The accuracy of the ODE solver was addressed by comparing
the solution obtained using the GPU with the solution obtained with a single
CPU. In this regard, the ionic model was stimulated every second for 2 ms
during 100 s with as stimulation current, Jstm, of 24 µA/µF, recording the
solution for the last second of simulation with a resolution of 0.2 ms. The
parallel performance was evaluated as the speedup, S, i.e., the execution
time of the GPU implementation with respect to a single CPU core as the
number of nodes, or degrees of freedom, increases (see Fig. 3a).

Figure 3: Model problems used to test the performance of the GPU algorithm. a) ODE
solver, b) Parabolic solver.

The performance of the parabolic solver was tested on 1-, 2- and 3-
dimensional problems. The model geometry was defined as a cable of length
L, a rectangle with dimensions L×20 mm2, and a cuboid with dimensions of
L×20×7 mm3 as shown in Figure 3b. The dimension L was varied in order
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to increase the number of nodes in the problem. The different geometries
where meshed with structured (quadrilateral and hexahedral elements) and
non-structured (triangular and tetrahedral elements) meshes with a charac-
teristic element size of 0.1 mm. In addition, since ventricular cardiac muscle
is anisotropic, the tissue was modelled as transversally isotropic with the
fibre direction oriented along the x-axis. A propagating wave front was ini-
tiated at one of the corners of the model using a stimulation current pulse
of 50 µA/(µFcm2) strength and 2 ms duration. The electrical activity was
simulated over 1000 ms, with a fixed time-step of 20 µs. The parallel perfor-
mance was evaluated calculating the speedup, S.

The efficiency of the GPU is further demonstrated on the simulation
of a heart beat in realistic models of a biventricular human heart and a
human atria. The biventricular human heart was discretised with 1289000
hexahedral elements and 1434129 nodes (grid points). The TP06 model has
been used to simulated the action potential model of the ventricular tissue.
The human atria was used to demonstrate the efficiency of the code with non-
structured meshes. The human atria was discretised with 1378054 elements
and 266450 nodes. The MLK model of atrial action potential was used for
simulating the electric activity. In both models, cardiac muscle anisotropy
has been accounted for.

The speed-up of the GPU implementation is compared against a fortran
implementation of the algorithm described in Section 2 using the Message
Passing Interface (MPI) for parallel computations [34, 35]. Domain decompo-
sition for the parallel solution has been carried out using the METIS library
[36], where as the linear system of equations (12) has been solved using the
Conjugate Gradient (CG) method with an ILU preconditioner from the PS-
BLAS library [37].

GPU simulations were run on a computer node with two Intel-Xeon Quad-
Core CPUs E5620 clocked at 2.4GHz and 48GB DDR3 RAM. The node is
equipped with four Nvidia Tesla E2090 GPUs, each with 6GB DDR5 RAM
for a total of 24GB DDR5 RAM. All simulations were run in a single GPU.
The CPU benchmark was run on a cluster with 8 nodes with two Intel-Xeon
Quad-Core E5520 clocked at 2.26GHz and 24GB DDR3 RAM connected by
a high speed infiniband network.

5. Results
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The coefficient of determination, R2 between the solution obtained with
the GPU and CPU was calculated for each of the state variables of all three
ionic models considered. The results show a R2 > 0.9 for all state variables,
indicating an excellent agreement between both implementations, in addition
to demonstrating the capabilities of double precision arithmetic of the E2090
GPU. Table 1 shows the results for the TP06 model. Similar results were
found for the BCF and MLK models.

State Variable R2 State Variable R2 State Variable R2

V 0.9974 [Ca2+]i 0.9993 [Ca2+]SR 0.9982
[Ca2+]SS 0.9388 [Na+]i 0.9691 [K+]i 0.9899

m 0.9981 h 0.9967 j 0.9961
xs 1.0000 r 0.9971 s 0.9997
d 0.9976 f 1.0000 f2 0.9998

fcass 0.9973 R 0.9993 xr1 0.9997
xr2 0.9995

Table 1: Coefficient of determination between the state variables corresponding to the
CUDA implementation and the C++ implementation. The coefficient of determination
has been calculated with the entire time course of each state variable during the last beat
of the stimulation protocol.
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Figure 4: Performance of the ODE solver: a) Relative computing time for the GPU-ODE
solver as the number of nodes increases for models with different number of state variables
(times have been normalised with respect to the 4 SV model; b) Speed-up against a single
CPU core for ionic models with different number of state variables.
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The performance of the ODE solver for the three ionic models is shown
in Fig. 4. The enormous parallel capabilities of the GPU is demonstrated in
Fig. 4a where the relative computing time required by the GPU as the num-
ber of nodes in the model increases is depicted. The figure shows that the
computing overhead increases with the number of SV in the model. Further-
more, the figure shows that the overhead increases monotonically with the
number of nodes in the model until reaching a steady state value depending
on the complexity of the ionic model. This figure also indicates the existing
a threshold (depending on the number of SV) for which the GPU is able to
integrate the ionic model simultaneously without experiencing a significant
degradation in computing time. After this threshold is surpassed, the com-
puting time increases almost linearly as the number of nodes in the problem
increases. Figure 4b shows the speed-up, S, obtained with the GPU as the
number of nodes in the problem increases. The figure shows that a single
CPU is faster than a single GPU thread. However, the enormous computa-
tional horsepower of the GPU leads the GPU to overtake a single CPU as
the number of nodes increases until attaining an asymptotic speedup, which
may be up to 200× for the MLK model on problems with more than a one
million nodes. Note, that the maximum speedup reduces as the number of
SV in the ionic model decreases.

Another important aspect to account for in the implementation of the
ODE solver is the effect of splitting the kernel in multiple kernel invocations
do to the limitation in the number of registers per thread. Even though, the
Tesla M2090 allows the implementation of all three studied models on a single
thread, a multiple kernel implementation of the TP06 model was performed
in order to allow execution (in double precision) on a Nvidia GTX295 with
895Mb of memory per device. A careful optimisation of the code using the
CUDA SDK profiler yield an splitting of the ionic model into 22 kernels
and duplicating 15 SV. Table 2 shows the computation overhead introduced
by the multi kernel implementation as the number of nodes in the problem
increases. The computational overhead on a single CPU is also depicted for
completeness. As expected, the computing overhead remains constant for
the CPU implementation. However, for the GPU, the computation overhead
reduces asymptotically to cero as the number of nodes in the model increases.

Figure 5 shows the performance of the parabolic solver for a fully-explicit
algorithm (Fig. 5a) and a semi-implicit algorithm (Fig. 5b) with structured
meshes with the TP06 model. A CG iterative algorithm with ILU precondi-
tioning and a hybrid sparse matrix format have been used for the computa-
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N Computation overhead (%)
GPU CPU

100 464 38
103 410 30
104 249 30
105 57 30
106 5 33

2× 106 2 30

Table 2: Computation overhead of the single kernel versus the multiple kernel implemen-
tation for the TP06 ionic model.

tions. No significant differences were observed on the benchmarks conducted
with non-structured meshes (results not shown).
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Figure 5: Performance of the parabolic solver: a) Explicit algorithm (θ = 0); b) Semi-
implicit algorithm (θ = 1).

The speed-up obtained with the explicit scheme (see Figure 5a) follows
the same trend obtained for the ODE solver shown in Fig. 4a. In fact, the
results indicate that integrating the ionic model occupies more than 90% of
the computing time. As observed with the ODE solver, for small problems
the GPU underperforms the single CPU execution due to the lower clock-
speed of the single GPU with respect to the single CPU, and the faster
double precision arithmetic of the CPU. However, as the number of degrees
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of freedom increases the GPU outperforms the CPU (a threshold was found in
800 nodes for the benchmark problems with the TP06 model) until reaching
an asymptotic behaviour with a speedup of: ∼ 100× for 1D-problems, ∼
90× for the 2D-problems, and ∼ 70× for the 3D-problems. The reduction
in acceleration is mainly due to the additional cost involved in the matrix
multiplication that takes place during Step II. The cost of solving the linear
system is more evident with the semi-implicit scheme (Fig. 5b). In this
case, the speed-up curve does not reaches an asymptotic value as for the
explicit algorithm, and the minimum problem size required for the GPU to
outperform the CPU was found in 8000 nodes. The maximum speed-up for
the semi-implicit scheme was found to be ∼ 65× for 1D-problems, ∼ 60×
for 2D-problems, and ∼ 50× for 3D-problems. It is important to point out
that, the acceleration observed in Fig. 5 depends on the size and complexity
of the ionic model used.
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(b) Unstructure meshes

Figure 6: Average relative computing time of the implicit parabolic solver for different
sparse matrix formats on structured meshes (a), and unstructured meshes (b). Note that
the DIA sparse format is not suitable for unstructured meshes.

As mentioned in Section 3, the performance of the linear solver in CUDA
is highly conditioned by the efficiency of the sparse matrix-vector multiplica-
tion, which depends on the sparse matrix format used to store the matrix K̂

in (12). Figure 6 shows the relative computing time with respect to the HYB
format for the 3D benchmark problem for both structured and unstructured
meshes. For the structured meshes DIA format gave the best performance
with a reduction of a 10% in computing time with respect to the HYB and
ELL formats. On the contrary, COO format gave the worst performance.
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For unstructured meshes HYB gives the best performance although no sig-
nificant differences were found for the CSR and ELL formats, whereas the
DIA format is not suitable for this type of dicretisation. These results are in
agreement with the benchmark results reported by Bell and Garland [31] for
the sparse matrix-vector multiplication.

As part of the benchmark, the performance of the implicit-parabolic solver
with different iterative schemes for solving Step II has also been evaluated.
Namely: i) Conjugate Gradient (CG), Bi-Conjugate Gradient (BCG), Sta-
bilised Bi-Conjugate Gradient (BCGSTAB), and iv) Generalised Minimum
Residual (GEMRES). Figure 7 shows the relative computing time with re-
spect the CG scheme for the 3D benchmark problems with structured meshes.
The HYB sparse matrix and ILU preconditioning has been used for the com-
putations.
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Figure 7: Average relative computing time of the implicit parabolic solver for different
iterative schemes. HYB sparse solver and ILU preconditioning have been used for the
computations.

Figure 7 shows that CG gives the best performance for the problem un-
der consideration, whereas the BCG scheme is the most expensive in terms
of computing time. The same trend was observed when using different pre-
conditioning offered by the CUSP library, and for different sparse matrix
formats. In general it was observed that CG required more iterations to
converge to the same tolerance per time increment than the other schemes.
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However, the lower cost per iteration in terms of matrix-vector multiplica-
tions involved in the CG scheme lead to a lower computation time. These
findings are in agreement with results reported in [38, 39] for the solution of
the electrophysiolgy problem using the mono domain model.

(a)
(b)

Figure 8: Depolarization front after 20ms of activation. a) Human bi-ventricular model
discretised with hexahedral elements; b) Human atria discretised with tetrahedral ele-
ments.

Figure 8 shows the depolarisation front in the voxelised human bi-ventricular
model (Fig. 8a), and a human atria discretised with tetrahedral elements
(Fig. 8b) . The speed-up, S, obtained on this realistic models with the semi-
implicit scheme was 50× for the human bi-ventricular heart and 40× for the
human atria with respect to a single CPU core, where as for the explicit
scheme, the speed-up, S was ∼ 50× for both problems. These results were
in excellent agreement with those obtained in the benchmark (see Fig. 5) for
both integration schemes. An additional test was conducted by running the
human bi-ventricular heart on 42 cores in our computer cluster. In this case,
the GPU still performed better by a factor of 1.8×, which implies a slightly
better performance as compared to a single processor (∼ 76×), due to the ex-
tra cost added by the communication between the different processes during
the parallel execution.

In order to gain a better insight of the performance of the GPU solver
with non-diagonally block matrices (matrices with large bandwidth), we have
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Figure 9: A coupled problem with large bandwidth. a) Detailed of the one-dimensional
network representing the fast conduction system of the heart (left panel) coupled to the
human bi-ventricular model (right panel). Coupling between the two meshes takes place at
discrete points only (black markers in the right panel); b) Sparsity pattern of the resulting
linear system.

solved a voxelised human bi-ventricular heart coupled with a network of
one-dimensional linear elements representing the fast conduction system in
the heart (see Fig. 9a). The resulting model involves 1.5 million degrees
of freedom, and since the coupling between both meshes occurs only at a
discrete number of points, the innervation points (see Fig. 9a, right panel),
the resulting K̂ matrix in (12) has an sparsity pattern as shown in Fig. 9b
with a bandwidth of 1418491 and a maximum number of zeros per row of 35.
Solving 1600 ms of electric activity with a fixed time step of 0.02 ms took
the GPU-solver 9000 s using the semi-implicit scheme and the HYB sparse
format for K̂, implying an acceleration of 50× with respect a single CPU-
core. This result is in agreement with the benchmark results demonstrating
the efficiency of the GPU solver to handle ill sparsity patterns as those shown
in Fig. 9b. In fact, when the sparsity pattern was optimised using a CutHill-
MacKee algorithm which reduced the bandwidth of the matrix K̂ 80 fold, the
performance was not affected in neither the GPU-solver nor the CPU-solver.

6. Discussion and conclusions

The potential of GPU implementation for solving reaction-diffusion sys-
tems describing cardiac electrophysiology has been investigated. Scalability
tests were performed for fully explicit and semi-implicit numeric schemes in
1D-, 2D-, and 3D-model problems with structured and unstructured meshes
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using novel software entirely developed in C++/CUDA. The performance of
the method was ulteriorly demonstrated on realistic models of a biventricular
human heart and human atria.

Previous studies [20] have reported speedups of 32× for the monodomain
model using an explicit finite difference scheme along with the phase I Luo-
Rudy ionic model (LR1) [40], a much less complex model (8 SV) than the
ionic models used in this study (19 SV of the TP06 or 28 SV of the MLK
action potential model of atria). In their study Sato et al [20] have established
the solution of the PDE equation as the bottle neck of the computation with
GPU, in part because they were forced to used single precision for their
computations requiring a more stringent step size when solving the Step II
than the required for integrating the action potential model in Step I. In
addition, Sato et al. were using an adaptive time stepping when integrating
the system of ODEs, which introduces latencies in the computations. In our
implementation, we integrate with a constant time step size that guarantees
both, the stability of the ionic model (most restrictive step size) and the
stability of the PDE, similarly as has been proposed in order studies [26].
With this strategy, along with an efficient data structure for the ionic model
and a sparse format for the matrices, we have been able to make full use
of the GPU parallel potential by reducing latency during GPU execution
leading to acceleration of up to 90× on 2D-problems of similar size as those
considered in [20] with an explicit scheme. We must also stress that, Sato et
al. used older NVidia GT 8800 and GT 9800 GX2 cards that are faster for
single precision floating point operations than the Tesla GPUs used in our
study, but do not support double precision calculations.

For the ODE solver, Lionetti et al. [24] performed 20 ms of a heart beat
simulation on a domain that consisted of 42,240 grid points with no spatial
integration (all the cells were decoupled) since their main interest was to op-
timise the ODE solver. They also used different optimization techniques for
the different cell models considered. For the 18 SV Puglisi-Bers model [25],
comparable to the TP06 model, they report a total simulation time of 5.98 s
using a time step of 0.0008 ms and single precision on a NVIDIA GTX295.
Our simulations with the TP06 model took 15 s on a the C2090 using dou-
ble precision arithmetic. Taking into account the overhead due to double
precision arithmetic, the performance is comparable. In a more recent work
Neic et al. [26] report an execution time of 360 s to simulate 250 ms with
the 27 SV proposed by Mahajan et al. [41] using a time step of 0.025 ms on
a domain with approximately 800000 grid points. The same simulation with
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the MLK model took in our case 178 s representing an effective speedup of 2.
However, differences in the mathematical complexity of the two models could
account for the difference in spite of having the same number of state vari-
ables. Vigueras et al. [27] has reported similar speedup values for the ODE
solver with the TP06 model, whereas they report slight lower speedups for
the three dimensional problem benchmark with 1.2 million grid points (30×
against a 70×). The reason for this reduction in performance with respect
to our implementation may be related to the implementation of the PDE
solver. While we perform the solution of the linear system entirely in the
GPU memory with the CUSP libraries, they perform make use of a hybrid
scheme in which at each simulation step, the system of PDEs is solved by
copying the required data from CPU memory to GPU memory, and then the
result copied back to CPU memory. This operation introduces a considerable
overhead that may reduce the overall performance of the solver.

In other recent work Neic et al.[26] have used multiple-GPU enhanced
simulation code to accelerate cardiac bidomain simulations with the Maha-
jan 28 SV rabbit model. In their study Neic et. al. have reported an overall
speed-up of 16× for the bi-domain problem, but only moderate speed-up
between 8.1×-9.5× for the parabolic PDE equivalent to the monodomain
solver. Even though our simulations with the Maleckar model (28 SV) on
a 3D problem with 1.5 million grid points showed gave a speedup of the
order of 50, a direct comparison is difficult, not only for the different prob-
lem size, but also because their implementation considers a computationally
more expensive bidomain approximation. In addition, their multi-GPU im-
plementation, communications between GPUs were performed through the
host memory and not using a peer-to-peer communication between the GPU
cards, which substantially increases communication time, and therefore a pe-
nalising overhead. Rocha et al. [23] report a simulation time of 1804 s with
the TP06 model for 500 ms on a 2D grid size of 641×641 using single pre-
cision arithmetics and an implicit scheme for the PDE. Our implementation
takes 867s in double precision, representing an speedup of 2. However, our
computations were carried on an Tesla C2090 which is considerably faster
than the GTX280 used in their study. The same problem was also solved
by Bartocci et al. [22] but using an explicit algorithm and finite differences
for the spatial discretisation. Bartocci et al. report a total computation
time of 105.4 s on a Tesla C2070 using single precision arithmetic, while our
explicit implementation takes 220 s on the same graphic card with double
precision arithmetic. Considering that they report an overhead of 1.8 when
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using double precision arithmetic with respect to their single precision results
for the TP06 model, their computation time for this problem would be 198 s
which is comparable to our results. It should also be accounted the fact that
Bartocci et al., use a finite difference discretisation for the Laplacian term
which implies a K̂ matrix with lower bandwidth than the one obtained with
the finite element discretisation (bandwidth of 5 for finite differences against
a bandwidth of 9 for finite elements), which implicates a reduction in the
computing cost.

Results from Fig. 4 and Fig. 5 indicate that a minimum problem size is
required in order to optimise GPU performance. This is due to the slower
clock speed and limited double precision floating point arithmetic of the GPU
cores as compare to CPU cores. This lower core performance is, however,
compensated by the capability of the GPU to schedule a vast numbers of
threads and efficiently reducing latency in this many core architecture. In
this regard, for the E2090 our results indicate that for the ODE solver, the
GPU is able to accommodate up to 8000 nodes without degradation of com-
puter performance when working with a complex model like TP06. For the
monodomain solver, working with the TP06 ionic model, this threshold was
found to be at 800 nodes for the fully explicit scheme and at 8000 nodes for
the semi-implicit scheme, independently of problem dimensionality and mesh
structure (structured or unstructured mesh). In this regard, we must add
that we have used highly optimised unstructured meshes which maximise the
bandwidth of the resulting algebraic system of equations. After this thresh-
old is surpassed the scalability of the GPU with the number of degrees of
freedom approaches to linearity. Even though these results are dependent
on the GPU card used, this threshold appeared to be independent of the
problem dimensionality for the cases considered. We must remark that the
bandwidth of the linear system did not change much between the structured
and unstructured meshes. This explains the similarity between the results
obtained for both benchmarks, as well as the speedup found for the ventricle
and atria simulations. However, ulterior tests performed on non-diagonally
dominant matrices show no-degradation on the computing time with respect
to the benchmark problems.

Our study also shows the importance of an efficient sparse matrix format
and adequate iterative solver for the computations. We found that using a
DIA sparse format is optimal when working with purely structured meshes.
However, this format is not suitable for unstructured or semi-structured
meshes for which the ELL and HYB formats were found to be the best
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in agreement with the study conducted by NVIDIA [31]. In this regard, our
study points the HYB sparse matrix format as the best alternative in terms
of storage flexibility and numerical performance. It is important to point out
that complex models of cardiac electrophysiology include the presence of the
specialised conduction system, i.e., Purkinje system, (see Fig. 9a) leading to
models with mixed element meshes i.e., 3D elements connected to 1D ele-
ments, which result in an ill sparsity pattern as shown in Fig. 9b. Regarding
the iterative solvers for solving the parabolic system, our benchmark con-
firms (see Fig. 7) the results from Potse et al. [39] which found that for the
monodomain model, an ILU preconditioned in conjunction with a Conjugate
Gradient iterative solver were optimum in terms of computing time.

This work confirms other studies that, a significant reduction on com-
puting time can be achieved for solving the cardiac monodomain equations
using GPUs. Despite the significant lower performance observed on a sin-
gle GPU core with respect to a single CPU core, a single GPU card offered
excellent performance with speedups of 70× for three-dimensional problems
solved explicitly and near 50× for three-dimensional problems solved with a
semi-implicit scheme when compared with a single CPU. However, we must
mention that when an adaptive time step is used in the single CPU core (an
alternative that is not valid for GPU due to the introduced latencies and dy-
namic load loss), the overall acceleration of the GPU over the CPU reduces
to 42× for 1D problems, and 32× for 2D and 3D problems, implying a reduc-
tion of about a 40% with respect the case of constant time step. However,
despite this reduction, the performance of the GPU is still outstanding with
respect to the CPU. As a final remark, we have seen that a personal worksta-
tion is able to perform a simulation of the electric activity of a whole heart in
reasonable times and at a reasonable cost due to the significant lower prize
of a GPU card as compared to a computer cluster and its outstanding per-
formance. This aspect, enables researchers to interact more easily with their
simulations helping them to improve their understanding of the physiology
and the synergy between the different scales involved in electrocardiographic
simulations. However, working with GPUs poses additional programming
challenges over traditional parallel CPU implementations, in particular in
aspects related to efficient management of threads and memory, as well as
data structure in order to obtains the maximum performance of the GPU.
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