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We study the dispersion properties of three choices for the buoyancy space in a mixed

finite-element discretization of geophysical fluid flow equations. The problem is

analogous to that of the staggering of the buoyancy variable in finite-difference dis-

cretizations. Discrete dispersion relations of the two-dimensional linear gravity wave

equations are computed. By comparison with the analytical result, the best choice for

the buoyancy space basis functions is found to be the horizontally discontinuous, ver-

tically continuous option. This is also the space used for the vertical component of the

velocity. At lowest polynomial order, this arrangement mirrors the Charney–Phillips

vertical staggering known to have good dispersion properties in finite-difference

models. A fully discontinuous space for the buoyancy corresponding to the Lorenz

finite-difference staggering at lowest order gives zero phase velocity for high vertical

wavenumber modes. A fully continuous space, the natural choice for scalar variables

in a mixed finite-element framework, with degrees of freedom of buoyancy and ver-

tical velocity horizontally staggered at lowest order, is found to entail zero phase

velocity modes at the large horizontal wavenumber end of the spectrum. Corroborat-

ing the theoretical insights, numerical results obtained on gravity wave propagation

with fully continuous buoyancy highlight the presence of a computational mode in

the poorly resolved part of the spectrum that fails to propagate horizontally. The spu-

rious signal is not removed in test runs with higher-order polynomial basis functions.

Runs at higher order also highlight additional oscillations, an issue that is shown to

be mitigated by partial mass-lumping. In light of the findings and with a view to

coupling the dynamical core to physical parametrizations that often force near the

horizontal grid scale, the use of the fully continuous space should be avoided in

favour of the horizontally discontinuous, vertically continuous space.
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1 INTRODUCTION

Atmospheric processes of meteorological interest frequently

arise as wave motions adjusting towards states of horizon-

tal geostrophic and vertical hydrostatic balance. Accurate

simulation and control of these motions is therefore of strong

importance in weather prediction models.

Together with the properties of the numerics, the arrange-

ment of discrete unknowns on the computational grid

determines the ability of a scheme to handle wave-like
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motion. In this context, selection of a particular set-up has

commonly revolved around the implied presence or other-

wise of so-called computational modes. These computational

modes typically take the form of grid-scale zigzag patterns

that are invisible to the discrete derivative operator of the

scheme and hence these patterns fail to propagate. Unchecked

perturbations of this kind can pollute simulations by inter-

acting with physical modes of meteorological interest, whilst

ad hoc filtering techniques aimed at reducing the impact of

spurious modes run the risk of affecting the overall accuracy

and efficiency of the scheme. Absence or efficient control

of computational modes is seen as a fundamental require-

ment for grid arrangements in modern atmospheric dynam-

ical cores (Staniforth and Thuburn, 2012). The sign of the

group velocity and the dynamical response to forcing are

other examples of issues related to the placement of discrete

variables on the grid.

Properties of several grid arrangements in the vertical direc-

tion have been extensively studied in Thuburn and Woollings

(2005) using normal mode expansions (also Thuburn et
al. (2002), Cordero et al. (2002), Benacchio and Wood

(2016)). Two of the most common arrangements are the

Lorenz (1960) staggering, whereby horizontal velocity is

vertically co-located with the potential temperature and ver-

tically staggered with respect to the vertical velocity, and the

Charney–Phillips staggering (Charney and Phillips, 1953),

whereby the potential temperature is co-located with the ver-

tical velocity and vertically staggered with respect to the hori-

zontal velocity. Due to the computational mode of the Lorenz

staggering, and notwithstanding its better conservation prop-

erties, the Charney–Phillips staggering has emerged as the

preferred arrangement by many groups for dynamical cores

in comparisons with the Lorenz staggering, e.g. Arakawa and

Moorthi (1988), Fox-Rabinovitz (1994), Arakawa and Konor

(1996) and Holdaway et al. (2013a). Examples of opera-

tional forecast models running with vertical Charney–Phillips

staggering are the Global Environmental Multiscale model

(Girard et al., 2014) and the Met Office’s Unified Model,

which also uses C-grid staggering in the horizontal direction

(Cullen et al., 1997; Davies et al., 2005; Wood et al., 2014).

Mixed finite-element methods (Cotter and Shipton, 2012)

have a number of properties that make them appealing for

modelling geophysical flows: they are inf-sup stable and

mimetic in that they carry over continuous properties, such

as irrotationality of the gradient operator or solenoidality of

the curl operator, at the discrete level (see also Natale et al.
(2016) and references therein). Compatible finite-element

methods are useful for building discretizations for numerical

weather prediction since they allow

(a) flexibility in the type of grids that can be used, since

they do not require orthogonal grids for their fundamental

properties,

(b) flexibility in the choice of finite element spaces lead-

ing to discretizations on triangular meshes that maintain the

2:1 ratio of velocity to pressure degrees of freedom that is

necessary to avoid spurious modes (Staniforth and Thuburn,

2012), and

(c) flexibility in the choice of the consistency order of the

approximation through using higher-order polynomials.

The grid flexibility is particularly important since it allows

the recovery of C-grid wave dispersion properties on

pseudo-uniform grids such as the cubed sphere that avoid

the parallel scalability issues associated with the poles of a

latitude–longitude grid. It also allows for unstructured adap-

tive mesh refinement. Other applications of continuous and

discontinuous Galerkin methods in numerical weather predic-

tion can be found in, e.g. Kelly and Giraldo (2012), Marras et
al. (2013), Guerra and Ullrich (2016), and, exclusively for the

vertical direction, in Simarro and Hortal (2012) and Yi and

Park (2017), as well as in the operational model of the Euro-

pean Centre for Medium-range Weather Forecasts (Untch and

Hortal, 2004). At lowest polynomial order on a horizontal

quadrilateral grid, the finite-element equivalent of the C-grid

staggering for wind and pressure variables is the RT0–DG0

pair of mixed finite-element function spaces that has cellwise

continuous normal components for the velocity and cellwise

discontinuous pressure. However, this leaves the question of

what space should be used for the buoyancy variable.

This article compares three choices for the function space

for the buoyancy variable in a mixed finite-element scheme

for atmospheric dynamics. At lowest polynomial order, with

the RT0–DG0 choice for velocity and pressure, the first

option is to place the buoyancy in a space with basis func-

tions discontinuous at cell edges in both the horizontal and

the vertical direction, corresponding to the Lorenz vertical

staggering. The second option, with horizontally discontinu-

ous, vertically continuous basis functions, corresponds to the

Charney–Phillips staggering. A third option of a space with

continuous basis functions in both directions corresponds

to the natural choice for scalars in the so-called deRham

complex of mixed finite-element function spaces (Thuburn

and Cotter, 2015 and references therein). Moreover, the fully

continuous option eases integration by parts of the pressure

gradient term in the momentum equation of the fully com-

pressible Euler model (Natale et al., 2016). Unlike in the

first two cases, with the third option the buoyancy degrees of

freedom are horizontally staggered with respect to those of

the vertical velocity.

The three options are evaluated using a discrete dispersion

analysis on a weak formulation of the two-dimensional linear

gravity wave equations. With buoyancy in the fully continu-

ous space, it is found that gravity waves are slowed down on

a large range of horizontal wavenumbers, with the shortest

two-gridpoint wave failing to propagate. The analysis also

confirms the issues with the Lorenz vertical staggering on

the large vertical wavenumber end of the spectrum, while

the horizontally discontinuous, vertically continuous option

gives the best match with the analytical dispersion relation

for gravity waves. The theoretical findings are corrobo-

rated by numerical simulations of a non-hydrostatic gravity
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wave in a horizontal channel. Horizontally co-locating the

buoyancy with the vertical velocity gives results in line with

the literature, whilst a spurious zigzag pattern appears in the

coarse-grid simulations using the fully continuous space.

Furthermore, a simulation using one-degree higher poly-

nomial basis functions highlights widespread oscillations

when using the fully continuous space. It is observed that

the oscillations can be smoothed out by employing a partial

mass-lumping strategy in the spirit of Melvin et al. (2014).

The rest of the article is structured as follows. Section 2

contains the analytical model used in this study together with

the analytical dispersion analysis. The weak formulation and

the mixed finite-element formulation are given in section 3.

The discrete system is explicitly derived for the lowest-order

finite-element case in section 3.1, which also contains the dis-

crete dispersion analysis for that case. Section 3.2 discusses

the next higher-order case. Section 4 contains the numer-

ical results, which are discussed together with concluding

remarks in section 5.

2 CONTINUOUS EQUATIONS

The linear gravity wave equations in a two-dimensional Carte-

sian vertical slice are:

ut + 𝛻p − ẑb = 0, (1)

pt + c2
s𝛻 ⋅ u = 0, (2)

bt + N2ẑ ⋅ u = 0, (3)

for the prognostic velocity vector u ≡ (u,w), pressure field p,

and buoyancy b. Moreover, subscript t denotes time deriva-

tives, cs denotes the speed of sound, N the buoyancy fre-

quency (both assumed constant) and ẑ ≡ (0, 1) is a unit vector

in the vertical direction. Equations 1–3 can be derived from

the compressible equations by linearization and neglecting

the effects of stratification on compressibility (Durran, 2010).

The analytical dispersion relation is reviewed here as a ref-

erence for the discrete versions which will be derived in the

following sections. As the equations are linear and have con-

stant coefficients, to analyze the dispersion relation we seek

harmonic solutions in the form:

(u, w, p, b) (x, t) = (U, W, P, B) exp [i (kx + lz − 𝜔t)] ,

yielding the system:

⎛⎜⎜⎜⎝
−i𝜔 0 ik 0

0 −i𝜔 il −1
ikc2

s ilc2
s −i𝜔 0

0 N2 0 −i𝜔

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

U
W
P
B

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎠ , (4)

which can be satisfied if and only if the determinant of

the matrix vanishes. Hence, admissible solutions satisfy the

dispersion relation:

𝜔4 − 𝜔2
[(

k2 + l2
)

c2
s + N2

]
+ k2c2

s N2 = 0, (5)

which is a biquadratic equation for 𝜔, with the four solutions:

𝜔2 = 1

2

[
N2 +

(
k2 + l2

)
c2

s

] ⎧⎪⎨⎪⎩1 ±

√√√√1 −
4k2N2c2

s[
N2 +

(
k2 + l2

)
c2

s

]2

⎫⎪⎬⎪⎭ .
(6)

The solution with positive sign in Equation 6 corresponds

to acoustic waves, and the one with negative sign to gravity

waves (Durran, 2010). Expression 6 can be simplified under

the assumption N2 ≪ k2c2
s , which holds in most atmospheric

applications. In that case, the dispersion relation for acoustic

waves becomes:

𝜔2
+ ≈ N2 + (k2 + l2)c2

s , (7)

and the one for gravity waves, using the first-order expansion

(1 + x)𝛼 ≈ 1 + 𝛼x:

𝜔2
− ≈

k2N2c2
s

N2 + (k2 + l2)c2
s

= k2N2

N2

c2
s

+ k2 + l2
. (8)

Figure 1 displays 𝜔+ and 𝜔− from Equation 6 for the stan-

dard tropospheric values N = 0.01 s−1, cs = 340 m s−1.

3 MIXED FINITE-ELEMENT
DISCRETIZATION

Writing the velocity equation componentwise, the weak for-

mulation of Equations 1–3 reads, on a two-dimensional

domain Ω, find u,w, b, p such that

∫Ω

𝜕u
𝜕t
𝜒dΩ − ∫Ω

p
𝜕𝜒

𝜕x
dΩ = 0, (9)

∫Ω

𝜕w
𝜕t
𝜐dΩ − ∫Ω

p𝜕𝜐
𝜕z

dΩ − ∫Ω
b𝜐dΩ = 0, (10)

∫Ω

𝜕p
𝜕t
𝜓dΩ + c2

s ∫Ω

(
𝜕u
𝜕x

+ 𝜕w
𝜕z

)
𝜓dΩ = 0, (11)

∫Ω

𝜕b
𝜕t
𝜙dΩ + ∫Ω

N2w𝜙dΩ = 0 (12)

for all test functions 𝜒 and 𝜐 in the horizontal and verti-

cal velocity spaces, 𝜓 in the pressure space, and 𝜙 in the

buoyancy space.

The discrete finite-element formulation is obtained from

the weak formulation 9–12 by placing the unknowns and test

functions in the target finite-element spaces. In particular, we

consider a compatible mixed finite-element formulation (Cot-

ter and Shipton, 2012) that seeks discrete solutions in separate

function spaces for the different variables. For r ≥ 0, veloci-

ties are sought in the discrete space such that both the u and w
components are polynomial functions that are continuous and

cellwise of degree r+1 in the normal direction, and discontin-

uous and cellwise of degree r in the tangential direction. This

means that u is continuous and cellwise of degree r + 1 in the

horizontal direction, discontinuous and cellwise of degree r
in the vertical direction, while w is continuous and cellwise
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(a) (b)

(c) (d)

FIGURE 1 The (a) positive and (b) negative branches of the frequency 𝜔 for horizontal and vertical wavenumbers (k, l) in Equation 6, with

(k, l) ∈ [0, 𝜋∕Δx] × [0, 𝜋∕Δz] for Δx = Δz = 1000 m. (c,d) are corresponding one-dimensional cuts at zero vertical wavenumber l = 0 [Colour figure can be

viewed at wileyonlinelibrary.com]

of degree r + 1 in the vertical direction, discontinuous and

cellwise of degree r in the horizontal direction. Pressures will

be sought in the space of scalar polynomial functions that

are discontinuous functions of degree r in both directions,

denoted V2 (Cotter and Shipton, 2012). As for the buoyancy,

we consider three possible choices for its function space:

[V0 ] The space of scalar continuous polynomial functions of

degree r + 1 cellwise in both directions.

[Vcp ] The space of scalar polynomial functions that are dis-

continuous of degree r cellwise in the horizontal direc-

tion and continuous of degree r+1 cellwise in the vertical

direction.

[V2 ] The space of scalar polynomial functions that are dis-

continuous functions of degree r in both directions.

Figure 2 displays the location of the degrees of freedom for

the three buoyancy spaces under consideration as well as for

the other variables at lowest order r = 0.

3.1 Lowest-order r = 0 elements

For r = 0 lowest-order elements, the one-dimensional linear

and constant basis functions for an interval s ∈
[
sm, sm+1

]
are,

following the notation of Melvin et al. (2014),

Em+1(s) = s − sm

sm+1 − sm sm ≤ s ≤ sm+1, (13)

Em(s) = sm+1 − s
sm+1 − sm sm ≤ s ≤ sm+1, (14)

Fm+1∕2(s) = 1 sm ≤ s ≤ sm+1. (15)

The two-dimensional basis functions can then be created as

tensor products of the appropriate one-dimensional functions;

these sets are:

𝜒1,2 = {Em(x)Fn+1∕2(z),Em+1(x)Fn+1∕2(z)}, (16)

𝜐1,2 = {Fm+1∕2(x)En(z),Fm+1∕2(x)En+1(z)}, (17)

𝜓1 = Fm+1∕2(x)Fn+1∕2(z), (18)

𝜙1,2,3,4 ={Em(x)En(z),Em+1(x)En(z),
Em(x)En+1(z),Em+1(x)En+1(z)}, [V0] (19)

𝜙1,2 ≡ 𝜐1,2, [Vcp] (20)

𝜙1 ≡ 𝜓1, [V2]. (21)

The variables, restricted to a single element
[
xm, xm+1

]
×[

zn, zn+1
]

are expanded as:

u(x, z) = um,n+1∕2𝜒1 + um+1,n+1∕2𝜒2, (22)

w(x, z) = wm+1∕2,n𝜐1 + wm+1∕2,n+1𝜐2, (23)

p(x, z, t) = pm+1∕2,n+1∕2𝜓1, (24)

b(x, z, t) = bm,n𝜙1 + bm+1,n𝜙2 + bm,n+1𝜙3

+ bm+1,n+1𝜙4, [V0] (25)

b(x, z, t) = bm+1∕2,n𝜐1 + bm+1∕2,n+1𝜐2, [Vcp] (26)

b(x, z, t) = bm+1∕2,n+1∕2𝜓1. [V2] (27)

Inserting Equations 22–27 into 9–12 with test functions

16–21, one gets two discrete equations for the horizontal

momentum equation, two equations for the vertical momen-

tum equation for each choice of the buoyancy space V0, Vcp

and V2, one equation for the pressure, and four, two, or one

equations for the buoyancy variable for the choices V0, Vcp,

and V2, respectively. Calculating the integrals of products

of basis functions within these integrals, considering a uni-

form grid spacing Δx ≡ xm+1 − xm and Δz = zn+1 − zn in both

directions and integrating over two neighbouring elements

http://wileyonlinelibrary.com
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(a) (b) (c)

(d) (e) (f)

FIGURE 2 Location of degrees of freedom, r = 0 order elements for buoyancy in (a) V0 space, (b) Vcp space, and (c) V2 space, and for (d) horizontal and

(e) vertical components of velocity and (f) the pressure field. m and n are the horizontal and vertical indices for cell (m, n) such that m + 1∕2, n + 1∕2 is

located at the centre of the cell

spanning x ∈
[
xm−1, xm+1

]
z ∈

[
zn, zn+1

]
and simplifying, one

gets the following expression for the horizontal momentum

equation:

1

6

d
dt
(
um+1,n+1∕2+4um,n+1∕2+um−1,n+1∕2

)
+ 1

Δx
(
pm+1∕2,n+1∕2−pm−1∕2,n+1∕2

)
=0. (28)

For the vertical momentum equation integrating over

two neighbouring elements spanning x ∈
[
xm, xm+1

]
z ∈[

zn−1, zn+1
]
, with b ∈ V0 one gets:

1

6

d
dt
(
wm+1∕2,n+1+4wm+1∕2,n+wm+1∕2,n−1

)
+ 1

Δz
(
pm+1∕2,n+1∕2−pm+1∕2,n−1∕2

)
− 1

12

[ (
bm+1,n+1+bm,n+1

)
+4

(
bm+1,n+bm,n)

+
(
bm+1,n−1+bm,n−1

) ]
= 0. (29)

For the vertical momentum equation, with b ∈ Vcp one

gets:

1

6

d
dt
(
wm+1∕2,n+1+4wm+1∕2,n+wm+1∕2,n−1

)
+ 1

Δz
(
pm+1∕2,n+1∕2−pm+1∕2,n−1∕2

)
− 1

6

(
bm+1∕2,n+1+4bm+1∕2,n+bm+1∕2,n−1

)
= 0. (30)

For the vertical momentum equation, with b ∈ V2 one gets:

1

6

d
dt
(
wm+1∕2,n+1+4wm+1∕2,n+wm+1∕2,n−1

)
+ 1

Δz
(
pm+1∕2,n+1∕2−pm+1∕2,n−1∕2

)
− 1

2

(
bm+1∕2,n+1∕2+bm+1∕2,n−1∕2

)
= 0. (31)

Integrating over one element spanning

x ∈
[
xm, xm+1

]
z ∈

[
zn, zn+1

]
, the discrete pressure

equation is:

d
dt

pm+1∕2,n+1∕2 + c2
s

[
1

Δx
(um+1,n+1∕2−um,n+1∕2)

+ 1

Δz
(wm+1∕2,n+1−wm+1∕2,n)

]
=0, (32)

while integrating over four neighbouring elements spanning

x ∈
[
xm−1, xm+1

]
z ∈

[
zn−1, zn+1

]
, the buoyancy equation in

the V0 case reads:

1

36

d
dt
[ (

bm+1,n+1 + 4bm+1,n + bm+1,n−1
)

+ 4
(
bm,n+1 + 4bm,n + bm,n−1

)
+
(
bm−1,n+1 + 4bm−1,n + bm−1,n−1

) ]
+ 1

12
N2
[ (

wm+1∕2,n+1+4wm+1∕2,n+wm+1∕2,n−1
)

+
(
wm−1∕2,n+1+4wm−1∕2,n+wm−1∕2,n−1

) ]
=0.

(33)

Integrating over two neighbouring elements spanning

x ∈
[
xm, xm+1

]
, z ∈

[
zn−1, zn+1

]
for the buoyancy in Vcp, one

gets:

1

6

d
dt

(
bm+1∕2,n+1 + 4bm+1∕2,n + bm+1∕2,n−1

)
+ 1

6
N2

(
wm+1∕2,n+1 + 4wm+1∕2,n + wm+1∕2,n−1

)
= 0. (34)

Finally, integrating over a single element spanning

x ∈
[
xm, xm+1

]
, z ∈

[
zn, zn+1

]
for the buoyancy in V2 one

gets:

dbm+1∕2,n+1∕2

dt
+ N2

2

(
wm+1∕2,n+1 + wm+1∕2,n) = 0. (35)

For buoyancy in Vcp, as can be seen in expression 34, the

coefficients of w and b match. By contrast, horizontal and ver-

tical averaging is evident in the expressions 33 and 35 for V0

and V2, respectively (also Figure 2). As a consequence, in the

two latter cases the scheme will fail to detect and propagate

the shortest resolved waves.
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3.1.1 Discrete dispersion analysis
Solutions are sought in the form:

um,n+1∕2 = UK exp
[
i
(
k ⋅ xm,n+1∕2 − 𝜔t

)]
, (36)

wm+1∕2,n = WK exp
[
i
(
k ⋅ xm+1∕2,n − 𝜔t

)]
, (37)

pm+1∕2,n+1∕2 = PK exp
[
i
(
k ⋅ xm+1∕2,n+1∕2 − 𝜔t

)]
, (38)

bm+1∕2,n = BK exp
[
i
(
k ⋅ xm+1∕2,n − 𝜔t

)]
, (39)

with k = (k, l) and xm,n = (xm,n, zm,n). Inserting

Equations 36–39 in 28–35 and using the properties of the

exponential, after simplification and grouping the equations

in matrix form we have:⎛⎜⎜⎜⎝
𝜔Mx 0 −Sx 0

0 𝜔Mz −Sz −i𝛽
−c2

s Sx −c2
s Sz 𝜔 0

0 i𝛼N2 0 𝜔𝛾

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

UK
WK
PK
BK

⎞⎟⎟⎟⎠ = 0, (40)

with the switches:

𝛼 =
⎧⎪⎨⎪⎩

Cx [V0]
1 [Vcp]
Cz [V2]

, 𝛽 =
⎧⎪⎨⎪⎩

CxMz [V0]
Mz [Vcp]
Cz [V2]

,

𝛾 =

{
Mx [V0]
1 otherwise

, (41)

where:

Mx ≡ 2 + cos (kΔx)
3

, Mz ≡ 2 + cos (lΔz)
3

,

Sx ≡ 2

Δx
sin

(kΔx
2

)
, Sz ≡ 2

Δz
sin

( lΔz
2

)
,

Cx ≡ cos
(kΔx

2

)
, Cz ≡ sin

( lΔz
2

)
.

(42)

It is worth noting that the Ms represent the action of mass

matrices, Ss are the action of the discrete derivative and the

Cs represent averaging, or equivalently projection from one

finite-element function space to another. For the left-hand

side of Equation 40 to vanish, the determinant of the matrix

needs to vanish, i.e. expanding with respect to the last row and

simplifying we have:

𝛾𝜔4MxMz−𝜔2
[
𝛾c2

s
(
MzS2

x+MxS2
z
)
+𝛼𝛽N2Mx

]
+𝛼𝛽c2

s N2S2
x = 0.

(43)

Solving, we find the two roots for 𝜎 = 𝜔2:

𝜎1,2=
1

2MxMz

{
c2

s

(
S2

xMz + S2
z Mx

)
+ 𝛼𝛽N2Mx

𝛾

±

√[
c2

s
(
S2

xMz+S2
z Mx

)
+ 𝛼𝛽N2Mx

𝛾

]2

−
4𝛼𝛽N2c2

s S2
xMxMz

𝛾

}
.

(44)

Figure 3 shows the discrete gravity wave dispersion relation

(positive square root of 𝜎2) for Δx = Δz = 1 000 m. With the

horizontally discontinuous, vertically continuous buoyancy

space Vcp, the analytical behaviour of 𝜔− in Figure 1b is well

reproduced. This is the desired behaviour, which reproduces

the properties of the well-known Charney–Phillips staggering

in the finite-difference context. With the fully discontinuous

space V2, the analytical behaviour is well reproduced for

small vertical wavenumbers lΔz, while the scheme fails to

propagate waves with large lΔz. This is the well-known short-

coming of the Lorenz staggering with grid-scale vertical

motions. The situation is reversed with the fully continuous

space V0, where the analytical behaviour is well reproduced

for very small horizontal wavenumbers kΔx only, while virtu-

ally every signal with kΔx > 𝜋∕4 is slowed down. Grid-scale

short waves with kΔx approaching 𝜋 are not propagated by

the scheme. Except for an overshoot for large wavenumbers,

the discrete acoustic wave dispersion relation (positive square

root of 𝜎1; Appendix A, Figure A1a) reproduces the analytical

dispersion of acoustic waves 𝜔+ in Figure 1a for each choice

of the finite-element space for the buoyancy, and so only the

result for V0 is shown in Figure A1.

3.2 Higher-order r = 1 elements

For r = 1 order elements, the one-dimensional basis functions

are now quadratic (E) and linear functions (F), which, for an

interval s ∈
[
sm, sm+1

]
, are

Em+1(s) =
(

s − sm

sm+1 − sm

)(
s − sm+1∕2

sm+1 − sm+1∕2

)
sm ≤ s ≤ sm+1,

(45)

Em+1∕2(s)=
(

s − sm

sm+1∕2 − sm

)(
s − sm+1

sm+1∕2 − sm+1

)
sm ≤ s ≤ sm+1,

(46)

Em(s) =
(

s − sm+1∕2

sm − sm+1∕2

)(
s − sm+1

sm − sm+1

)
sm ≤ s ≤ sm+1,

(47)

Fm+1(s) = s − sm

sm+1 − sm sm ≤ s ≤ sm+1,

(48)

Fm(s) = sm+1 − s
sm+1 − sm sm ≤ s ≤ sm+1.

(49)

The two-dimensional basis functions can then be created as

tensor products of the appropriate one-dimensional functions.

These sets are

𝜒1,2,…,6 =
{

Em(x)Fn(z),Em+1∕2(x)Fn(z),Em+1(x)Fn(z),
Em(x)Fn+1(z),Em+1∕2(x)Fn+1(z),Em+1(x)Fn+1(z)

}
, (50)

𝜐1,2,…,6 =
{

Fm(x)En(z),Fm+1(x)En(z),Fm(x)En+1∕2(z),
Fm+1(x)En+1∕2(z),Fm(x)En+1(z),Fm+1(x)En+1(z)

}
, (51)

𝜓1,2,3,4 =
{
Fm(x)Fn(z),Fm+1(x)Fn(z),Fm(x)Fn+1(z),
Fm+1(x)Fn+1(z)

}
, (52)

𝜙1,2,…,9 =
{

Em(x)En(z),Em+1∕2(x)En(z),
Em+1(x)En(z),Em(x)En+1∕2(z),
Em+1∕2(x)En+1∕2(z),Em+1(x)En+1∕2(z),Em(x)En+1(z),
Em+1∕2(x)En+1(z),Em+1(x)En+1(z)

}
, [V0] (53)



906 MELVIN ET AL.

(a) (b) (c)

(d) (e) (f)

FIGURE 3 Positive square root of 𝜎2 (Equation 44), with Δx = Δz = 1000 m and (a) V0 space, (b) Vcp space, and (c) V2 space. (d,e,f) are correponding

one-dimensional cuts for l = 0. The standard tropospheric values N = 0.01,s−1, cs = 340 m s−1 are used to produce this and the following plots [Colour figure

can be viewed at wileyonlinelibrary.com]

𝜙1,2,…,6 ≡ 𝜐1,2,…,6 , [Vcp] (54)

𝜙1,2,3,4 ≡ 𝜓1,2,3,4 . [V2]. (55)

The locations of degrees of freedom in the three buoyancy

spaces under consideration as well as for the other variables

are as in Figure 4. The variables, restricted to a single element[
xm, xm+1

]
×
[
zn, zn+1

]
are expanded as

u(x, z) = um,n
0,+𝜒1+ um+1∕2,n

0,+ 𝜒2+ um+1,n
0,+ 𝜒3

+ um,n+1

0,+ 𝜒4+ um+1∕2,n+1

0,− 𝜒5+ um+1,n+1

0,− 𝜒6, (56)

w(x, z) = wm,n
+,0𝜐1+wm+1,n

−,0 𝜐2+wm,n+1∕2

+,0 𝜐3

+wm+1,n+1∕2

−,0 𝜐4+wm,n+1

+,0 𝜐5+wm+1,n+1

−,0 𝜐6, (57)

p(x, z) = pm,n
+,+𝜓1 + pm+1,n

−,+ 𝜓2 + pm,n+1
+,− 𝜓3 + pm+1,n+1

−,− 𝜓4, (58)

b(x, z) = bm,n
0,0
𝜙1+ bm+1∕2,n

0,0
𝜙2+ bm+1,n

0,0
𝜙3+ bm,n+1∕2

0,0
𝜙4

+ bm+1∕2,n+1∕2

0,0
𝜙5 +bm+1,n+1∕2

0,0
𝜙6+bm,n+1

0,0
𝜙7

+bm+1∕2,n+1

0,0
𝜙8+bm+1,n+1

0,0
𝜙9, [V0] (59)

b(x, z) = bm,n
+,0𝜐1+bm+1,n

−,0 𝜐2+bm,n+1∕2

+,0 𝜐3

+bm+1,n+1∕2

−,0 𝜐4+bm,n+1

+,0 𝜐5+bm+1,n+1

−,0 𝜐6, [Vcp] (60)

b(x, z) = bm,n
+,+𝜓1 + bm+1,n

−,+ 𝜓2+

+ bm,n+1
+,− 𝜓3 + bm+1,n+1

−,− 𝜓4, [V2]. (61)

where 0,+,− subscripts denote whether the degree of free-

dom is continuous (0) or discontinuous (±) in the x and z
directions and located to the positive or negative side of a

point, i.e. pm,n+1
+,− is discontinuous in x and z and located at

point xm, zn+1 but associated with the element
[
xm, xm+1

]
×[

zn, zn+1
]
. For all three choices of the buoyancy space,

Equations 9-12 can now be written in operator form as a sum

over all elements e: ∑
e

Muu(e)
t − DT

1
p(e) = 0, (62)∑

e
Mww(e)

t − DT
2
p(e) − Qb(e) = 0, (63)∑

e
Mpp(e)

t + c2
s
(
D1u(e) + D2w(e)) = 0, (64)∑

e
Mbb(e)

t + N2QTw(e) = 0, (65)

where the superscript (e) denotes restriction of a prognostic

field to a single element e. The operators are

M(i1,i2)
u = ∫e

𝜒i1𝜒i2dxdz, M(i1,i2)
w = ∫e

𝜐i1𝜐i2dxdz,

M(i1,i2)
p = ∫e

𝜓i1𝜓i2dxdz, M(i1,i2)
b = ∫e

𝜙i1𝜙i2dxdz,

(66)

D(i1,i2)
1

= ∫e
𝜓i1

𝜕

𝜕x
𝜒i2dxdz, D(i1,i2)

2
= ∫e

𝜓i1
𝜕

𝜕z
𝜐i2dxdz,

Q(i1,i2) = ∫e
𝜐i1𝜓i2dxdz.

(67)

This leads to a set of six equations for each component of

the velocity, four for pressure and either nine (V0), six
(
Vcp

)
,

or four (V2) equations for the buoyancy. As for the r = 0

elements, the continuity of the fields can be used to reduce this

set of equations to the minimal set, e.g. replacing m by m−1 in

the equation for um+1,n and adding it to the equation for um,n to

form a single equation centred on um,n. Once this is done for all

variables, the system 62–65 reduces to a set of sixteen coupled

equations. Seeking solutions of the form of Equations 36–39,

but extended in the natural way to represent the degrees of

http://wileyonlinelibrary.com
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(a) (b) (c)

(d) (e) (f)

FIGURE 4 Location of degrees of freedom, r = 1 order elements for buoyancy in (a) V0 space, (b) Vcp space, and (c) V2 space, and for (d) horizontal and

(e) vertical components of the velocity and (f) the pressure field

freedom for the r = 1 elements, gives the system

⎛⎜⎜⎜⎝
𝜔u 0 −iT

1
0

0 𝜔w −iT
2

−i
ic2

s1 ic2
s2 𝜔p 0

0 iN2T 0 𝜔b

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

U
W
P
B

⎞⎟⎟⎟⎠ = 0, (68)

where now each of the matrices u,w,p,b, 1,2,  is a function

of the spatial wavenumber k ≡ (k, l) due to the substitutions

of Equations 36–39. For a given wavenumber pair (k, l) ∈[
0, 𝜋∕Δx

]
×
[
0, 𝜋∕Δz

]
, the system 68 can be solved to yield

the frequencies 𝜔j, j = 1… 16. These solutions correspond

to the sets

±
(
w+

1
,w+

2
,w+

3
,w+

4

)
, ±

(
w−

1
,w−

2
,w−

3
,w−

4

)
, (69)

where w1,…,4 are the eigenvalues associated with the vertical

velocity components W of Equation 68 and w+
j representing

the acoustic waves and w−
j representing the gravity waves, j =

1… 4. For the positive roots of 𝜔+ and 𝜔−, there are now

four solutions instead of the single solution found for both the

analytical case and the r = 0 solutions. The question is what

do these extra solutions represent?

As in Staniforth et al. (2013) and Melvin et al. (2014),

here it is argued that these solutions are in fact aliased waves

from higher wavenumbers that are now resolvable due to

the finite-element method being able to support modes that

oscillate on the sub-grid scale. For example, consider the pres-

sure field. For the lowest order (r = 0) elements, there is

only one degree of freedom per element pm+1∕2,n+1∕2 and this

is associated with a piecewise constant function. Therefore,

the highest wavenumber oscillation that can be supported is

on the grid scale where pm+1∕2,n+1∕2 = 1, pm+3∕2,n+1∕2 = −1.

However, for r = 1 there are now four degrees of free-

dom per element
[
pm,n
+,+, p

m+1,n
−,+ , pm,n+1

+,− , pm+1,n+1
−,−

]
and these

are associated with piecewise linear functions. There-

fore, the highest wavenumber oscillation that can be sup-

ported is of a wavenumber at twice the grid scale,

[
pm,n
+,+, p

m+1,n
−,+ , pm,n+1

+,− , pm+1,n+1
−,−

]
= [1,−1,−1, 1]. By this argu-

ment, the four positive solutions to each of 𝜔+ and

𝜔− correspond to a solution in the range (kΔx, lΔz) ∈
(0, 𝜋) × (0, 𝜋) along with solutions aliased from regions

with a subgrid frequency in x (kΔx, lΔz) ∈ (𝜋, 2𝜋) × (0, 𝜋),
in z (kΔx, lΔz) ∈ (0, 𝜋) × (𝜋, 2𝜋), and in both x and z
(kΔx, lΔz) ∈ (𝜋, 2𝜋) × (𝜋, 2𝜋). For each wavenumber pair

(k, l) we must determine how to correctly assign each of the

four roots 𝜔±
j to the correct quadrant of the extended wave

number space. The method used here is as follows.

Consider a solution of (68) compactly rewritten as A𝜔V = 0

where V ≡ (U,W,P,B) and A𝜔 is the dispersion matrix that

depends upon the frequencies𝜔. Then let Y be one of U,W,P
or B. For each eigenvalue 𝜔 of the dispersion matrix A𝜔 there

exists the associated eigenvector Y such that A∗Y = 𝜔Y with

A∗ being the reduced 4×4 matrix that only contains the rows

and columns of A𝜔 that correspond to the components of Y . If

the eigenvector Y belongs to the first quadrant of the extended

wavenumber region, (kΔx, lΔz) ∈ (0, 𝜋) × (0, 𝜋), then there

will be no subgrid variation and hence all values of Y will have

the same sign: sign (Y) = [1, 1, 1, 1]. However if the mode

is aliased from one of the other quadrants of the extended

wavenumber space, then there will be a subgrid variation in

either or both directions and the values of Y will not all have

the same sign, i.e.

(kΔx, lΔz) ∈ (0, 𝜋) × (0, 𝜋) =⇒ sign (Y)
= [+1,+1,+1,+1] , (70)

(kΔx, lΔz) ∈ (𝜋, 2𝜋) × (0, 𝜋) =⇒ sign (Y)
= [+1,−1,+1,−1] , (71)

(kΔx, lΔz) ∈ (0, 𝜋) × (𝜋, 2𝜋) =⇒ sign (Y)
= [+1,+1,−1,−1] , (72)

(kΔx, lΔz) ∈ (𝜋, 2𝜋) × (𝜋, 2𝜋) =⇒ sign (Y)
= [+1,−1,−1,+1] . (73)
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Using these expressions, each of the four roots for 𝜔+ and

𝜔− can then be placed into the correct region of the extended

wavenumber space by choosing Y to be U,W,P and B in

turn and recording the quadrant of the extended wavenumber

space that the eigenvalue 𝜔 lies in. Generally the procedure

returns all four choices for Y placing the eigenvalue in the

same quadrant. However occasionally the method does not

work as well, in which case the quadrant is chosen by tak-

ing the most popular option from the four choices of Y . The

results for the three choices of the buoyancy space are pre-

sented in Figure 5 for 𝜔− and Figure A1b for 𝜔+. Note that

in both cases, to allow easier comparison with the previous

analytical and r = 0 results, the wavenumber space has been

scaled to
[
0, 2𝜋∕Δx

]2
. This is equivalent to comparing results

with r = 0 elements with grid spacing (Δx, Δz) to r = 1 ele-

ments with grid spacing (2Δx, 2Δz), i.e. the spacing between

the degrees of freedom has been kept constant at (Δx, Δz)
between the low- and higher-order elements.

The dispersion relation for gravity waves (𝜔−, Figure 5)

shows similar results to the r = 0 elements. In particular, the

dispersion issues observed at lowest order are not removed

by using higher-order polynomials. With b ∈ V0 horizontally

short waves are severely retarded while with b ∈ V2 vertically

short waves are severely retarded. There are discontinuities in

the dispersion relation between the four branches of solutions.

However it should be noted that in the limit l = 0, both the Vcp

and V2 spaces reproduce the exact solution𝜔− = N as kΔx →

∞ (Figure 5e, f) and so there is no discontinuity present in the

solution. In contrast the V0 space exhibits the discontinuity

even in this limiting case because of the different horizontal

representation of the buoyancy and vertical velocity variables

with b ∈ V0. This is the same behaviour as found in Melvin et
al. (2014) for the pure inertia waves. In general the dispersion

properties for the r = 1 elements show a small improvement

in accuracy compared to the r = 0 elements. In particular for

the gravity waves, the frequency drops off more slowly as l is

increased. The process of automatically placing frequencies

𝜔 in the correct quadrant of the extended wavenumber space

is difficult and the method outlined above is not guaranteed to

be successful. In fact, it breaks down for gravity waves with

b ∈ V0 and vertical wavenumber lΔz ≈ 𝜋∕2 as can be seen in

Figure 5a where some frequencies have been misplaced in the

incorrect quadrant, leading to jumps in the dispersion relation.

While discontinuities in the dispersion relation are expected

between the four branches when kΔx or lΔz = 𝜋, within each

section the dispersion relation should be continuous. To miti-

gate this error, a simpler one-dimensional semi-discretization

(continuous in z, discrete in x) has been performed and is pre-

sented in Appendix B, see Figures B1 and B2. These results

agree qualitatively with those in Figures 5 and A1b; due to the

semi-discrete nature they would not be expected to produce

the same results.

The dispersion relation for acoustic waves (𝜔+; Figure A1b,

d) is similar to that found for the r = 0 elements and also, as

expected, for inertia-gravity waves in the linear shallow-water

results from Melvin et al. (2014) when the reference depth

Φ0 ≈ c2
s . As in Melvin et al. (2014), there are discontinuities

in the dispersion relation between the four branches of solu-

tions that lie along lines kΔx = 𝜋 and lΔz = 𝜋 and, as in

section 3.1, there is very little difference between the choices

(a) (b) (c)

(d) (e) (f)

FIGURE 5 Positive roots of 𝜔− of Equation 68, with Δx = Δz = 2000 m and (a) V0 space, (b) Vcp space, and (c) V2 space. (d,e,f) are correponding

one-dimensional cuts for l = 0 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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(a) (b)

(c) (d)

(e) (f)

FIGURE 6 Buoyancy fields after 3 000 s of the gravity wave test with lowest-order elements (r = 0) and (a,c,e) Δx = 1 km and (b,d,f) Δx = 3 km and the

buoyancy field placed in (a,b) the fully continuous space V0, (c, d) the horizontally discontinuous, vertically continuous space Vcp, and (e, f) the fully

discontinuous space V2. In all cases the vertical resolution is Δz = 1 km and the time step is Δt = 10 s. Here and in Figures 7 and 11, contours are plotted in

[−0.003, 0.003]K with 5 × 10−4 K interval and negative contours are dashed [Colour figure can be viewed at wileyonlinelibrary.com]

for the different spaces used for the buoyancy variable; this

is expected since N2 ≪ k2c2
s and so the buoyancy terms are

negligible in this regime.

4 NUMERICAL RESULTS

In order to corroborate the theoretical findings of the previous

section, a mixed finite-element numerical scheme is run on

a wave propagation benchmark. To this end, we consider the

non-hydrostatic gravity wave experiment of Skamarock and

Klemp (1994), which tests the handling of horizontally prop-

agating non-orographic gravity waves in a two-dimensional

Cartesian domain [−150, 150] × [0, 10] km. The initial con-

dition is a balanced, thermally stratified reference state with

a superposed buoyancy perturbation. For the linear system of

equations studied here, this translates into a motionless basic

state with a superposed buoyancy perturbation of the form:

b = b0 sin
(
𝜋z
H

)[
1 + (x − xc)2

A2

]−1

, (74)

with b0 = 0.01 m s−2, H = 10 km, A = 5 km, and centred on

xc = 0.

The governing Equations 1–3 are discretized using a finite

element method as set out in section 3 and a (possibly

off-centred with an off-centring parameter 𝛼oc) implicit tem-

poral discretization. Defining 𝛿f ≡ f n+1 − f n for a field f ,

expressions 1–3 become

𝛿u + 𝛼ocΔt
(
𝛻𝛿p − ẑ ⋅ 𝛿b

)
= −Δt

(
𝛻pn − ẑ ⋅ bn) , (75)

𝛿p + 𝛼ocΔtc2
s𝛻 ⋅ 𝜹u = Δtc2

s𝛻 ⋅ un, (76)

𝛿b + 𝛼ocΔtN2ẑ ⋅ 𝜹u = ΔtN2ẑ ⋅ un. (77)

http://wileyonlinelibrary.com
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In order to evaluate the impact of different grid spacings,

the model is run with two different spatial resolutions. Specif-

ically, at lowest finite-element order r = 0 we consider the

spacings Δx = 1 km and Δx = 3 km. The vertical grid spac-

ing is kept fixed at Δz = 1 km, the focus being on horizontal

wave propagation. For all the runs we set 𝛼oc = 0.5. The time

step is Δt = 10 s, and the final time is T = 3 000 s.

Figure 6 displays the numerical results for lowest order

r = 0. The initial perturbation spreads into buoyancy-driven

inertia-gravity waves. The wave propagation is well repro-

duced for buoyancy in Vcp and V2, with only minor differ-

ences observed in the smallest amplitude waves. For fully

continuous buoyancy b ∈ V0, the situation is different. For

Δx = 3 km (Figure 6b) a large oscillatory pattern is evi-

dent around x = 0, highlighted in the one-dimensional cut

through mid-height z = 5 km in Figure 8a. At resolution

Δx = 1 km, the expected behaviour is found for all choices for

the buoyancy space. As observed in the previous section and

Figure 3a,d, in the fully continuous case the scheme is unable

to propagate modes with large kΔx.

Figure 7 displays the numerical results for the next higher

order r = 1. The horizontal grid spacings considered areΔx =
2 km and Δx = 6 km, so as to keep the number of degrees of

freedom the same as in the case r = 0. The vertical grid spac-

ing is Δz = 2 km. The wave pattern is well reproduced in all

cases, except for Figure 7b for b ∈ V0 withΔx = 6 km. Figure

7b is different in two respects. As in the lowest-order case, a

computational mode is evident in the centre. In addition, noise

appears to affect the waves away from the centre. This is evi-

dent in the most external crests in the two-dimensional plots

as well as in the one-dimensional cut in Figure 8b. At first

glance, the result is somehow counterintuitive. By increasing

(a) (b)

(c) (d)

(e) (f)

FIGURE 7 Buoyancy fields after 3 000 s of the gravity wave test with higher order elements (r = 1) and (a,c,e) Δx = 2 km and (b,d,f) Δx = 6 km and the

buoyancy field placed in (a,b) the fully continuous space V0, (c, d) the horizontally discontinuous, vertically continuous space Vcp and (e, f) the fully

discontinuous space V2. In all cases the vertical resolution is Δz = 2 km and the time step is Δt = 10 s [Colour figure can be viewed at wileyonlinelibrary.com]
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(a)

(b)

FIGURE 8 One-dimensional cuts at height z = 5 000 m of buoyancy fields

after 3 000 s of the gravity wave test with b ∈ V0 for (a) r = 0, showing

lower resolution results (Δx = 3 km, thin solid lines) and higher resolution

results (Δx = 1 km, dashed lines), and (b) higher order r = 1 showing lower

resolution results (Δx = 6 km, thin solid lines) and higher resolution results

(Δx = 2 km, dashed lines). In both plots, the light grey line denotes the

solution obtained with b ∈ Vcp, r = 0, Δx = 1 km. Other parameters are as

in Figures 6 and 7

the finite-element order, one would expect a less prominent

stationary mode. In terms of root mean square error with

respect to a fine-grid solution (not shown), the r = 1 result

is no less accurate than the r = 0 result. Nonetheless, the

propagating noise remains a disturbing feature. Viewing the

dispersion relation in Figure 5a,d with this result in mind,

a possible cause is the discontinuity in the dispersion rela-

tion which exists for all vertical wave numbers l with the V0

space, in contrast to the Vcp and V2 spaces. In the situation

presented in Figure 7b,e, the vertical motion is fairly well

resolved (lΔz is small) but the horizontal motion is poorly

resolved (kΔx is large). Hence, it is likely that the initial

perturbation is projecting onto wavenumbers around the dis-

continuity which in turn results in unexpected behaviour that

is absent from both the runs with the lower order V0 space

(where there is no discontinuity) and with the higher order

Vcp and V2 spaces (where the discontinuity vanishes in the

limit lΔz = 0).

A proposed solution to this discontinuity problem is

detailed in Staniforth et al. (2013) and involves partially lump-

ing the mass matrix of the momentum equation. This has been

adapted here to a partial lumping of the mass matrix of the V0

FIGURE 9 Unmodified (Equations 45–47; thick grey lines) and partially

lumped basis functions (Equations 80–82; thin black lines) for the quadratic

basis

space only. The solution is to use a perturbed test function in

the computation of Mb in Equation 66 such that

M(i1,i2)
b = ∫e

𝜙∗
i1𝜙i2dxdz, (78)

where now the partially lumped test functions are given by

𝜙∗
1
≡ [

Em(x) + 𝛾Gm(x)
]

En(z) (79)

and similarly for 𝜙∗
2,3,…,9

. The new one-dimensional basis

functions G (cf. Equations 45–47) are

Gm+1(s) =
(

s − sm+1∕2

sm+1 − sm+1∕2

)
sm ≤ s ≤ sm+1, (80)

Gm+1∕2(s) = 0 sm ≤ s ≤ sm+1, (81)

Gm(s) =
(

s − sm+1∕2

sm − sm+1∕2

)
sm ≤ s ≤ sm+1, (82)

and the coefficient 𝛾 = 1∕10. These basis functions along

with the unmodified set are shown in Figure 9. This method

of partial lumping (through the modified test functions) is

designed to reproduce both the one-dimensional partial lump-

ing result of Staniforth et al. (2013) and the two-dimensional

result of Melvin et al. (2014). The resulting dispersion relation

is shown in Figure 10.

The curves in Figure 10 show that the partial lumping has

the effect of closing the gap in the limit of lΔz → 0, as can

be seen in Figure 10d. Rerunning the test from Figure 7b, the

partial lumping reduces the noise seen in Figure 7b and, see

Figure 11a, which now closely approximates the lower order

r = 0 solution. However, note that, importantly, the unex-

pected signal in the centre remains. Also note that, although

the discontinuity at kΔx = 𝜋 for the gravity wave has been

reduced, the discontinuity at lΔz = 𝜋 remains, as do the

discontinuities for the acoustic waves, Figure 10a,c. To fully

remove all discontinuities, the mass matrices for the velocity

components Mu and Mw in Equation 66, along with Q where

it appears in the vertical momentum_equation, also need a

partial lumping applied, as shown in Melvin et al. (2014).

The partial mass lumping does not affect the overall accu-

racy of the scheme since, although it reduces the accuracy

in the horizontal of the temporal derivative in the buoyancy
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(a) (b)

(c) (d)

FIGURE 10 Positive roots of (a) 𝜔+ and (b) 𝜔− of Equation 68, with Δx = Δz = 2 000 m and V0 space with partial mass lumping applied (Equation 79).

(c,d) show corresponding one-dimensional cuts for l = 0. cf. Figures A1b,d and 5a,d respectively [Colour figure can be viewed at wileyonlinelibrary.com]

equation from r+2 to r+1 order accuracy (third order to sec-

ond order), the overall accuracy of the scheme will be limited

by the piecewise linear representation of terms such as the

pressure which will be r + 1 (second) order accurate, and so

overall the scheme is still r + 1 (second) order accurate.

5 DISCUSSION AND CONCLUSION

The discrete dispersion properties of three choices for the

buoyancy space in a mixed finite-element discretization of

geophysical fluid flow were investigated. For the lowest-order

analysis on the two-dimensional gravity wave equations,

velocity and pressure were placed in the RT0–P0 pair of func-

tion spaces. The best match with the analytical dispersion of

gravity waves was achieved with a horizontally discontinuous,

vertically continuous space for the buoyancy, which cor-

responds to the Charney–Phillips vertical staggering. The

second option of a fully discontinuous buoyancy space,

corresponding to the Lorenz vertical staggering, gave a

dispersion relation with vanishing phase velocity for high

vertical wavenumbers. A third, fully continuous option, corre-

sponding to the natural space for scalars in the deRham com-

plex of mixed finite-element spaces, was shown to slow down

wave frequencies on a sizeable range of horizontal wavenum-

bers. These findings also broadly extended to higher-order

r = 1 elements, notably the fully continuous space was shown

to still slow down wave frequencies over a smaller but still siz-

able range of horizontal wavenumbers. Additionally, as found

in earlier studies of the shallow-water equations, unphysical

spectral gaps exist between the extra branches of solutions

now permitted by the higher-order elements. If the horizontal

representation of the buoyancy space matches that of the

vertical momentum space, i.e. for b ∈ Vcp,V2, then in the

limit lΔz → 0 the exact representation of the gravity waves

is obtained. By contrast, for b ∈ V0, only the well-resolved

half of the spectrum is exact, whilst for high wavenumbers

the frequency is spuriously retarded to zero as in the case for

r = 0 elements with b ∈ V0.

The outcome of the theoretical analysis was comple-

mented by a numerical comparison of the three choices on

simulations of gravity wave propagation in a vertical slice.

For a coarse grid run at lowest order with the fully contin-

uous space, a spurious zigzag grid-size pattern appeared

in the central part of the domain which became decoupled

from the dynamics as the scheme was unable to propagate

the large horizontal wavenumber end of the spectrum. By

contrast, results in line with the literature were obtained

using the horizontally discontinuous spaces. The pattern

observed in Figure 6b would have potentially serious effects

in a numerical weather prediction model. Left unchecked,

the spurious signal would be bound to interact with forcing

from the physics parametrizations at the same horizontal

scale in an uncontrollable fashion, inevitably affecting the

overall accuracy of coupled simulations, even for motions

well-resolved in the vertical direction.

Numerical results using one degree higher polynomials

confirmed the presence of the computational mode for the

coarse grid run in the fully continuous space. This was

http://wileyonlinelibrary.com
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(a)

(b)

FIGURE 11 (a) Computed result at final time for b ∈ V0 with partial mass

lumping, and (b) a one-dimensional cut at height z = 5000 m [Colour figure

can be viewed at wileyonlinelibrary.com]

in some way unexpected as, at least at an intuitive level,

the higher the polynomial order, the less the horizontal

distance between degrees of freedom of buoyancy and vertical

velocity. In the same simulation, small oscillations were

shown to affect the wave dynamics at all scales. A partial

mass-lumping strategy as used in Melvin et al. (2014) was

shown to be effective in closing the gap and in smoothing out

the oscillations. Note that, although using higher-order ele-

ments results in more terms in the basis function expansions

for a variable, cf. Equations 22 and 56, so that an increased

number of operations must be performed to evaluate a given

term (particularly for nonlinear terms), this does not necessar-

ily entail degrading computational performance in large-scale

problems. In fact, due to the balance of costs between compu-

tation and communication, higher-order methods can perform

extremely well on large-scale problems, e.g. Nair et al. (2009).

The present study has considered only the case of Carte-

sian grids of quadrilaterals in two spatial dimensions and

used linear equations. Nonetheless, the gathered findings

appear sufficient to recommend relinquishing the fully con-

tinuous option for the discretization of the temperature field

in compatible finite-element discretizations for geophysical

flow. The horizontally discontinuous Charney–Phillips and

Lorenz-like options should be favoured instead, based upon

the case studied here, with the Charney–Phillips-like option

providing the most accurate dispersion properties. In a non-

linear setting, the horizontally discontinuous choice implies

a technical overhead in that it requires the computation of

boundary integral terms on horizontal facets that arise from

the integration by parts of the pressure gradient term in

the momentum equation and of the advective term in the

potential temperature equation in a fully compressible model

(Natale et al., 2016).

The results here extend the earlier insights in the disper-

sion studies of Staniforth et al. (2013) and Melvin et al.
(2014) and are part of the current effort in the develop-

ment of a scalable dynamical core for the next generation

of atmospheric models at the Met Office (Staniforth et al.,
2014). Thanks to its grid-agnostic mimetic properties, the

mixed finite-element methodology is being employed to gen-

eralize to non-orthogonal grids the accuracy properties of

current models. Analysis of results with a three-dimensional

compressible implementation on Cartesian and spherical test

cases will be the subject of future publications.

APPENDIX A: ACOUSTIC WAVE
DISPERSION RELATION

The discrete dispersion relation for the acoustic wave branch

of the dispersion relation is shown in Figure A1 for (a,c) r = 0

elements and (b,d) r = 1 elements. In both cases only the

result for the V0 space is shown as results for the other spaces

are visually identical.

APPENDIX B: SEMI-DISCRETE DISPERSION
ANALYSIS

The noise that appears in the r = 1 elements when b ∈
V0 at coarse resolution, Figure 7b, can be investigated in a

simpler setting by using a semi-discrete approach. Since the

problem is theorized to be a result of the different representa-

tions of the buoyancy space in the horizontal direction, then

a one-dimensional dispersion analysis that is semi-discrete

in x will reveal the problem. Substituting solutions that are

harmonic in the z direction of the form

(u, w, p, b) (x, t) =
(

Ũ, W̃, P̃, B̃
)
(x) exp [i (lz − 𝜔t)] ,

into Equations 1–3 yields the system

− i𝜔Ũ + dP̃
dx

= 0, (B1)

−i𝜔W̃ + ilP̃ − B̃ = 0, (B2)

−i𝜔P̃ + c2
s

(
dŨ
dx

+ ilW̃
)

= 0, (B3)

−i𝜔B̃ + N2W̃ = 0, (B4)

which is a system of a single dependent variable x. In

one dimension the finite element function spaces used in

section 3.2 reduce to either a quadratic continuous space (Ũ)
or a linear discontinuous space (P̃, W̃) and the spaces used for

the buoyancy variable B̃ are the quadratic continuous space

(b ∈ V0) or the linear discontinuous space (b ∈ Vcp,V2). It

should be noted that these spaces correspond to those studied

in Staniforth et al. (2013) and Melvin et al. (2014).

http://wileyonlinelibrary.com
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(a) (b)

(c) (d)

FIGURE A1 (a) Positive square root of 𝜎1, (Equation 44), with r = 0 elements and Δx = Δz = 1000 m with V0 space. (b) Positive roots of 𝜔+

(Equation 68), with r = 1 elements and Δx = Δz = 2000 m with V0 space. (c,d) show corresponding one-dimensional cuts for l = 0 [Colour figure can be

viewed at wileyonlinelibrary.com]

(a) (b)

(c) (d)

FIGURE B1 One-dimensional dispersion relation with semi-discretization and lΔz = 𝜋∕4 and Δx = Δz = 2000 m for the (a, b) minus branch, (c, d) plus

branch. (a,c) are for b ∈ Vcp, and (b,d) for b ∈ V0. The exact solution is shown as dashed, and the semi-discrete solution as solid

Applying the method of section 3.2 with harmonic sub-

stitutions
(

Ũ, W̃, P̃, B̃
)
(x) = (U,W,P,B) exp (ikx) (but

where all the vertical variations are neglected) to the set of

Equations B1–B4 leads to a system of eight equations for

the unknowns (U,W,P,B) which corresponds to two roots

for each of ±𝜔+ and ±𝜔−. Again, one root corresponds to a

branch that has been aliased from higher wavenumbers but,

in contrast to the two-dimensional case, it is straightforward

to separate the two branches. The positive roots of 𝜔+ and

𝜔− are shown in Figure B1 for a vertical wavenumber of

l = 𝜋∕(4Δz). For the gravity waves when b ∈ Vcp,V2 there

is an accurate representation of the dispersion relation (in fact

http://wileyonlinelibrary.com
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(a)

(b)

FIGURE B2 One-dimensional dispersion relation with semi-discretization

and lΔz = 𝜋∕4 and Δx = Δz = 2, 000 m with partial mass lumping of the

V0 space: (a) the minus branch, and (b) the plus branch.The exact solution

is shown as dashed, and the semi-discrete solution as solid

the discrete relation overlies the analytical results), whilst for

b ∈ V0, although half the spectrum (for kΔx < 𝜋) is again

very accurate, the other half of the spectrum (for kΔx > 𝜋)

is poorly represented and there is a discontinuity between the

two branches. To remove this discontinuity the partial lump-

ing of section 4 is successfully applied, Figure B2a, at the

cost of slightly degrading the accuracy of the discrete disper-

sion for kΔx < 𝜋∕2. The discontinuity for the acoustic waves,

Figure B2b, is unaffected, but this could be removed by using

the same partial lumping approach to the mass matrix in the

u equation as shown in Staniforth et al. (2013).
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