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Abstract—The capacity of a Multiple-Input Multiple-Output
(MIMO) channel in which the antenna outputs are processed
by an analog linear combining network and quantized by a
set of threshold quantizers is studied. The linear combining
weights and quantization thresholds are selected from a set of
possible configurations as a function of the channel matrix. The
possible configurations of the combining network model specific
analog receiver architectures, such as single antenna selection,
sign quantization of the antenna outputs or linear processing of
the outputs. An interesting connection between the capacity of
this channel and a constrained sphere packing problem in which
unit spheres are packed in a hyperplane arrangement is shown.
From a high-level perspective, this follows from the fact that each
threshold quantizer can be viewed as a hyperplane partitioning
the transmitter signal space. Accordingly, the output of the set
of quantizers corresponds to the possible regions induced by the
hyperplane arrangement corresponding to the channel realization
and receiver configuration. This connection provides a number of
important insights into the design of quantization architectures
for MIMO receivers; for instance, it shows that for a given
number of quantizers, choosing configurations which induce a
larger number of partitions can lead to higher rates.1

Index Terms—MIMO, capacity, one-bit quantization, sphere
packing, hybrid analog-digital receiver.

I. INTRODUCTION

As the coupling of multiple antennas and low-resolution
quantization hold the promise of enabling millimeter-wave
communication, the effect of finite-precision output quantiza-
tion on the performance of MIMO systems has been widely
investigated in recent literature. In [1], the authors propose a
general framework to study the capacity of MIMO channels
with various output quantization constraints and derive some
initial results on the scaling of capacity in the number of
available quantization levels. In this paper, we further our
understanding of output quantization constraints in MIMO
channels by drawing a connection between a constrained
sphere packing problem and formulation in [1]. This con-
nection suggest a rather insightful geometric-combinatorial
approach to the design of receiver quantization strategies for
MIMO channel with output quantization.

Literature Review: In [2], low resolution output quantiza-
tion for MIMO channels is investigated through numerical
evaluations. The authors are perhaps the first to note that the
loss due to quantization can be relatively small. Quantization

1This work has been supported in part by NSF Grant #1527750.

for the SISO channel is studied in detail where it is shown
that, if the output is quantized using M bits, then the optimal
input distribution need not have more than M + 1 points in
its support. A cutting-plane algorithm is employed to compute
this capacity and to generate optimum input support. In [3],
the authors study the capacity of MIMO channels with sign
quantization of the outputs and reveal a connection between
a geometric-combinatorial problem and the capacity of this
model at high SNR.

Contributions: In the model of [1], the output of a MIMO
channel is processed by an analog combining network before
being fed to Ntq threshold quantizers. The combining network
is chosen among a set of possible configurations as a function
of the channel matrix: these configurations represent analog
operations that can be performed by the receiver analog front-
end. Through the problem formulation in [1], it is possible to
study the performance of different receiver architectures as a
function of the available quantization bits Ntq and transmit
power.

In this paper, we show that the capacity of the model in
[1] can be approximately characterized using the solution of a
geometric-combinatorial problem. Each threshold quantizer in
effect obtains a linear combination of the noisy channel inputs
and can thus be viewed as partitioning the transmit signal
space with a hyperplane. The output of the set of quantizers
identifies a region among those induced by the hyperplane
arrangement corresponding to the channel matrix and receiver
configuration. Transmitted points can be reliably distinguished
at the receiver when they are separated by a hyperplane in
the transmit space. Our result generalizes those of [1], [3]
and provides an intuitive approach to design effective, and
sometimes surprising, quantization strategies. For example,
one would expect that, for a receiver able to perform linear
combination before quantization, the optimal transmission
strategy is to perform Singular Value Decomposition (SVD)
followed by multilevel quantization of each sub-channel. We
show that this scheme is actually sub-optimal at high SNR
as receiver configurations which induce a larger number of
partitions may lead to higher transmission rates.

Organization: The channel model is introduced in Sec. II.
Combinatorial notions are presented in Sec. III. Prior results
and a motivating example given in Sec. IV. The main result
is presented in Sec. V. Sec. VI concludes the paper.
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Fig. 1: System model for Nt = 2, Nr = 3, and Ntq = 4.

Notation: All logarithms are taken in base two. The vector
diag{M} is the diagonal of the matrix M while λ(M) is the
vector of eigenvalues of M. The identity matrix of size n is
In, the all–zero/all–one matrix of size n×m is 0n×m/1n×m,
respectively. Dimensions for these matrices are omitted when

implied by the context. We adopt the conve1ntion that
(
n
i

)
=

0 for i > n.

II. CHANNEL MODEL

Consider the discrete-time MIMO channel with Nt/Nr

transmit/receive antennas in which an input vector Xn =
[X1,n . . . XNt,n]

T results in the output vector Wn =
[W1,n . . .WNr,n]

T according to the relationship

Wn = HXn + Zn, 1 ≤ n ≤ N, (1)

where Zn is an i.i.d. Gaussian vector of size Nr with zero
mean and unit variance and H is a full rank matrix of
size Nr × Nt (i.e. rank(H) = min(Nt, Nr)), fixed through
the transmission block-length and known at the receiver and
transmitter.2 The input is subject to the power constraint∑N

n=1 E[|Xn|22] ≤ NP where |Xn|2 is the 2-norm. We study
a variation of the model in (1) shown in Fig.1 in which the
output vector Wn is processed by a receiver analog front-end
and fed to Ntq threshold one-bit quantizers. This results in the
vector Yn = [Y1,n . . . YNtq,n]

T ∈ {−1,+1}Ntq given by

Yn = sign(VWn + t), 1 ≤ n ≤ N, (2)

where V is the analog combining matrix of size Ntq×Nr, t is
a threshold vector of length Ntq and sign(u) is the function
producing the sign of each component of the vector u as plus
or minus one. The matrix V and the vector t are selected
among a set of available configurations F [1]:

{V, t} ∈ F ⊆
{
RNtq×Nr ,RNtq

}
. (3)

For a fixed receiver configuration, {V, t}, the capacity of the
channel in (2) is obtained as

C(V, t) = max
PX(x), E[|X|22]≤P

I(X;Y). (4)

We are interested in determining the largest attainable perfor-
mance over all possible configurations, leading to

C(F) = max
{V,t}∈F

C(V, t). (5)

2The full rank assumption is justified for richly scattering environments.

In the following, we provide an approximate characteriza-
tion of the solution of the maximization in (5) under the as-
sumption that diag{HHT } = diag{VVT } = 11×Nr . Under
this assumption, the derivation of the results is particularly
succinct and thus fitting to the available space. The more
general case of any arbitrary channel matrix H and any
combining matrix V is presented in [4].

III. COMBINATORIAL INTERLUDE

This section briefly introduces a few combinatorial concepts
useful in the remainder of the paper.

A hyperplane arrangement A is a finite set of n affine
hyperplanes in Rm for some n,m ∈ N. A hyperplane
arrangement A = {x ∈ Rm, aTi x = bi}ni=1 can be expressed
as A = {x, Ax = b} where A is obtained by letting each
row i correspond to aTi and defining b = [b1 . . . bn]

T . A plane
arrangement is said to be in General Position (GP) if and only
if every n× n sub-matrix of A has non zero determinant [5].

Lemma III.1. A hyperplane arrangement of size n in Rm

divides Rm into at most r(m,n) =
∑m

i=0

(
n
i

)
≤ 2n regions.

Lemma III.2. A hyperplane arrangement of size n in Rm

where all the hyperplanes pass through the origin divides Rm

into at most r0(n,m) = 2
∑m

i=0

(
n−1
i

)
regions.

Lemma III.3. Let A be a hyperplane arrangement of size l in
Rm and consider a hyperplane arrangement B of size dl with
d ∈ N hyperplanes parallel to each of the hyperplanes in A.
Then B divides Rm into at most rp(m,n, d) =

∑m
i=0

(
l
i

)
di ≤

(1 + d)l regions.

A necessary condition to attain the qualities in Lem. III.1,
Lem. III.2 and Lem. III.3 is for the hyperplane arrangement
A to be in GP.

A unitary sphere packing in Rm is defined as

P =

N⋃
i=1

Sm(ci, 1), (6)

where Sm(c, r) is the m-dimensional hyper-sphere with center
c and radius r. A hyperplane separates two spheres if each
sphere belongs to one of the half-spaces induced by the
hyperplane. A sphere packing P is said to be separable by the
hyperplane arrangement A if any two spheres are separated
by at least one hyperplane in A. A sphere packing in a sphere
is a packing P for which P ⊆ S(c, r) for some c, r.

Our aim is to show a connection between the capacity in
(5) and the following sphere packing problem.
Definition III.4. Separable sphere packing in a sphere: Given
a hyperplane arrangement A and a constant r ∈ R+, define
rssps(A, r) as the largest number of unit spheres in a packing
P contained in the sphere S(0, r) and separable by A.

IV. PRIOR RESULTS AND A MOTIVATING EXAMPLE

The maximization in (5) yields the optimal performance
for any set of possible receiver configurations. One is often
interested in studying and comparing the performance for
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specific classes of receiver configurations: three such classes
are studied in detail in [1]: single antenna selection and
multilevel quantization, sign quantization of the outputs and
linear combining and multilevel quantization.

A. Prior Results
The simplest receiver architecture of interest is perhaps the

one in which a single antenna output is selected by the receiver
and quantized through a high-resolution quantizer. This is
obtained in the model of Sec. II by setting

F =
{
V =

[
0Ntq×i 1Ntq×1 0Ntq×Nr−i−1

]
, 0 ≤ i ≤ Nr − 1

t ∈ RNtq
}
, (7)

where the term 1Ntq×1 selects the antenna with the highest
channel gain.

Proposition 1. [1, Prop. 2]. The capacity of the MIMO chan-
nel with single antenna selection and multilevel quantization
is upper–bounded as

Cselect ≤
1

2
log
(
min

{
1 + |hT

max|22P, (Ntq + 1)2
})
, (8)

where hT
max is the row of H with the largest 2-norm. The upper

bound in (8) can be attained to within 2 bits-per-channel-use
(bpcu).

Our main result, discussed in detail in Sec.V, is inspired by
an intriguing connection between Lem. III.2 and the infinite
SNR capacity of the MIMO channel with sign quantization
of the outputs [3]. Note that the model in [3] is obtained by
setting Ntq = Nr and letting F be the set of all matrices
obtained by permuting the rows of [I,0].

Proposition 2. [3, Prop. 3]. The capacity of the MIMO
channel with sign quantization of the outputs in which H is
in GP at infinite SNR is bounded as

log(r0(Nr, Nt)) ≤ CSNR→∞
sign ≤ log(r0(Nr, Nt) + 1).

Recall that the most general architecture in Sec. II has

F =
{
V ∈ RNtq×Nr , t ∈ RNtq

}
, (9)

and corresponds to a receiver analog front-end which is able to
perform any linear combination of the antenna outputs before
quantization.

Proposition 3. [1, Prop. 6]. The capacity of a MIMO channel
with linear combining and multilevel quantization is upper–
bounded as

Clinear ≤ R?(λ(H), P,Ntq) +K. (10)

The capacity is to within a gap of 3K bpcu from the upper
bound in (10) for

R?(λ(H), P,Ntq) =

∑K
i=1

1
2
log(1 + λiPi)

if
∑K

i=1

(√
1 + λ2

iPi − 1
)
≤ Ntq

K log
(

Ntq

K
+ 1
)
otherwise,

(11)

with K = max{Nt, Nr}, Pi = (µ − λ−2i )+ and µ ∈ R+ is
the smallest value for which

∑
i Pi = P .

To establish the achievability of Prop. 3, the SVD can
be used to transform the channel into K = min{Nt, Nr}
parallel sub-channels with independent unit-variance additive
noise and gains λ(H). After SVD, the quantization strategy is
chosen depending on whether the performance is bounded by
the effect of the additive noise or by the quantization noise.

B. Motivating Example for the Combinatorial Approach

Let us consider the three architectures in Propositions 1-
3 for the case of Nt = 2, Nr = 3 and Ntq = 4, also
shown in Fig. 1, and provide some high-level intuition on the
relationship between capacity and the sphere packing problem
in Def. III.4.

Prop. 1: Since the threshold quantizers are used to sample
the same antenna output, the number of possible outputs is at
most Nr+1 so that the performance in Prop. 1 is bounded by
log(Ntq+1) = log 5 ≈ 2.32 bpcu at high SNR. This receiver
configuration can be interpreted as follow: an antenna output
represents a line in the two-dimensional transmit signal space;
each threshold quantizer corresponds to a translation of this
line and these Ntq parallel lines partition the signal space into
at most Ntq + 1 subregions.

Prop. 2: Sign quantization of the outputs corresponds to the
hyperplane arrangement in which all hyperplanes pass through
the origin: the number of regions induced by this arrangement
is obtained through Lem. III.2. There are r0 = 8 partitions, as
also shown in Fig. 2b, yielding a maximum rate of 3 bpcu,
attainable at high SNR.

Prop. 3: When the receiver can perform linear combining
before quantization, the SVD can be used to transform the
channel into two parallel sub-channels. This strategy corre-
sponds to the hyperplane arrangement in Lem. III.3 and the
number of partitions induced is 9, as also shown in Fig. 2c.

Lem. III.1: This lemma actually indicates that the largest
number of regions is 11 so that the rate log(11) = 3.46 bpcu
can be obtained through the receiver configuration in Fig. 2d
at high SNR.3

Given the above interpretation of the capacity at high SNR,
a feasible finite SNR strategy is the one in which, for a
given receiver configuration, the channel inputs are chosen
as the center of the spheres with sufficiently large radius
inside each partition subject to the power constraint. The
average achievable rate of the four strategies discussed above
is plotted in Fig. 3. Each line in Fig. 3 corresponds to one
of the sphere packing configurations in Fig. 2. For a given
channel realization, V and t are chosen to result in the
partitionings of the transmitter space corresponding to each of
the subfigures in Fig. 2, appropriately scaled by the available
transmit power. Note that the configurations are not optimized.
The channel inputs are then chosen as uniformly distributed
over the center of the spheres packed in the partitionings.

3Note that this does not contradict the result of Prop. 3 since the inner
bound is 2 bpcu from the outer bound.
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Fig. 2: Different receiver output quantization strategies.
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Fig. 3: Simulation results for Ntq = 4, Nr = 3, and Nt = 2
discussed in Sec. IV-B.

The average performance is calculated over real i.i.d. zero-
mean, unitary variance Gaussian channel gains, further scaled
to guarantee that each row has unitary 2-norm. The capacity
of the channel without quantization constraint is also provided
as a reference.

From Fig. 3 we see that, at high SNR, the best performance
is attained by the configuration corresponding to Lem. III.1,
since at high SNR the performance is determined by the
number of transmitted points. As the SNR decreases, config-
urations with less transmitted points perform better.

V. MAIN RESULT

Sec. IV-B provides a geometric-combinatorial interpretation
of the capacity of the model in (1)-(2) for the receiver
architectures considered in [1]. The main result of the paper is
to make such interpretation more rigorous and more general.

Theorem 1. The capacity expression in (5) when
diag{HHT } = diag{VVT } = 11×Nr

is upper bounded as

C(F) ≤ max
A

log rssps(A,
√
P ) +

3

2
K + 3, (12)

for

A ∈ {x, VHx = t, (V, t) ∈ F}, (13)

and K = max{Nt, Nr}. The capacity is within 2.5Nt bpcu
from the outer bound in (12).

Proof: Only the converse proof is presented here while the
achievability proof is provided in [4]. Let us choose the input

and output alphabets as X = Y = [0 : r(Nt, Ntq)] and let the
channel transition probability be determined by the channel
input support and the receiver analog configuration. Also, let
us define sign∗(x) as

sign∗(x) =

{
x |x| < 1

sign(x) |x| ≥ 1,

and the set Nm
as

Nm
= {nn, nn ∈ Sm(n, 1), ∀ n ∈ Nm} , (14)

that is Nm
is composed of a set of points selected from the unit

sphere around the integer points in Nm. Finally, let QNm(x)
be the mapping which assigns each point in Rm to the closest
point in Nm

and

W
N

= HQNN
t
(XN ), Y

N
= sign∗

(
VW

N
+ t
)
,

EN = WN −W
N
.

Using Fano’s inequality, we write

N(R− εN ) ≤ I(YN
,EN ;XN ) (15a)

≤ I(YN
;XN ) +H(EN )−H(ZN )

= I(Y
N
;XN ) +

NNr

2
log

3

2
, (15b)

where, in (15a), we have used the fact that we can reconstruct
YN from Y

N
and the value of EN . In (15b), we used the fact

that since diag{HHT } = 1, components of H(X−QNt
m(X))

have support at most [−1,+1]. The largest variance of a
random variable with finite support is for the case in which
the probability distribution is evenly distributed at the end
points, so that Var[Ei] ≤ 3/2. Using the “Gaussian maximizes
entropy” property, we obtain H(Ei) ≤ 1/2 log(πe3).

From a high-level perspective, (15) shows that the capacity
of the channel in (1)-(2) is close to the capacity of the channel
with no additive noise but in which the input is mapped
to Nm

. Next, we show that restricting the input to a peak
power constraint, instead of an average power constraint, has
a bounded effect on the capacity.

Let us represent Xi in hyper-geometric coordinates as Xi =
φi|Xi|2 for φi ∈ SNt(0, 1) and |φi|2 = 1 and define X̂N as

X̂i = φi

(
|Xi|2 mod d

√
P e
)
, 1 ≤ i ≤ N (16)
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where mod (x) indicates the modulus operation; in other
words, X̂i has the same direction as Xi but its modulus is
folded over d

√
P e. Accordingly, define

ŴN = HQNN
t
(X̂N ), ŶN = sign∗

(
VŴN + t

)
,

and use these definitions to further bound the term
I(Y

N
;XN ) in (15b) as

I(Y
N
;XN ) ≤ I(ŶN ,Y

N
; X̂N ,XN ) (17)

= I(ŶN ; X̂N ) + I(ŶN ;XN |X̂N ) (18)

+ I(Y
N
;XN , X̂N |ŶN ).

Note that I(ŶN ;XN |X̂N ) = 0 because of the Markov chain
ŶN−X̂N−XN . For the term I(Y

N
;XN , X̂N |ŶN ) we write

I(Y
N
;XN , X̂N |ŶN ) ≤ H(Y

N − ŶN ) (19a)

≤ H(H(X
N − X̂N )) (19b)

≤ H(X
N − X̂N ), (19c)

where (19a) follows from the fact that Y
N

is a discrete random
variable, (19b) from the fact that X and X̂ are also discrete
random variables, and (19c) from the fact that H is full rank
by assumption.

Next, to bound the term H(X
N − X̂N ), we can write

Xi − X̂i = φi

(
|Xi|2 / d

√
P e
)
, (20)

where / indicates the quotient of the modulus operation. The
entropy of this random variable can then be rewritten as

H(X
N − X̂N ) ≤ H(φN ) +H(|XN |2 / d

√
P e)

≤ N(Nr − 1) +N max
i
H(|Xi|2 / d

√
P e).

It can be shown that H(|Xi|2 / d
√
P e) ≤ 3 bpcu: the proof

follows from the fact that the power constraint can be violated
only a finite number of times, which leads to the fact that
|Xi|2 / d

√
P e is concentrated around small integer values.

By combining the bounds in (15) and (17) we obtain

N(R− εN ) ≤ I(ŶN ; X̂N ) +
3

2
NK + 3N

≤ N max
PX̂

I(Ŷ; X̂) +
3

2
NK + 3N. (21)

Let us now evaluate the mutual information term
I(ŶN ; X̂N ), ŶN is a deterministic function of X̂N and can
be interpreted as the membership function indicating to which
partition of the hyperplane arrangement the input belongs to.
For this reason, I(ŶN ; X̂N ) is maximized by choosing an
input support as the subset of Nm in which a single point is
contained in each partition induced by {VHx = t} and letting
the input distribution be uniformly distributed over this set. As
a final step of the proof, we note that the upper bound in (21)
can be minimized over the choice of the set Nm in (14). In
other words, by varying the choice of nn in (14), the points
in Nm are moved outside the corresponding partition, thus

tightening the bound in (21). Accordingly, unless a partition
contains a unit ball centered around a value n ∈ RNr , a value
nn can be chosen so that Nm

does not contain a value in such
partition. It then follows that I(ŶN ; X̂N ) ≤ log rssps(A,

√
P )

which is the desired result.
Remark V.1. Th. 1 extends the results in Sec. IV-A as it holds
for any set of possible receiver configurations F in (3). The
results in Sec. IV-A only hold when F has a specific form
as in (7) or (9). On the other hand, Th. 1 does not provide
a closed-form characterization of capacity as it involves the
solution of a packing problem. In particular, letting F in (13)
have the form of (7) or (9) does not immediately recover
the capacity characterization in Sec. IV-A as Th. 1 follows
a different approach than [1] to bound capacity.
Remark V.2. When considering the model with any H and V,
the result in Th. 1 generalizes as follows. The channel model
in (2) is reduced to model where V and H are such that
diag{HHT } = diag{VVT } = 11×Nr by letting the additive
noise Zn have a general covariance matrix. For a channel
model under this normalization, consider the additive noise
after combining, Z̃n = VZn: the variance of the ith entry of
Z̃n, Z̃i,n, determines the uncertainty in the output of the ith

quantizer, Yi,n. Accordingly, the capacity is approximatively
equal to the number of separable points which can be fitted
in the sphere of radius

√
P such that each point is at distance

at least (Var[Z̃i,n])
1/2 from the ith hyperplane. The complete

derivation can be found in [4].

VI. CONCLUSION

In this paper, the capacity of a MIMO channel with output
quantization constraints for receivers equipped with analog
combiners and one-bit threshold quantizers is investigated.
The connection between the capacity of the system and a
constrained sphere packing problem is showed by arguing
that the threshold quantizers can be interpreted as hyperplanes
partitioning the transmit signal space. This connection reveals,
for example, that the infinite SNR capacity of a channel with
linear combiner is attained by a receiver configuration which
partitions the transmit signal space in the largest number of
regions.
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