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ABSTRACT

The compressible flow equations for a moist, multicomponent fluid constitute the most comprehensive de-

scription of atmospheric dynamics used in meteorological practice. Yet, compressibility effects are often con-

sidered weak and acoustic waves outright unimportant in the atmosphere, except possibly for Lamb waves on

very large scales. This has led to the development of ‘‘soundproof’’models, which suppress soundwaves entirely

and provide good approximations for small-scale to mesoscale motions. Most global flow models are based

instead on the hydrostatic primitive equations that only suppress vertically propagating acoustic modes and are

applicable to relatively large-scale motions. Generalized models have been proposed that combine the ad-

vantages of the hydrostatic primitive and the soundproof equation sets. In this note, the authors reveal close

relationships between the compressible, pseudoincompressible (soundproof), hydrostatic primitive, and the

Arakawa and Konor unified model equations by introducing a continuous two-parameter (i.e., ‘‘doubly

blended’’) family ofmodels that defaults to either of these limiting cases for particular parameter constellations.

1. Introduction

The full compressible (FC) flow equations rank as the

most comprehensive model for representing atmo-

spheric fluid flows. They support sound waves, yet

acoustic effects are often considered to be of little rel-

evance for weather and climate—although this is not

entirely obvious for very-large-scale modes. Atmo-

spheric motions at small-scale and mesoscale are

therefore frequently modeled by approximate ‘‘sound-

proof’’ equations that suppress elastic effects and are

justified by low-Mach-number scalings involving small

density or pressure perturbations around a background

state (Ogura and Phillips 1962; Lipps and Hemler 1982;

Durran 1989). In contrast, global numerical weather

prediction codes have largely relied upon the hydro-

static (HY) primitive equations, which remove vertically

propagating sound waves only and are justified by scal-

ing arguments involving small vertical-to-horizontal-

scale aspect ratios (e.g., White et al. 2005).

Recent efforts focused on bridging these small- and

large-scale models in unified soundproof analytical for-

mulations that have shown competitive behavior with re-

spect to established approaches (Durran 2008; Arakawa

and Konor 2009; Konor 2014; Dubos and Voitus 2014).

While the general operational viability of reduced analyt-

ical models has been questioned on the grounds of inferior

performance in normal-mode analyses (Davies et al. 2003;

Dukowicz 2013), other studies found that numerical errors

incurred with different discretizations applied to a single

set of equations may outweigh analytical model-to-model

errors (Smolarkiewicz and Dörnbrack 2008). In an effort

to facilitate like-to-like comparison of soundproof and

compressible formulations and controlled treatment of

acoustics triggered by unbalanced initial data, Benacchio

et al. (2014) devised a continuously blended multimodel

discretization where thermodynamically consistent

pseudoincompressible (PI) and fully compressible dy-

namics are accessed by simple switching within a sin-

gle numerical framework [see also Klein et al.

(2014); Benacchio (2014); Benacchio et al. (2015)].

We note that Gatti-Bono and Colella (2006) and

Smolarkiewicz et al. (2014) propose related approaches

to designing unified computational frameworks for
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different sets of governing equations. While these au-

thors implement different model equations based on the

same fundamental numerical operators and thus achieve

like-to-like comparability as outlined above, they do not

pursue a continuous blending of models at the analytical

or coding level as proposed here.

In this short note, we broaden the scope of the

blending approach by Benacchio (2014) and Benacchio

et al. (2015) to include larger-scale dynamics. We

devise a two-parameter family of models that accesses

pseudoincompressible, hydrostatic primitive, unified

anelastic and quasi-hydrostatic, as well as fully com-

pressible dynamics, depending on the binary choice of

switches. For simplicity and brevity, we have excluded

the Coriolis term in the sequel, as its inclusion would call

for a third parameter controlling geostrophic balance.

We first revise in section 2 the blending between the FC

and PI models suggested by Benacchio et al. (2014). The

blending switch now features as a parameter in the equa-

tion of state instead of appearing explicitly in the pressure

equation. Energy conservation of the resulting blended

model family is discussed. Section 3 describes a blended full

compressible–hydrostatic model and its energy conserva-

tion. The suppression of vertical acoustics is achieved again

through a switch in the equation of state, whereas control

of hydrostasy requires a second switching component in

the vertical momentum balance. Suppressing vertical

acoustics by the same mechanism but allowing for non-

hydrostatic motions leads to a model that is conceptually

very close to the unified anelastic and quasi-hydrostatic

system of equations (AK) of Arakawa and Konor (2009).

Section 4 presents this model variant and demonstrates

that it is—in fact—equivalent to the AK model. Section 5

presents a new two-parameter blended model family that

combines the FC, PI, HY, and AK models in one and the

same formulation. Conclusions are drawn in section 6.

2. FC–PI: Governing equations blended via the
state equation

a. FC–PI blended equations

The dimensionless, dry, inviscid, full compressible

equations in Cartesian coordinates read

r
t
1= � (ry)5 0, (1a)

P
t
1= � (Py)5 0, (1b)

(ry)
t
1= � (ry+y)1P

G
=p52rgk , (1c)

P5p1/(gG) , (1d)

where r, p, y5 (u, y, w)[ (u, w) are density, Exner

pressure, and velocity—the latter decomposed into the

horizontal and vertical velocities, u andw, respectively;

g5 cp/cy is the isentropic exponent (cp and cy the spe-

cific heat at constant pressure and constant volume,

respectively) G5 (g2 1)/g, g is the gravitational ac-

celeration, = is the gradient operator, subscripts in-

dicate partial derivatives, and k is the vertical unit

vector. For simplicity, we restrict our analysis to adia-

batic flows. In (1), pressure and density are non-

dimensionalized by standard values pref and rref , the

velocity is nondimensionalized by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pref/rref

p
, and the

mass-weighted potential temperature, ru[P, is non-

dimensionalized by rrefTref. As in Klein (2009) and

Benacchio et al. (2014), P is used here to formulate the

internal energy equation in conservation form in (1b).

We note in passing that (1a) and (1b) imply that the

potential temperature

u5
P

r
satisfies

Du

Dt
[ u

t
1y � =u5 0. (2)

Benacchio et al. (2014) introduced a continuous

blending between the compressible equations in (1) and

the pseudoincompressible model by introducing a

‘‘pseudoincompressible switch’’ as a factor a 2 [0, 1]

multiplying Pt in (1b). For a5 0, this leads to the veloc-

ity divergence constraint of the pseudoincompressible

model,= � (Py)5 0, and it implies thatP[P0(z) remains

fixed in time and equal to the mean hydrostatic distri-

bution. Here we deviate from this approach by in-

troducing the background hydrostatic pressure into a

blended variant of the state equation in (1d) while

leaving the internal energy equation in (1b) untouched.

Thus, we consider

r
t
1= � (ry)5 0, (3a)

(P
a
)
t
1= � (P

a
y)5 0, (3b)

(ry)
t
1= � (ry+y)1P

a

G
=(p

a
1p0)52rgk , (3c)

where

p
a
5ap1 (12a)p

0
, (4a)

p0 5 (12a)
G

P
0

(p1/G 2p1/G
0 ) , (4b)

P
a
5

�
a

P
1

12a

P
0

�21

, (4c)

P5p1/(gG), P
0
5p

1/(gG)
0 , u5P

a
/r , (4d)

and p0(z) is a hydrostatic background state Exner

pressure distribution that defines a mean potential

temperature stratification u0(z) through hydrostatic

balance
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dp
0

dz
52

Gg

u
0

, p
0
(0)5 1. (5)

For a5 1, the blended FC–PI system in (3) and (4)

reduces to the compressible Euler equations from (1)

and to the pseudoincompressible model (Durran

1989) for a5 0. As confirmed by a characteristic

analysis (not shown for conciseness), for small per-

turbations of P around P0, the quantity
ffiffiffi
a

p
in (4) plays

the role of the Mach number in a low-Mach-number

system. In the appendix we demonstrate that for a 2
(0, 1) system (3) with (4) is equivalent to a blended

system that, as in Benacchio et al. (2014), involves the

pressure–density form of the momentum equation

and a thermodynamic consistency correction follow-

ing Klein and Pauluis (2012). The analogy with the

formulation of the pseudoincompressible limit in

Benacchio et al. (2014) becomes transparent when we

note that

(P
a
)
t
5

›P
a
/›p

›p/›p
p

t
5a

P2
a

gGp
p

t
(6)

so that the factor a appears in front of the (Exner)

pressure time derivative.

b. Energy conservation for the FC–PI blended
equations

To identify a total energy conservation law for the

blended system (3), it is convenient to adopt its pressure-

density formulation (see appendix). Thus (3c) is re-

placed with

y
t
1y � =y1

1

r
=p52gk

 
11

p0

r*c
2
0

!
, (7)

where

p5p1/G, p
0
5p1/G

0 , r*5
P
a

u
0

,

c20 5
gp

0

r
0

[ gu
0
p

0
, p0 5 (12a)(p2 p

0
) . (8)

Multiplying (7) by ry and using the equation once in

advective form and once in conservative form exploiting

(3a) so that r(yt 1y � =y)5 (ry)t 1= � (ry+y), dividing
by 2 and rearranging terms we obtain the kinetic and

potential energy balance,

(rE
M
)
t
1= � [y(rE

M
1 p)]5 p= � y2 gwr

p0

r*c
2
0

, (9)

where

E
M
5

u2 1w2

2
1 gz (10)

is the specific mechanical energy of the system. Next we

define the specific internal energy as

U5
up

a

g2 1
, (11)

with the blended Exner pressure pa from (4a). Starting

from the P equation in (3b), and using the blended state

equation in (4c) and the definition of the pseudodensity

r* in (8), we obtain

(rU)
t
1= � (yrU)52p= � y1 gwr

p0

r*c
2
0

. (12)

Adding (9) and (12) we find a conservation law for the

total energy:

(rE
T
)
t
1= � [y(rE

T
1 p)]5 0, where E

T
5U1E

M
.

(13)

3. FC–HY: Blending the full compressible and
hydrostatic equations

a. FC–HY blended equations

Let b 2 [0, 1] be a hydrostatic switch in analogy with

the pseudoincompressible switch a of section 2. For

b5 0 we wish to see a variant of the hydrostatic primi-

tive equations and for b5 1 the full nonhydrostatic

equations. To this end, we subject the full compressible

equations in (1) to a transformation of variables that is

compatible with the asymptotic scalings of space, time,

and velocity used in deriving the hydrostatic primitive

equations through standard scale analysis [see, e.g.,

section 2.7 of Klein (2010), where �ax corresponds to the

present
ffiffiffi
b

p
]. Therefore, for a vertical-to-horizontal-

space-scale anisotropy b � 1 we consider rescaled

variables

t̂5
ffiffiffi
b

p
t, x̂5

ffiffiffi
b

p
x, ẑ5 z, û5 u, ŵ5w/

ffiffiffi
b

p
. (14)

In addition, pressure and density are written as

p5p
h
1bp0, r5 r

h
1br0 , (15)

with the hydrostatic relation betweenph and u5P/r—that

is,

p
hz
52gG/u , (16)

and with a bottom boundary condition for ph yet to be

determined. Once ph is defined, (15) defines the
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nonhydrostatic pressure and density components p0 and
r0, given p and r, namely

p0 5 (p2p
h
)/b, r0 5 (r2 r

h
)/b, P5p1/(gG),

P
h
5p

1/(gG)
h , r

h
5P

h
/u . (17)

With these scalings and definitions, and dropping

the circumflexes, the FC–HY blended equations

read

r
t
1=k � (ru)1 (rw)

z
5 0, (18a)

P
t
1=k � (Pu)1 (Pw)

z
5 0, (18b)

(ru)
t
1=k � (ru+u)1 (ruw)

z
1

P

G
=k(ph

1bp0)5 0,

(18c)

b[(rw)
t
1=k � (rwu)1 (rw2)

z
]1

P

G
(p

h
1bp0)

z
52gr .

(18d)

Here =k is the horizontal gradient operator. At leading

order, the vertical momentum balance from (18d) yields

the hydrostatic balance

P
h

G
p

hz
52gr

h
. (19)

b. The hydrostatic limit for b 5 0

For b5 0, the equations in (15)–(18) yield the hy-

drostatic primitive equations in Cartesian coordinates

[see, e.g., section 2.7 of Klein (2010)]:

r
t
1=k � (ru)1 (rw)

z
5 0, (20a)

P
ht
1=k � (Ph

u)1 (P
h
w)

z
5 0, (20b)

(ru)
t
1=k � (ru+u)1 (ruw)

z
1

P
h

G
=kph

5 0, (20c)

P
h

G
p

hz
52gr

h
, (20d)

P5p
1/(gG)
h . (20e)

Together with appropriate boundary conditions for the in-

tegration of (20d), (20) constitutes a closed system. The

vertical velocityw is determined from (20b), which becomes

a velocity divergence constraint once ph is determined.

c. Energy conservation for the blended compressible–
hydrostatic system

The blended FC–HY system in (18) is equivalent to the

full compressible Euler equations in (1) for any b 2 (0; 1]

as they emerge from the latter as the result of an invertible

transformation of variables. Therefore, they inherit the

total energy conservation law (13) with

E
T
5

1

g2 1

p
h
1bp0

r
h
1br0

1
u2 1bw2

2
1 gz (21)

in the rescaled variables. The formal limit for b5 0 of

this expression is

E
T
j
b50

5
p
h
/r

h

g2 1
1

u2

2
1 gz , (22)

and this quantity satisfies the conservation law (13) when

p is replaced with ph. The kinetic energy of the vertical

motion w2/2 is missing from (22). This is compatible with

the standard scale analysis leading to the hydrostatic

primitive equations, where the vertical velocity is smaller

than the horizontal velocity by a factor of the aspect ratio of

the flowdomain [see, e.g., section 5.4 ofWhite (2002)]. The

mechanical energy balance is obtained by scalar multipli-

cation of (20c) by u and multiplication of (20d) by w,

(rE
M
)
t
1= � [(rE

M
1 p

h
)y]52p

h
= � y , (23)

where

E
M
5

u2

2
1 gz . (24)

The balance for the internal energy is obtained from

(20b) using the equation of state in (20e),

(rU)
t
1=k � (rUy)5 p

h
= � y , (25)

where

U5
p
h
/r

g2 1
. (26)

Summing (23) and (25), we have

(rE
T
)
t
1= � [(rE

T
1 p

h
)y]5 0. (27)

4. FC–AK: Blending the full compressible and
the Arakawa and Konor (2009) unified model

a. FC–AK blended equations

Reconsidering the blended FC–HY formulation in (18),

we observe that the blending parameter b induces two

different transitions at the same time. On the one hand,

since for b/ 0,

P5 (p
h
1bp0)1/(gG) /P

h
5p

1/(gG)
h , (28)

it restricts compressibility to the effects of hydrostatic

pressure variations only. This is analogous to how the

FC–PI blending parameter, a, suppresses compressibil-

ity altogether by replacingPwithP0(z) in theP equation
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(see section 2). On the other hand, the FC–HY blending

parameter b controls the influence of the perturbation

pressure p0 on horizontal momentum in (18c). For b5 0

only the horizontal gradient of the hydrostatic pressure

remains in the horizontal momentum equation, which

thus decouples from the vertical momentum balance.

Adopting only the compressibility constraint in (28)

while maintaining fully three-dimensional coupling of the

momentum equations through the perturbation pressure,

we find

r
t
1=k � (ru)1 (rw)

z
5 0, (29a)

P
t
1=k � (Pu)1 (Pw)

z
5 0, (29b)

(ru)
t
1=k � (ru+u)1 (ruw)

z
1

P

G
=k(ph

1p0)5 0,

(29c)

(rw)
t
1=k � (rwu)1 (rw2)

z
1

P

G
(p

h
1p0)

z
52rg ,

(29d)

P
h

G
p

hz
52r

h
g , (29e)

with

P5 (p
h
1b

c
p0)1/(gG), P

h
5p

1/(gG)
h ,

r
h
5

P
h

u
, (b

c
2 [0, 1]). (30)

We have used bc instead of b here as the notation for the

blending parameter to indicate that here the parameter

only constrains compressibility but does not imply hy-

drostasy. In fact, the parameter bc appears in the equa-

tion of state only as was the case with the FC–PI switch

a in (4).

b. The limiting case bc 5 0 and comparison with
Arakawa and Konor (2009)

In the limiting case of bc 5 0, system (29) reduces to

r
t
1=k � (ru)1 (rw)

z
5 0, (31a)

P
ht
1=k � (Ph

u)1 (P
h
w)

z
5 0, (31b)

(ru)
t
1=k � (ru+u)1 (ruw)

z
1

P
h

G
=k(ph

1p0)5 0,

(31c)

(rw)
t
1=k � (rwu)1 (rw2)

z
1

P
h

G
(p

h
1p0)

z
52rg ,

(31d)

P
h

G
p

hz
52rg , (31e)

P
h
5p

1/(gG)
h . (31f)

System (31) is the unified anelastic and quasi-hydrostatic

model proposed by Arakawa and Konor (2009), pro-

vided we identify the density variable r5Ph/u[ rh in

(31) with their quasi-hydrostatic density rqs [see their

(1.5)]. In addition, expressions (31a) and (31b) imply

that the potential temperature u5Ph/r satisfies the ad-

vection equation

u
t
1y � =u5 0, (32)

which is Arakawa and Konor’s (2009) (2.8) in the

present adiabatic setting. Incidentally, (31) is also (20)

with a full vertical momentum equation, as expected.

Inclusion of a diabatic source term would be straight-

forward, and it would imply a related source term

in (31b).

Dividing (31c) and (31d) by r, using (31a), and em-

ploying (31e), yields the momentum equation in ad-

vective form:

y
t
1y � =y1

u

G
(=kph

1=p0)5 0, (33)

which is Arakawa and Konor’s (2009) (3.1) without the

Coriolis and general forcing terms. Including these

terms would again be straightforward.

In this derivation we have identified the present ph

with Arakawa and Konor’s (2009) quasi-hydrostatic

pressure pqs. In our system, this variable satisfies the

hydrostatic equation in (31e), which we rewrite using

u5Ph/r and G5 cp/R, so that in our nondimensional

notation we have

p
hz
52

Gg

u
, (34)

which is Arakawa and Konor’s (2009) (2.2).

The equation of state in (31f) is equivalent to

Arakawa and Konor’s (2009) (2.6) combined with (2.4).

In fact, translated to the present dimensionless notation,

we have

P
h
5

r
qs
Ru

p
00

5p1/k21
qs 5p

1/(gG)
h , (35)

since k5G5 (g2 1)/g in the notation of Arakawa and

Konor (2009).

Therefore, except for nondimensionalization and

momentum and energy source terms, system (31) co-

incides with Arakawa and Konor’s (2009) unified

anelastic and quasi-hydrostatic model. From the
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perspective of the present derivation, the label ‘‘unified

pseudoincompressible and quasi-hydrostatic model’’

would seem more appropriate because the suppres-

sion of compressibility effects in constructing the model

is the same as that underlying the derivation of the

pseudoincompressible model by Durran (1989) (see

section 2).

The reader is referred to Arakawa and Konor (2009)

for an analysis of the model’s energy budget. They show

that there is no local conservation law for total energy

but that global conservation can be achieved through a

suitable adjustment of the domain-averaged perturba-

tion pressure.

c. The hydrostatic pressure field

Arakawa and Konor (2009) suggest a particular for-

mulation for determining the bottom boundary condi-

tion for the quasi-hydrostatic Exner pressure ph that is

derived combining mass conservation, hydrostatic bal-

ance for ph, and the equations of state for the quasi-

hydrostatic relations (r, ph, u). Using instead the

equation for Ph 5 ru from (31b), we suggest a different

approach. Integrating (34) vertically in [0, z], we find

p
h
(t, x, z)5p

h0
(t, x)2Gg

ðz
0

1

u(t, x, z)
dz, (36)

where the surface Exner pressure ph0 remains to be de-

termined. To this end, we integrate (31b) in z 2 [0, H],

assuming for simplicity a flat bottom and top, so

(Pw)z50 5 (Pw)z5H [ 0. Letting

hXi[
ðH
0

X dz (37)

and using that Ph 5p
1/(gG)
h , we have

hP
h
i
t
[

1

gG

�
P
h

p
h

�
p

h0,t
2

g

g

�
P
h

p
h

ðz
0

�
1

u

�
t

dz

�

52h=k � (Ph
u)i . (38)

While (38) is not a closed equation for ph0 owing to the

presence of u, (u21)t, and u, casting it into an implicit

equation for an update dph0 5pn11
h0 2pn

h0 over a time

step in a numerical discretization should be straight-

forward within a semi-implicit framework [see also re-

lated discussion in Marshall et al. (1997); Smolarkiewicz

et al. (2001)].

5. Two-parameter blended formulation

The three blended models FC–PI, FC–HY, and FC–

AK dependent on a, b, and bc can be cast jointly in the

following two-parameter family, where j, h 2 [0, 1]:

r
t
1= � (ry)5 0, (39a)

(P
B
)
t
1= � (P

B
y)5 0, (39b)

(ry)
t
1= � (ry+y)1P

B

G
=p

B
52rgk , (39c)

with the definitions

P
B
5 jhP1 (j1h2 2jh)P

h
1 (12 j)(12h)P

0
(40)

and

p
B
5PgG

B 1 (12 j)p0, r5 r
h
1 (12 j)r0 . (41)

The four choices j, h5 f0; 1g enable access to the four

models considered in this paper (Table 1). From the

pseudoincompressible system, (j, h)5 (0, 0), moving

‘‘diagonally’’ to (j, h)5 (1, 1) reproduces the gradual

introduction of compressibility, a5 0/ 1, in the FC–PI

blended model (3) and (4), as analyzed in Benacchio

et al. (2014). From the full compressible system, setting

h5 1 and j 2 [0, 1] tunes the relative importance of Ph

and P in PB, and the effects of the perturbation pressure

p0 within the blended FC–AK model (29) and (30). Fi-

nally, setting j5 1 and h5 [0, 1] yields the blended FC–

HY model (18). Letting h/ 0 suppresses vertically

propagating sound waves and recovers hydrostasy

within the limiting model (20).

6. Conclusions

In this paper we have introduced a new two-

parameter family of dynamical models for atmospheric

flows. The family encompasses the pseudoincompressible,

hydrostatic primitive, unified Arakawa and Konor

(2009), and full compressible models and allows access

to reduced soundproof dynamics by straightforward

switching. As a byproduct of the derivation, we have

found that, in the context of our blended formulation,

the suppression of compressibility in the model by

Arakawa and Konor (2009) mirrors the same process in

the pseudoincompressible model. A normal-mode analy-

sis, not reported here for conciseness, corroborates the

equivalence of system (31) with the model by Arakawa

and Konor (2009).

TABLE 1. Switches and limiting models for the two-parameter

family of models [see (39)].

h

j

0 1

0 PI HY

1 AK FC
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The two-way blended formulation (39)–(41) naturally

lends itself to a continuously tunable numerical dis-

cretization along the lines of Benacchio et al. (2014),

enabling an effective treatment of fast acoustic and

gravity waves within an analytical framework that

covers small-, meso-, synoptic-, and planetary-scale

motions. In this approach, unbalanced modes are fil-

tered (e.g., from assimilated data) by running the related

balanced model for a few time steps and then tuning

back smoothly to the full compressible model over a few

more steps. An open issue in this context concerns the

conservation properties of the blended model family for

intermediate values h, j 2 (0, 1).

The development presented in this paper becomes all

the more attractive in light not only of the current ef-

forts to show viability of soundproof models at synoptic

and planetary scales (Smolarkiewicz et al. 2014;

Kurowski et al. 2015) but also of the imminent neces-

sity to compare performance of hydrostatic and non-

hydrostatic codes at global operational resolutions

finer than 10 km afforded by next-generation exascale

supercomputers (Wedi et al. 2012; Smolarkiewicz

et al. 2015).
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APPENDIX

Pressure–Density Formulation of the FC–PI System

Here we demonstrate that the FC–PI system from (3)

and (4) can equivalently be written with the momentum

equation in a pressure–density form as in the (FC–PI)tc

system of Benacchio et al. (2014). Then, maintaining

(3a) and (3b), we replace (3c) with (Benacchio et al.

2014)
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