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ABSTRACT

When written in conservation form for mass, momentum, and density-weighted potential temperature, and

with Exner pressure in the momentum equation, the pseudoincompressible model and the hydrostatic model

only differ from the full compressible equations by some additive terms. This structural proximity is trans-

ferred here to a numerical discretization providing seamless access to all three analytical models. The semi-

implicit second-order scheme discretizes the rotating compressible equations by evolving full variables, and,

optionally, with two auxiliary fields that facilitate the construction of an implicit pressure equation. Time steps

are constrained by the advection speed only as a result. Borrowing ideas on forward-in-time differencing, the

algorithm reframes the authors’ previously proposed schemes into a sequence of implicit midpoint step,

advection step, and implicit trapezoidal step. Compared with existing approaches, results on benchmarks of

nonhydrostatic- and hydrostatic-scale dynamics are competitive. The tests include a new planetary-scale

gravity wave test that highlights the scheme’s ability to runwith large time steps and to accessmultiplemodels.

The advancement represents a sizeable step toward generalizing the authors’ acoustics-balanced initialization

strategy to also cover the hydrostatic case in the framework of an all-scale blended multimodel solver.

1. Introduction

a. Motivation: Blending of full and reduced
dynamical flow models

Atmospheric dynamics features a variety of scale-

dependent motions that have been analytically de-

scribed by scale analysis and asymptotics (Pedlosky

1992; Klein 2010). Reduced dynamical models emerging

from the full compressible flow equations through gen-

erally singular asymptotic limits capture the essence of

the phenomena of interest and reveal which effects

are important – and which effects less so – for their de-

scription. Relevant examples include the anelastic and

pseudoincompressible models, the quasigeostrophic and

semigeostrophic models, and the hydrostatic primitive

model equations (Hoskins and Bretherton 1972; Lipps

and Hemler 1982; Durran 1989; Pedlosky 1992; Bannon

1996; Cullen and Maroofi 2003; Klein 2010).

Cullen (2007) argues that compressible atmospheric

flow solvers should accurately reproduce the effective

dynamics encoded by such reduced dynamical models

with no degradation of solution quality as the respective

limit regime is approached. Related numerical methods

are known as asymptotic preserving or asymptotically

adaptive schemes in the numerics literature, see Klein

et al. (2001) and the review by Jin (2012) for references.

If a scheme is designed such that it not only solves the

compressible equations close to some limit regimes with

the required accuracy but that it can also solve the lim-

iting model equations when the respective asymptotic

parameter is set to zero, this opens avenues to interest-

ing applications and investigations.

Implementations of different model equations often

use different numerical methods to represent identical

terms. For example, in a comparison of a compressible

model and a pseudoincompressible model, the former

might discretize advectionwith a semi-Lagrangian scheme,
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while the latter uses a higher-order upwind finite vol-

ume formulation. In this case, differences in model

results cannot be uniquely attributed to the differences

in the underlying equations but may as well be influ-

enced by the use of different advection schemes (see

Smolarkiewicz and Dörnbrack 2008; Benacchio et al.

2014, for further examples).

Using a numerical method for the compressible

equations that defaults to soundproof dynamics for

vanishing Mach number, Benacchio et al. (2014) sug-

gested an application in the context of well-balanced

data assimilation. They implement a blended scheme

that can be tuned to solve any one of a continuous family

of equations that interpolate between the compressible

and pseudoincompressible models, and use this fea-

ture to filter unwanted acoustic noise from some given

or assimilated initial data. To properly capture a

compressible flow situation with unknown balanced

initial pressure distribution, they operate the scheme

for some initial time steps in its pseudoincompressible

mode and then relax the model blending parameter

toward its compressible mode over a few more steps.

In this fashion, the pseudoincompressible steps serve

to find a balanced pressure field compatible with the

velocity and potential temperature initial data, and the

subsequent compressible flow simulation is essentially

acoustics free. We remark that the pseudoincompressible

and hydrostatic models are limits of the compressible

equations for vanishing Mach number and aspect ratio,

respectively.

Continuing this line of development, we describe in

this paper a semi-implicit scheme that allows us to ac-

cess the compressible, pseudoincompressible, and hy-

drostatic models within one and the same finite volume

framework.

b. Related numerical schemes in the literature

A significant challenge in the dynamical description

and forecast of weather and climate lies in the inher-

ently multiscale nature of atmospheric flows. Driven

by stratification and rotation, physical processes arise

around a large-scale state of horizontally geostrophic,

vertically hydrostatic balance. The compressible Euler

equations are deemed the most comprehensive model

to describe the resolved fluid dynamics of the system

before parameterizations of unresolved processes are

added. On the one hand, these equations allow for

buoyancy-driven internal gravity wave and pressure-

driven sound wave adjustments. On the other hand,

meteorologically relevant features such as cyclones and

anticyclones in the midlatitudes involve motions much

slower than the sound speed, thus forcing numerical

stiffness into discretizations of the compressible model

in the low Mach number regime. As a result, most if not

all numerical schemes used in operational weather

forecasting employ varying degrees of implicitness or

multiple time stepping that enable stable runs with long

time step sizes unconstrained by sound speed [see, e.g.,

the reviews Marras et al. (2016); Mengaldo et al. (2019)

and references therein for a list]. Typically, semi-implicit

approaches integrate advective transport explicitly,

then build an elliptic problem for the pressure variable

(or, in other models, for the divergence) by combining

the equations of the discrete system. The solution of the

problem yields updates that are then replaced into the

other variables.

Examples of operational dynamical cores using semi-

implicit time-integration strategies are the European

Centre for Medium-Range Weather Forecasts (ECMWF)

IFS (Temperton et al. 2001; Hortal 2002), that dis-

cretizes the hydrostatic primitive equations, and the

Met Office’s ENDGame (Wood et al. 2014; Benacchio

and Wood 2016). In particular, ENDGame uses a

double-loop structure in the implicit solver entailing

four solves per time step in its operational incarnation, a

strategy carried over in recent developments (Melvin

et al. 2019), and allowing the dynamical core to run

stably and second-order accurately without additional

numerical damping (in the operational setup, a small

amount of off-centering is employed). By contrast, many

other semi-implicit or time-split explicit discretizations

use off-centering, divergence damping (Bryan andFritsch

2002), or otherwise artificial diffusion in order to quell

numerical instabilities. In nonoperational research,

Dumbser et al. (2019), among others, present buoyancy-

and acoustic-implicit second-order finite volume dis-

cretizations on staggered grids.

To simplify the formulation of the semi-implicit

method, the equation set is often cast in terms of per-

turbations around an ambient state or a hydrostatically

balanced reference state (see, e.g., Restelli and Giraldo

2009; Smolarkiewicz et al. 2014, 2019). However, as

noted by Weller and Shahrokhi (2014), whose model

does not use perturbations, large deviations from the

reference state may question the assumptions under-

pinning the resulting system. The use of background or

ambient states adds a priori knowledge that a model

working with full variables would not need. Wood

et al. (2014) and Melvin et al. (2019) use the model

state computed at the previous time step as evolving

background profile, although some readjustments are

implemented to circumvent background states with

unstable stratification. Bubnová et al. (1995)’s model,

drawn on Laprise (1992), is based on full variables,

yet retains basic state pressure also in the nonlinear

version. While instabilities were later fixed as reported
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in Bénard et al. (2010), it remains unclear how to miti-

gate the additional computational costs associated with

global nonhydrostatic modules in hydrostatic modeling

frameworks [see, e.g., the direct comparison in Fig. 13 of

Kühnlein et al. (2019)]. The numerical scheme pre-

sented in this paper can operate both on a full-variable

formulation and a perturbation-variable formulation of

the implicit substep.

The FVMmodel (Kühnlein et al. 2019), an alternative

next-generation ECMWF dynamical core, uses a fi-

nite volume discretization to address the potential ef-

ficiency issues caused by spectral transforms in IFS

at increasing global resolutions. The time integration

algorithm in FVM builds on extensive earlier experi-

ence with the EULAG model and the MPDATA

advection scheme. Through appropriate correction

of a first-order upwind discretization, a system is

constructed that encompasses transport and implicit

dynamics in an elegant analytical and numerical

framework (Smolarkiewicz et al. 2014, 2016, and ref-

erences therein). The approach, which in its default

configuration relies on time extrapolation of advecting

velocities and subtraction of reference states, also

contains soundproof analytical systems as subcases and

has shown excellent performance in integrating atmo-

spheric flows at all scales without instabilities. How-

ever, their transition from compressible to soundproof

discretizations is not seamless in the sense of the

present work, since the structure of their implicit

pressure equations substantially differs from one

model to the other (but does take into account accu-

rate treatment of boundary conditions and forces).

Similarly to the present approach, an optional variant

of their scheme avoids extrapolations in time from

earlier time levels.

Drawing on the finite volume framework for sound-

proof model equations in Klein (2009), the authors of

Benacchio (2014); Benacchio et al. (2014) devised a

numerical scheme for the compressible Euler equa-

tions to simulate small- to mesoscale atmospheric

motions, using a time step unconstrained by the

speed of acoustic waves within the abovementioned

soundproof-compatible switchable multimodel for-

mulation. The underlying theoretical framework was

extended by Klein and Benacchio (2016) to in-

corporate the hydrostatic primitive equations and the

anelastic, quasi-hydrostatic system of Arakawa and

Konor (2009) with the introduction of a second

blending parameter.

A major hurdle toward applying the numerical scheme

of Benacchio et al. (2014) to the theoretical setup of

Klein and Benacchio (2016) is the former’s time step

dependency on the speed of internal gravity waves, a

severe constraint on the applicability of the numerical

method to large-scale tests. The present study ad-

dresses this fundamental shortcoming.

c. Contribution

By reframing the schemes of Klein (2009) and

Benacchio et al. (2014) as a two-stage-implicit plus

transport system, this paper proposes an original set

of features within a discretization that:

d Evolves the compressible equations with rotation in

terms of full variables, using auxiliary potential tem-

perature and Exner pressure variables in casting the

buoyancy-implicit substep;
d Provides discretely equivalent full-variable and

perturbation-variable formulations of the implicit

substep;
d Operates with conservative advection of mass, mo-

mentum, and mass-weighted potential temperature,

and is second-order accurate in all components,

without the need for additional diffusion;
d Uses a time step constrained only by the underlying

advection speed;
d Works with a node-based implicit pressure equation

only, thus avoiding a cell-centered MAC-projection

(see Almgren et al. 1998; Benacchio et al. 2014, and

references therein);
d Can be operated in the soundproof and hydrostatic

modes without modifying the numerics;
d Constitutes a basis for a multiscale formulation with

access to hydrostasy and geostrophy.

The method uses explicit second-order MUSCL

scheme for advection (Van Leer 2006), while the pres-

sure and momentum equations are stably integrated by

solving two elliptic problems embedded in the implicit

midpoint and implicit trapezoidal stages. A hydrostatic

switch, also available within the ENDGame model

(Melvin et al. 2010), is added to the soundproof switch of

Benacchio et al. (2014), enabling evaluation of three

analytical systems of equations under the same numer-

ical framework.

The scheme is validated against two-dimensional

Cartesian benchmarks of nonhydrostatic and hydro-

static dynamics. Simulations of gravity wave tests at

large scale and with rotation show good solution quality

relative to existing approaches already at relatively

coarse resolutions. In particular, a new planetary-scale

extension of the hydrostatic-scale test of Skamarock and

Klemp (1994) showcases the large time step capabilities

of the present scheme.

Exploiting the multimodel character of the numerical

framework, the model is also run in pseudoincompressible

mode and hydrostatic mode and analyze the difference

NOVEMBER 2019 BENACCH IO AND KLE IN 4223



with the compressible simulation. As expected from

theoretical normal mode analyses [Davies et al. (2003);

Dukowicz (2013), though see also Klein et al. (2010) for

a discussion on regime of validity of soundproof models],

the compressible/hydrostatic discrepancy shrinks with

smaller vertical-to-horizontal domain size aspect ratios,

while the compressible/pseudoimcompressible discrep-

ancy grows. Note also that Smolarkiewicz et al. (2014)

demonstrated much larger discrepancies between

compressible and anelastic results than between

compressible and pseudoincompressible results for a

large-scale baroclinic wave test. They traced the ef-

fect back to the linearization of the pressure gradient

term that occurs in the anelastic model but not in the

pseudoincompressible model.

The paper is organized as follows. Section 2 con-

tains the governing equations that are discretized

with the methodology summarized in section 3 and

detailed in section 4. Section 5 documents the per-

formance of the code on the abovementioned tests.

Results are discussed and conclusions drawn in

section 6.

2. Governing equations

The governing equations for adiabatic compressible

flow of an inert ideal gas with constant specific heat ca-

pacities under the influence of gravity and in a rotating

coordinate system corresponding to a tangent plane

approximation may be written as

r
t
1=k � (ru)1 (rw)

z
5 0, (1a)

(ru)
t
1=k � (ru+u)1 (rwu)

z
52[c

p
P=kp1 f (y)k3 ru] ,

(1b)

(rw)
t
1=k � (ruw)1 (rw2)

z
52(c

p
Pp

z
1 rg) , (1c)

P
t
1=k � (Pu)1 (Pw)

z
5 0: (1d)

Here r is the density, u5 (u, y) and w are the horizontal

and vertical components of the velocity,

p5

 
p

p
ref

!R/cp

and P5
p
ref

R

 
p

p
ref

!cy /cp

[ rQ (2)

are the Exner pressure and the mass-weighted potential

temperature, with pref a suitable reference pressure, R

the gas constant, and cp and cy 5 cp2R the specific heat

capacities at constant pressure and constant volume.

Furthermore, g is the acceleration of gravity (taken as

constant), f(y)5 f0 1 by the local Coriolis parameter in

the b plane with constant f0 and b, k the vertical unit

vector, and 3 the cross product. Subscripts as in Ux [
›xU:5›U/›x denote partial derivatives with respect to

the first coordinate of a Cartesian (x, y, z) coordinate

system or time t, and =k 5 (›x, ›y, 0) subsumes the

horizontal derivatives.

Given (1a) and (1d), the potential temperatureQ5
P/r satisfies the usual advection equation:

Q
t
1 u � =kQ1wQ

z
5 0: (3)

3. Compact description of the time integration
scheme

In this section we describe the main structural fea-

tures of the discretization, which evolves and joins as-

pects of the models in Klein (2009); Benacchio et al.

(2014), and borrows key ideas from the forward-in-time

integration strategy suggested by Smolarkiewicz and

Margolin (1993, 1997) in realizing the implicit discretiza-

tion of the gravity term.

a. Reformulation of the governing equations

1) EVOLUTION OF THE PRIMARY VARIABLES

The primary unknowns advanced in time by the

present scheme are the same as in (1) [i.e., (r,ru, rw,P)].

Introducing a seamless blended discretization of the

compressible Euler and pseudoincompressible equa-

tions (Durran 1989) and following Klein (2009); Klein

et al. (2010), in Benacchio et al. (2014) the authors

observed that the pseudoincompressible model is ob-

tained from the compressible equations in (1) by simply

dropping the time derivative of P 5 rQ from (1d). To

take advantage of this close structural model relation-

ship in constructing a blended scheme that can be tuned

seamlessly from solving the full compressible to solving

the pseudoincompressible model equations, they in-

troduced the inverse of the potential temperature,

x5 1/Q , (4)

and interpreted the mass balance (1a) as a transport

equation for x:

r
t
1=k � (ru)1 (rw)

z
5 (Px)

t
1=k � (Pxu)1 (Pxw)

z

5 0. (5)

Here the field (Pv), v 5 (u, w), takes the role of an

advecting flux. Using this interpretation throughout

the equations and introducing two blending parame-

ters, aw and aP, for the nonhydrostatic/hydrostatic

and compressible/pseudoincompressible transitions,

one obtains
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r
t
1=k � (Pux)1 (Pwx)

z
5 0, (6a)

(ru)
t
1=k � (Pu+xu)1 (Pwxu)

z

52[c
p
P=kp1 f (y)k3 ru] , (6b)

a
w
[(rw)

t
1=k � (Puxw)1 (Pwxw)

z
]

52(c
p
Pp

z
1 rg) , (6c)

a
P
P
t
1=k � (Pu)1 (Pw)

z
5 0: (6d)

System (6) is the analytical formulation used in this

paper, and it facilitates the extension of the blending

of Benacchio et al. (2014) to hydrostasy along the

lines of the theory described in Klein and Benacchio

(2016). The quasigeostrophic case will be addressed in

forthcoming work.

2) AUXILIARY PERTURBATION VARIABLES AND

THEIR EVOLUTION EQUATIONS

A crucial ingredient of any numerical scheme implicit

with respect to the effects of compressibility, buoyancy,

and Earth rotation, is that it has separate access to the

large-scale mean background stratification of potential

temperature, or its inverse. Many schemes found in the

literature use perturbation variables to realize such ac-

cess, and the reference implementation of our scheme

described in this section is also constructed this way. Yet,

we demonstrate in appendix D that the scheme can be

formulated equivalently working with full variables only.

For the formulationwithperturbationvariables, theExner

pressurep and inverse potential temperature x are split into

p(t, x, z)5p0(t, x, z)1p(z) and

x(t, x, z)5 x0(t, x, z)1 x(z) , (7)

with the hydrostatically balanced background variables

satisfying

dp

dz
52

g

c
p

x and p(0)5 1. (8)

Since, for the compressible case, P can be expressed as a

function of p alone according to expression (2), and

since p is time independent across a time step, the per-

turbation Exner pressure satisfies

a
P

�
›P

›p

�
p0

t 52= � [P(p)v] , (9)

which is a direct consequence of (6d). In turn, the per-

turbation form of the mass balance serves as the evo-

lution equation for x0, from (5) and (7)

(Px0)
t
1=k � (Pux0)1 (Pwx0)

z
52Pwx

z
. (10)

Auxiliary discretizations of (9) and (10) will be used in

constructing a numerical scheme for the full variable

form of the governing equations in (6) that is stable for

time steps limited only by the advection Courant num-

ber. In the current implementation of the scheme, the

perturbation Exner pressure variable is actually evolved

in time redundantly to the pressure-like variable P as

this yielded the most robust and accurate results. A

similar redundancy of an Exner pressure variable was

also found advantageous in ECMWF’s FVM module

(see Kühnlein et al. 2019, and references therein).

In the sequel, borrowing notation from Smolarkiewicz

et al. (2014), we introduce

C5 (x,xu, xw, x0) (11)

and subsume the primary equations in (6) and the aux-

iliary equation for x0 in (10) as

(PC)
t
1A(C;Pv)5Q(C;P) (12a)

a
P
P

t
1= � (Pv)5 0: (12b)

Note that the p0 equation in (9) is equivalent to (12b)

and thus it is not listed separately, although it will be

used in an auxiliary step in the design of a stable dis-

cretization of (12b).

b. Semi-implicit time discretization

1) IMPLICIT MIDPOINT PRESSURE UPDATE AND

ADVECTIVE FLUXES

In the first step of the scheme, we determine advective

fluxes at the half-time level, (Pv)n11/2, which for aP 5 1

immediately yield the update of the internal energy

variable, P, through

a
P
(Pn11 2Pn)52Dt~= � (Pv)n11/2 , (13)

where ~= is the discrete approximation of the divergence.

In contrast, for aP 5 0 this equation represents the

pseudoincrompressible divergence constraint.

Note that in the compressible case this update corre-

sponds to a time discretization of the P equation using

the implicit midpoint rule. We recall here for future

reference that an implementation of the implicit mid-

point rule can be achieved by first applying a half time

step based on the implicit Euler scheme followed by

another half time step based on the explicit Euler

method (Hairer et al. 2006). First-order accurate time

integration is sufficient for generating the half-time level

fluxes, see appendix A for details.
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To achieve stability for large time steps, only lim-

ited by the advection Courant number, we invoke

standard splitting into advective and nonadvec-

tive terms in (6), (10) for the prediction of (Pv)n11/2,

with explicit advection and linearly implicit treat-

ment of the right-hand sides. Thus we first ad-

vance the scalars from (11) by half an advection

time step using advective fluxes computed at the old

time level:

(PC)# 5ADt/2
1st [C

n; (Pv)n] (14a)

P# 5Pn 2
Dt

2
e= � (Pv)n . (14b)

Here ADt
1st denotes an at least first-order accurate ver-

sion of our advection scheme for theC variables given

the advecting fluxes (Pv)n, see section 4b for details.

In the pseudoincompressible case the discretization

guarantees that (Pv)n is discretely divergence free as

shown below, so that P# 5 Pn and the aP parameter

need not be explicitly noted in (14b).

Next, the half-time level fluxes (Pv)n11/2 are obtained

via the implicit Euler discretization of a second split

system that only involves the right-hand sides of (6) (see

section 4c below for details):

(PC)n11/2 5 (PC)# 1
Dt

2
Q(Cn11/2;Pn11/2) , (15a)

a
P
Pn11/2 5a

P
Pn 2

Dt

2
= � (Pv)n11/2 . (15b)

We note that foraP5 1 (15b) corresponds to the implicit

Euler update of P to the half-time level (i.e., to the first

step of our implementation of the implicit midpoint

rule for this variable). Furthermore, as in Benacchio

et al. (2014), in this step the relation between P, which

is being updated by the flux divergence, and p, whose

gradient is part of the momentum forcing terms, is

approximated through a linearization of the equation

of state (2):

Pn11/2 5Pn 1

�
›P

›p

�#

(pn11/2 2pn) . (16)

With this linearization, this implicit Euler step involves

a single linear elliptic solve for pn11/2. Optionally, an

outer iteration of the linearly implicit step can be in-

voked to guarantee consistency with the equation of

state for P(p) up to a given tolerance.

These preliminary calculations serve to provide the

fluxes (Pv)n11/2 later needed both for the final explicit

Euler update of P to the full time level tn11 and for the

advection of the vector of specific variablesC from (11)

as part of the overall time stepping algorithm, see

(17b) below.

For aP 5 0 the P equation reduces to the

pseudoincompressible divergence constraint, and P

and the Exner pressure p decouple. While P[P(z)

remains constant in time in this case, increments of

p correspond to the elliptic pressure field that guar-

antees compliance of the velocity with the divergence

constraint.

2) IMPLICIT TRAPEZOIDAL RULE ALONG EXPLICIT

LAGRANGIAN PATHS FOR ADVECTED

QUANTITIES

Given the advective fluxes, (Pv)n11/2, the full second-

order semi-implicit time step for the evolution equation

of the advected scalars, C, reads as follows:

(PC)*5 (PC)n 1
Dt

2
Q(Cn;Pn) , (17a)

(PC)**5ADt
2nd[C*; (Pv)n11/2] , (17b)

(PC)n11 5 (PC)**1
Dt

2
Q(Cn11;Pn11) , (17c)

a
P
Pn11 5a

P
Pn 2Dt= � (Pv)n11/2 . (17d)

Here we notice that the homogeneous Eqs. (1a) and

(1d) for r andP are not involved in (17a) and (17c). The

updates to rn11 and Pn11 are entirely determined by

the advection step in (17b) and by the completion of

the implicit midpoint discretization of the P equation

in (17d).

Therefore, the updated unknowns in the explicit and

implicit Euler steps (17a) and (17c) are (u, w, x0) only.
Nevertheless, in order to obtain an appropriate ap-

proximation of the Exner pressure gradient needed in

the momentum equation, an auxiliary implicit Euler

discretization of the energy equation in perturbation

form for p0 from (9) is used in formulating (17c). See

section 4c for details.

After completion of the steps in (17) we have

two redundancies in the thermodynamic variables.

In addition to the primary variables (r, P), we also

have the perturbation inverse potential temperature,

x0, and the Exner pressure increment p0. The re-

dundancy in x0 is trivially removed by resetting the

variable after each time step to x0 5 r/P2 x, while

the redundancy in the auxiliary Exner pressure is

maintained throughout the time integration. See also

section 4d.

Note that the implicit trapezoidal step (17) and to a

lesser extent the treatment of P in (14), (15b), and (17d),

closely resemble the EULAG/FVM forward-in-time
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discretization from Smolarkiewicz and Margolin (1997),

Prusa et al. (2008), Smolarkiewicz et al. (2014, 2016), and

Kühnlein et al. (2019).

We emphasize that (17a)–(17c) (i.e., the combination

of an explicit Euler step for the fast modes, an ad-

vection step, and a final implicit Euler step for the fast

modes), is not a variant of Strang’s operator splitting

strategy (Strang 1968). To achieve second-order ac-

curacy, Strang splitting requires all substeps of the

split algorithm to be second-order accurate in-

dividually, aside from being applied in the typical al-

ternating sequence. This condition is not satisfied

here as the initial explicit Euler step and final im-

plicit Euler step are both only first-order accurate.

As shown by Smolarkiewicz and Margolin (1993),

second-order accuracy results here from a structurally

different cancellation of truncation errors than in

Strang’s argument: by interleaving the Euler steps

(17a) and (17c) with a full time step of second-order

advection in (17b), one effectively applies the implicit

trapezoidal (or Crank–Nicolson) discretization along

the Lagrangian trajectories that are implicitly de-

scribed by the finite-volume advection scheme, and

this turns out to be second-order accurate if the tra-

jectories (i.e., the advection step) are so.

4. Discretization details

a. Cartesian grid arrangement

The space discretization of the present scheme for the

primary and auxiliary solution variables

U 5 (r, ru, rw,P,Px0)T (18)

is centered on control volumes Ci,j,k formed by a

Cartesian mesh with constant, but not necessarily equal,

grid spacingsDx,Dy,Dz, and grid indices i5 0, . . . , I2 1,

j5 0, . . . , J2 1, k5 0, . . . ,K2 1 in the three coordinate

directions (Fig. 1 shows a two-dimensional slice). The

discrete numerical solution consists of approximate

gridcell averages:

Un
i,j,k ’

1

DxDyDz

ð
Ci,j,k

U(x, tn) d3x. (19)

The scheme is second-order accurate (see appendix B

for empirical corroboration), so that we can inter-

changeably interpret Un
i,j,k as the cell average or as a

point value ofU at the center of mass of a cell within the

approximation order.

Advection of the specific variablesC defined in (11) is

mediated by staggered-grid components of the advec-

tive flux field (Pv)n11/2 referred to in section 3b above.

Specifically, the fluxes (PuC)n11/2
i11/2,j,k, (PyC)n11/2

i,j11/2,k, and

(PwC)n11/2
i,j,k11/2 are defined on cell faces Ii11/2,j,k, Ii,j11/2,k,

and Ii,j,k11/2 (Fig. 1). Given, for example, (PuC)n11/2
i11/2,j,k,

the associated Cn11/2
i11/2,j,k is determined by a monotone

upwind scheme for conservation laws [MUSCL, Van

Leer (2006)] as described below. Finally, the pertur-

bation Exner pressure used in (9) is stored at

the nodes.

b. Advection

Any robust numerical scheme capable of performing

advection of a scalar in compressible flows is a good

candidate for the generic discrete advection operators

ADt
1st and ADt

2nd introduced in (14a) and (17b). The

present implementation is based on a directionally

Strang-split monotone upwind scheme for conserva-

tion laws [MUSCL, see, e.g., Van Leer (2006)]:

Suppose the half-time predictor step from (15), the

details of which are given in section 4c(3) below, has

been completed. Then the components of the advecting

fluxes (Pv)n11/2 at gridcell faces have become available

as part of this calculation. Given these fluxes, the ad-

vection step in (17b) is discretized via Strang splitting,

so that

U**
i,j 5ADt

2ndU
*
i,j,k

[ADt/2
x ADt/2

y ADt/2
z ADt/2

z ADt/2
y ADt/2

x U*
i,j , (20)

where, dropping the indices of the transverse directions

for simplicity, we have, for example,

ADt/2
x U

i
5U

i
2

Dt

2Dx
[(Pu)n11/2

i11/2 Ci11/2
2 (Pu)n11/2

i21/2 Ci21/2
] ,

(21)

FIG. 1. Cartesian grid arrangement for two space dimensions.

Ci,j: primary finite volumes,�: primary cell centers, I: primary cell

interfaces, 3: centers of both primary and dual cell interfaces, C:

dual cells for nodal pressure computation,▪: dual cell centers, and

I: dual cell interfaces.
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with

C
i11/2

5sC2
i11/2 1 (12s)C1

i11/2 , (22a)

s5 sign[(Pu)n11/2
i11/2 ] , (22b)

C2
i11/2 5C

i
1

Dx

2
(12Cn11/2

i11/2 )si , (22c)

C1
i11/2 5C

i11
2

Dx

2
(11Cn11/2

i11/2 )si11
, (22d)

Cn11/2
i11/2 5

Dt

Dx

(Pu)n11/2
i11/2

(P
i
1P

i11
)/2

, (22e)

s
i
5Lim

�
C

i
2C

i21

Dx
,
C

i11
2C

i

Dx

�
, (22f)

where Pi in (22e) denotes the fourth component of U i,

and Lim(a, b) is a slope limiting function (see, e.g.,

Sweby 1984).

Importantly, the advecting fluxes (Pv)n11/2 are main-

tained unchanged throughout the Strang splitting cycle

for advection (20). In addition, it is not difficult to prove

analytically that a constant advected scalar remains

constant no matter whether we control the divergence

of the advective fluxes very tightly or not at all, see

appendix C for corroboration.

The first-order accurate advection operator ADt
1st

used in (14) is a simplified version of the above in

that the advective fluxes are approximated at the

old time level [i.e., the cell-to-face interpolation

formulae for the advective fluxes described in

section 3 below are evaluated with the components

of (Pv)n]. Optionally, one may also use simple

ADt
z A

Dt
y A

Dt
x -splitting instead of the full Strang cycle

from (20) for the advection step of this predictor. In

the test shown below we have used the full Strang

cycle throughout.

c. Semi-implicit integration of the forcing terms

The generalized forcing terms on the right-hand side

of (6) are discretized in time by the implicit trape-

zoidal rule. This requires an explicit Euler step at

the beginning and an implicit Euler step at the end

of a time step. The implicit Euler scheme is also used

to compute the fluxes (Pv)n11/2 at the half-time level

as needed for the advection substep. Below we sum-

marize this implicit step in a temporal semidiscre-

tization, explain how this step is used to access the

hydrostatic and pseudoincompressible balanced

models seamlessly and provide the node-based spatial

discretization, and explain how the divergence-controlled

momenta are used to generate divergence controlled

advective fluxes across the faces of the primary control

volumes.

1) IMPLICIT EULER STEP AND ACCESS TO

HYDROSTATIC AND SOUNDPROOF DYNAMICS

Both r and P are frozen in time in this split step

because their evolution Eqs. (6a) and (6d) do not

carry a right-hand side. Hence, the linearized equa-

tions including the auxiliary potential temperature

perturbation equation (10) as well as the hydrostatic

and pseudoincompressible switches, aw and aPmay be

written as

U
t
52c

p
(PQ)8p0

x 1 fV , (23a)

V
t
52c

p
(PQ)8p0

y 2 fU , (23b)

a
w
W

t
52c

p
(PQ)8p0

z 2 g
~x

x8
, (23c)

~x
t
52W

dx

dz
, (23d)

a
P

�
›P

›p

�
8
p0

t 52U
x
2V

y
2W

z
, (23e)

where (U, V, W, ~x)5 (Pu, Py, Pw, Px0) and where

(PQ)8, x8, and (›P/›p)8 are either those values avail-

able when the routine solving the implicit Euler step

is called or those adjusted nonlinearly in an outer

iteration loop as described in a similar context by

Smolarkiewicz et al. (2014). In this paper we have

used the simpler variant without an outer iteration

throughout.

The implicit Euler semidiscretization of (23) in time

then reads as follows:

Un11 5Un 2Dt[c
p
(PQ)8p0n11

x 2 fVn11] , (24a)

Vn11 5Vn 2Dt[c
p
(PQ)8p0n11

y 1 fUn11] , (24b)

a
w
Wn11 5a

w
Wn 2Dt

�
c
p
(PQ)8p0n11

z 1 g
~xn11

x8

�
, (24c)

~xn11 5 ~xn 2Dt
dx

dz
Wn11 , (24d)

a
P

�
›P

›p

�
8
p0n11 5a

P

�
›P

›p

�
8
p0n

2Dt(Un11
x 1Vn11

y 1Wn11
z ) . (24e)

Straightforward manipulations yield the new time level

velocity components:
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U

V

!n11

5
1

11 (Dtf )2

24 U1DtfV

V2DtfU

!n

2Dtc
p
(PQ)8

0@p0
x 1Dtfp0

y

p0
y 2Dtfp0

x

1An1135 , (25a)

Wn11 5

"
a
w
W2Dtg~x/x8

a
w
1 (DtN)2

#n
2Dt

c
p
(PQ)8

a
w
1 (DtN)2

p0n11
z ,

(25b)

with the local buoyancy frequency:

N5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g

1

x8

dx

dz

s
. (26)

Insertion of the expressions in (25) into the pressure

equation (24e) leads to a closed Helmholtz-type equa-

tion for p0n11
:

a
P

�
›P

›p

�
8
p0n11 2Dt2

("
c
p
(PQ)8

11 (Dtf )2
(p0n11

x 1Dtfp0n11
y )

#
x

1

"
c
p
(PQ)8

11 (Dtf )2
(p0n11

y 2Dtfp0n11
x )

#
y

)

1

"
c
p
(PQ)8

a
w
1 (DtN)2

p0n11
z

#
z

)
5Rn , (27)

with the right-hand side:

Rn 5a
P

�
›P

›p

�
8
p0n 2Dt

("
Un 1DtfVn

11 (Dtf )2

#
x

1

"
Vn 2DtfUn

11 (Dtf )2

#
y

1

"
a
w
Wn 2Dtg(~x/x)n

a
w
1 (DtN)2

#
z

)
. (28)

After its solution, backward reinsertion yields

(U,V,W, ~x)n11.

In all simulations shown in this paper, the Coriolis

parameter is set to a constant, which eliminates the

cross-derivative terms p0
xy from the elliptic operator

in (27).

As evidenced by (24)–(28), the access to hydrostatic

and pseudoincompressible dynamics is entirely encoded

in the implicit Euler substeps of the scheme, marked

by the appearance of the aw and aP parameters. In

this paper we only demonstrate the behavior of the

scheme for values of these parameters in {0, 1},

leaving explorations of a continuous blending of

models with intermediate values of the parame-

ters, as well as the development of an analogous

switch to geostrophic limiting dynamics, to future

work.

In appendix D we discuss how all substeps of the

scheme can be reformulated equivalently in terms of full

auxiliary variables x and p instead of the perturbations

x0, p0 introduced above.

2) PRESSURE GRADIENT AND DIVERGENCE

COMPUTATION IN THE GENERALIZED SOURCES

The linearized equations for inclusion of the source

terms in (23a)–(23d) need to be evaluated at the cell

centers when we apply the two steps of the trapezoidal

rule in (17a) and (17c). To this end, the coefficients

(PQ)8 are evaluated at the cell centers as well, the lin-

earization term from the equation of state (›P/›p)8 is
interpolated from the cell centers to the nodes ac-

cording to

a
i11/2,j11/2,k11/2

5
1

8
�
1

l,m,n50

a
i1l,j1m,k1n

, (29)

and in a similar way from nodes to cell centers (Fig. 2a),

and the components of the pressure gradient are ap-

proximated as

(p0
x)i,j,k 5

1

Dx

�bp0
i11

2,j,k
2 bp0

i21
2,j,k

�
, (30a)

with

bp 0
i11

2,j,k
5

1

4

�
p0

i11
2,j1

1
2,k1

1
2
1p0

i11
2,j2

1
2,k1

1
2
1p0

i11
2,j1

1
2,k2

1
2

1p0
i11

2,j2
1
2,k2

1
2

�
. (30b)

Analogous formulae hold for the other Cartesian di-

rections. The node-centered flux divergence in (24e) is

formed on the basis of the cell-centered components of

V 5 (U, V, W), using

(U
x
)
i11

2,j1
1
2,k1

1
2

5
1

Dx

�bU
i11,j11

2,k1
1
2
2 bU

i,j11
2,k1

1
2

�
, (31a)

bU
i,j11

2,k1
1
2
5

1

4
(U

i,j11,k11
1U

i,j,k11
1U

i,j11,k
1U

i,j,k
) ,

(31b)

and analogous formulae for the other Cartesian di-

rections (Fig. 2b).

These spatial discretizations inserted into the tempo-

ral semidiscretization of the implicit Euler step in (24)
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lead to a node-centered discretization of the pressure

Helmholtz equation based on nine-point and 27-point

stencils of the Laplacian in two and three dimensions,

respectively. The solution provides the required up-

date of the node-centered perturbation pressure field

and allows us to compute divergence-controlled cell-

centered momenta. We note that in the case of the

pseudoincompressible model, aP 5 0, this amounts

to a node-centered exact projection with a difference

approximation that does allow for a checkerboard

mode in case that the grid has equal spacing in all

directions. Vater and Klein (2009) proposed a node-

based exact projection that is free of such modes, but

all tests in the present work used the simpler scheme

described above.

3) DIVERGENCE CONTROLLED ADVECTIVE

FLUXES VIA (15)

Advection is discretized using standard cell-centered

flux divergences. Thus, the divergence of, for example,

the vector field V 5 (U, V, W) uses the discrete

approximation:

g(U
x
)
i,j,k

5
1

Dx

�
U

i11
2,j,k

2U
i21

2,j,k

�
, (32)

and analogous expressions for Vy and Wz. For stability

reasons, we need advective fluxes that are divergence-

controlled in the sense that they are compatible with

the Exner pressure evolution (24e). Yet, the Exner

pressure is stored on grid nodes, so that the flux

divergence on the right-hand side of (24e) is node-

centered but not cell-centered. However, a simple

node-to-cell average (Fig. 2a):

a
i,j,k

5
1

8
�
1

l,m,n50

a
i21

21l,j21
21m,k21

21n
, (33)

yields a second-order accurate approximation to the

cell average. This amounts to approximating the cell-

centered divergence by the average of the adjacent

FIG. 2. Averaging patterns used in constructing fluxes and cell-centered divergences: (a) node-to-cell

and analogous cell-to-node averages as in, respectively, (29) and (33); (b) cell-centered values of flux compo-

nents (U, V, W ) get averaged to the face centers of dual cells in (31); and (c) components of Pv that are

divergence-controlled relative to the nodes are averaged in a particular fashion to cell faces so as to exactly

maintain the divergence control. In (a) and (b) all arrows carry the same weights, so we carry out simple

arithmetic averages. In (c) the numbers in circles indicate relative weights of the participating cell-centered

values in forming a face value.
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node-centered divergences. It turns out that this is

also equivalent to determining the cell-face advective

fluxes from the interpolation formula:

U
i11

2,j,k
5

1

2
b̂
U

i11,j,k
1 b̂

U
i,j,k

� �
, (34a)

b̂
U

i,j,k
5

1

4
�
1

m,n50

Û
i,j21

21m,k21
21n

, (34b)

with the Û taken from (31b), and with analogous ex-

pressions for the other Cartesian directions. The re-

sulting effective averaging formula takes cell centered

components of Pv and generates cell face normal

transport fluxes (see Fig. 2c for a two-dimensional

depiction).

By this approach, we remove the necessity of sepa-

rately controlling the advective fluxes across the cell

faces by a cell-centered elliptic solve (MAC-projection)

on the one hand and controlling the divergence of the

cell-centered velocities by another elliptic equation for

nodal pressures on the other hand, as in, e.g., Bell et al.

(1989); Almgren et al. (2006); Schneider et al. (1999);

Benacchio et al. (2014). Thus, the present scheme works

with the node-based discretization of the Helmholtz

equation only. We note in passing that this approach

requires an exact projection for the nodal divergence.

d. Synchronization of auxiliary variables

The proposed scheme achieves large time step capa-

bilities by introducing two additional auxiliary variables,

p0 and x0 (or p, x in the full variable variant) that enable

the linearization used in formulating the implicit part of

the scheme. As described in this section, the buoyancy

variable, x0, is synchronized with x 5 1/Q 5 r/P at the

beginning of each time step, whereas the pressure vari-

able, p0, is evolved redundantly relative to the cell-

centered variable P.

1) ADJUSTMENT OF THE POTENTIAL

TEMPERATURE PERTURBATION

The advection of inverse potential temperature, x 5
r/P, is realized through the conservative updates of

r and P according to (17b) and (17d). Thus it is com-

pleted after the advection step and unaffected by the

final implicit Euler step of (17c).

Instead, the perturbation x0 undergoes three ad-

vances. The first advance occurs in the explicit Euler

step (17a) for the linearized perturbation equation

(23d), the second in the advection step, and the third in

the final implicit Euler step (17c). The explicit Euler and

implicit Euler steps discretize the linearized perturba-

tion equation (23d) by evaluating both ~x and W at the

cell centers. This is a nonconservative discretization of

the advection of the background distribution, and thus it

cannot be equivalent to the conservative updates for the

full variable x described above. However, discrepancies

between x and x0 cannot accumulate over many time

steps, because at the beginning of each time step we

reset (x0)n 5 xn 2 (x)n.

2) SYNCHRONIZATION OF NODAL AND CELL

PRESSURES

In section 4c(3) we constructed the cell-centered ad-

vective flux divergence from the arithmetic average of

the divergences obtained on the adjacent nodes. By the

same reasoning the cell-centered update ofP that results

from these cell-centered divergences corresponds to the

node-to-cell average (33) for (›P/›p)8(pn11 2pn). If, in

addition, the pressure Helmholtz equation from (27) is

solved with an outer iteration such that after conver-

gence this coefficient is approximated by�
›P

›p

�
i11

2,j1
1
2,k1

1
2

8
5

�
Pn11 2Pn

pn11 2pn

�
i11

2,j1
1
2,k1

1
2

, (35)

then the cell-centered time updates of P could be

guaranteed to always equal the node-to-cell average of

their nodal counterparts as computed from the first im-

plicit Euler in (15) by doubling the resulting Exner

pressure update according to the implicit midpoint rule.

However, in all tests shown below, the nodal pressure

was computed from the implicit trapezoidal update (17),

so that the cell-centered P and the nodal p0 are evolved

separately in the present implementation. In some cases

we found small differences between the two variables.

Also in view of the lack of feedback of these differences

onto the dynamics, we deem them acceptable at this

stage, and we propose avenues of development in the

discussion.

5. Numerical results

The algorithm described in the previous sections was

tested on a suite of benchmarks of dry compressible

dynamics on a vertical x 2 z slice at various scales. The

suite draws on the set of Benacchio (2014); Benacchio

et al. (2014) including a cold air bubble and non-

hydrostatic inertia–gravity waves, and adds three larger-

scale configurations for the gravity waves, with the aim

to validate the robustness and accuracy of the new

buoyancy-implicit strategy, and the scheme’s capability

of accessing compressible, pseudoincompressible, and

hydrostatic dynamics. For the cold air bubble, we also

show the results obtained with a full variable approach.

We remark that the present paper does not focus on
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efficiency. While the coding framework is 3D ready,

we leave parallelization and performance on three-

dimensional tests for future work. The scheme is im-

plemented in plain C language and uses the BiCGSTAB

linear solver (Van der Vorst 1992) for the solution of the

elliptic problems. The solver tolerance was set at Res

[(24e)/Dt] # 1028 throughout, where Res(�) denotes the
residual in the iterative solution of the equation in

the argument. Thus we are controlling the accuracy of

the advective flux divergence Ux 1 Vy 1 Wz. We also

define the advective Courant number as follows:

CFL
adv

5 max
i2f1,2,3g

�
Dty

i

Dx
i

�
, (36)

where yi are the components of the velocity, Dxi the grid
spacing in the i direction, and the acoustic Courant

number as follows:

CFL
ac
5 max

i2f1,2,3g

�
Dt(y

i
1 c)

Dx
i

�
, (37)

where c5
ffiffiffiffiffiffiffiffiffiffi
gRT

p
denotes the speed of sound. Finally,

while we are aware that a B-grid-like setting allows for

computational modes, we did not observe spurious os-

cillations in code validations based on the results in ro-

tating vortex tests of Kadioglu et al. (2008) [not shown,

see also Benacchio et al. (2014)].

a. Density current

The first test case, proposed by Straka et al. (1993),

concerns the simulation of a falling bubble of cold air

in a neutrally stratified atmosphere (x, z) 2 [225.6,

25.6] 3 [0, 6.4] km2. The reference potential tempera-

ture and pressure are uref 5 300K and pref 5 105 Pa, the

thermal perturbation is

T 0 5
	

0K if r. 1

215[11 cos(pr)]/2K if r, 1
, (38)

where r5 {[(x2 xc)/xr]
2 1 [(z2 zc)/zr]

2}0.5, xc 5 0, xr 5
4, zc 5 3, and zr 5 2 km. Boundary conditions are solid

walls on top and bottom boundaries and periodic

elsewhere. To obtain a converged solution, artificial

diffusion terms rm=2u and rm=2Q are added to the

momentum and P equations, respectively, with m 5
75m2 s21. The terms are nonstiff, discretized by the

explicit Euler method individually, and tied into the

scheme via operator splitting just before the second

backward Euler step (17c).

In the reference setup for this case, the buoyancy-

implicit model is run at a resolution Dx 5 Dz 5 50m

with time step chosen according to the minimum of

Dtfix 5 4 s 3 Dx/50m and a time step based on the ad-

vective Courant number CFLadv 5 0.96. Driven by its

negative buoyancy, the initial perturbation moves

downward, impacts the bottom boundary and travels

sideways developing vortices (Fig. 3, left column and top

right panel). The numerical solution converges with in-

creasing spatial resolution (Fig. 4), and the final per-

turbation amplitude and front position agree with

published results [Table 1, for comparison see, e.g.,

Giraldo and Restelli (2008) and the similar table in

Melvin et al. (2019)]. The final minimum potential

temperature perturbation at 25m resolution agrees with

the result in Melvin et al. (2019) up to the third decimal

digit. A run operated with full variables yields alike

solution quality to runs operated with perturbations

(Fig. 3, middle right panel and bottom right panel). The

difference is of the order of 1025K and the relative L2

error is 2.333 1024, giving an empirical confirmation of

the close proximity of the two approaches.

b. Inertia–gravity waves

The next set of tests consists of gravity waves in a

stably stratified channel with constant buoyancy fre-

quency N 5 0.01 s21, u(z 5 0) 5 300K, horizontal ex-

tension x 2 [0, xN], and vertical extension z 5 10 km,

proposed by Skamarock andKlemp (1994). The thermal

perturbation is

u0(x, z, 0)5 0:01K3
sin(pz/H)

11 [(x2 x
c
)/a]2

, (39)

with H 5 10 km, xc 5 100 km, a 5 xN/60, and there is a

background horizontal flow u 5 20m s21. We consider

three configurations for the horizontal extension xN 5
300, 6000, 48 000km, with respective final times T 5
3000, 60 000, 480 000 s. The first two configurations cor-

respond respectively to the nonhydrostatic case and the

hydrostatic case of Skamarock and Klemp (1994), the

third planetary-scale configuration is introduced in

this paper. In all configurations, the buoyancy-implicit

model is run with 300 3 10 cells, as in Skamarock and

Klemp (1994), and CFLadv 5 0.9.

In the first configuration, the initial perturbation

spreads out onto gravity waves driven by the underlying

buoyancy stratification (Fig. 5). In the second configura-

tion, run with rotation (Coriolis parameter value f 5
1024 s21), a geostrophic mode is also present in the center

of the domain (Fig. 6). In both cases, the values obtained

by running the compressible model (COMP) closely re-

semble published results in the literature including, for the

nonhydrostatic case, the buoyancy-explicit compressible

result in Benacchio et al. (2014). At CFLadv 5 0.9, the

time step used in the first configuration is Dt ’ 44.83 s,
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a 12 times larger value thanBenacchio et al. (2014)’s 3.75 s.

The time step value used here is also in line with Melvin

et al. (2019), who ran the configuration with Dt 5 12 s at

buoyancy-implicit CFL 5 0.3. For the second configura-

tion at CFLadv 5 0.9, the time step used is Dt ’ 896.48 s,

equivalent to an acoustic CFLac ’ 309.5 and NDt 5 8.96.

The third new planetary-scale configuration is run

without rotation to suppress the otherwise dominant

geostrophic mode and highlight the wave dynamics. At

final time T5 480 000 s (’5.5 days), the solution quality

with the compressible model is good in terms of sym-

metry, absence of oscillations, and final position of the

outermost crests (Fig. 7). Note also the structural simi-

larity of the result for this configuration with the non-

hydrostatic test run with the hydrostatic setup. The time

step in this run at CFLadv5 0.9 is Dt’ 7100 s, equivalent

to NDt ’ 71 and to an acoustic CFLac ’ 2.4 3 103.

Forall configurations,we report thepseudoincompressible

(PI) result obtained using aP 5 0, that is, by switching

off compressibility zeroing the diagonal term in the

Helmholtz equation, and the hydrostatic (HY) result

obtained using aw 5 0, that is, by zeroing the dynamic

tendency of the velocity in the vertical momentum

equation (middle panels of Figs. 5–7), and plot the

differences with the compressible result, COMP–PI

and COMP–HY (bottom panels of Figs. 5–7). For the

nonhydrostatic test, as already found with the earlier

implementation of the model in Benacchio et al. (2014),

the PI result is very close to the COMP result. The hy-

drostatic configuration fails to capture the central wave

features, and the COMP–HY discrepancy is larger by

an order of magnitude than the COMP–PI discrep-

ancy. The situation is reversed for the hydrostatic test

and the planetary test where the COMP–HY differ-

ence is smaller than the COMP–PI difference. More-

over, the COMP–PI difference gets larger, and the

COMP–HY difference smaller, for larger horizontal

scales, as expected with smaller vertical-to-horizontal

domain size aspect ratios.

FIG. 4. One-dimensional cut at height z 5 1200 m for the po-

tential temperature perturbation at final time t 5 900 s in the

density current test case run with CFLadv 5 0.96. Spatial reso-

lutions Dx5Dz5 400 m (black solid), 200 m (red dashed), 100 m

(blue dashed-dotted), 50 m (magenta solid, circles), 25 m (green

solid, crosses).

FIG. 3. Density current test case at spatial resolution Dx 5 Dz 5 50m, CFLadv 5 0.96. (left) Potential temperature perturbation at

(from top to bottom) t5 0, 300, 600 s, runwith perturbation variables. (right) Potential temperature perturbation at final time t5 900 s, run

with (top) perturbation variables and (middle) full variables. Contours in the range [216.5,20.5] K with a 1K contour interval. (bottom

right) Difference between the top right plot and the middle right plot, contours in the range [24.5, 0.5] 3 1025 K with a 0.5 3 1026 K

contour interval.
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c. Superposition of acoustic–gravity waves and
inertia–gravity waves

As final corroboration of the properties of themodel, the

hydrostatic configuration is rerun with a different value

of the Coriolis parameter f5 1.031 263 1024 s21, initial

temperature T(z 5 0) 5 250K, isothermal background

distribution, and no background flow. A time step of

Dt 5 0.5 s is used for a run with 1200 3 80 cells as in

Baldauf and Brdar (2013).

The initial data trigger a rapidly oscillating vertical

acoustic–gravity wave pulse that is followed over more

than 230 000 time steps without decay and with small

horizontal spread. Superimposed is a longer wavelength

internal wave mode that sends two pulses sideways from

the center of the initial perturbation, leaving the oscil-

lating acoustic gravity mode behind. Results with the

buoyancy-implicit model display good symmetry (Fig. 8,

top three panels) and compare well with the reference

[Fig. 4 in Baldauf and Brdar (2013)]. The multiscale

nature of the case is evident in particular in the plot of

the vertical velocity. The results obtained with the

present scheme are superior to those generated by the

COSMO dynamical core in its production setting with a

stabilizing time offset of u5 0.7 for the vertically implicit

linear acousticmode.With their off-centered setting, the

rapid vertical acoustic oscillations get damped away

rapidly and are absent from their final output [Fig. 6 in

Baldauf and Brdar (2013)]. However, the COSMO code

run with no time offset, u 5 0.5, for second order accu-

racy does maintain the vertical acoustics over the entire

time period [Fig. 5 in Baldauf and Brdar (2013)], and it

represents the very slow horizontal spreading of this

mode somewhat more accurately than our scheme. A

snapshot taken 520 time steps before completion of our

FIG. 5. Potential temperature perturbation for the nonhydrostatic inertia–gravity wave test from Skamarock and Klemp (1994), Dx 5
Dz5 1 km, CFLadv5 0.9. (top left) Initial data (contours in the range [0, 0.01] K with a 0.001K interval) and computed value at final time

T5 3000 s in (top right) compressiblemode, (middle left) pseudoincompressiblemode, and (middle right) hydrostatic mode. Contours are

in the range [20.0025, 0.0025] Kwith a 0.0005K interval for the nonhydrostatic plots, in the range [20.005, 0.005] Kwith a 0.001K interval

for the hydrostatic plot. (bottom) (left) Difference between the compressible run and the pseudoincompressible run and (right) between

the compressible run and the hydrostatic run. In the left panels, contours in the range [22.5, 2.5]3 1024 K with a 53 1025 K interval, and

in the right panels [25, 5] 3 1025 K with a 1025 K interval. Negative contours are dashed.

TABLE 1. Minimum and maximum potential temperature per-

turbation and front location (rightmost intersection of 21K con-

tour with z 5 0) for the density current test at several

resolution values.

Grid size (m) u0min (K) u0max (K) Front location (m)

400 28.1483 0.2684 14 125

200 28.9377 0.2299 14 884

100 29.2168 0.1789 15 199

50 29.5056 0.0906 15 325

25 29.6577 0.0037 15 380
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model simulation shows better agreement in the maxi-

mum amplitude with the reference in terms of maximum

vertical velocity (Fig. 8, bottom panel).

6. Discussion and conclusions

This paper extended a semi-implicit numerical model

for the simulation of atmospheric flows to a scheme with

time step unconstrained by the internal wave speed and

without subtraction of a background state from the

primary prognostic variables. The conservative, second-

order accurate finite volume discretization of the ro-

tating compressible equations evolves cell-centered

variables through a three-stage procedure, made of an

implicit midpoint rule step, an advection step, and an

implicit trapezoidal step. By design the model agrees

with the pseudoincompressible system in the small-

scale vanishing Mach number limit and with the hy-

drostatic system in the large-scale limit. Moreover,

the discretization is designed so it can straightfor-

wardly be switched to strictly solving either of these

two limiting systems. The modeling framework fea-

tures the option of running the scheme in a variant

that avoids perturbation variables entirely for the

formulation of the implicit problem. Numerical so-

lutions with and without the option were tested for

close similarity.

The compressible scheme was applied to a suite of

benchmarks of atmospheric dynamics at different scales.

Compared with the previous variant of the model in

Benacchio (2014); Benacchio et al. (2014), who used

a buoyancy-explicit discretization, the present scheme

achieves comparable accuracy, competitive solution

quality, and absence of oscillations with much larger

time steps for the cases under gravity. New com-

pressible simulations of the hydrostatic-scale inertia–

gravity wave tests of Skamarock and Klemp (1994)

demonstrated the large time step capability of the

buoyancy-implicit numerical scheme. A more chal-

lenging planetary-scale version of this class of tests was

introduced in this paper and revealed the robustness of

the discretization for 2-h-long time steps. The authors

are unaware of published attempts to run the test at

this scale.

An additional test by Baldauf and Brdar (2013),

geared toward revealing the long-time simulation

stability and energy perservation of the scheme,

yielded results comparable to those obtained with

FIG. 6. Potential temperature perturbation for the hydrostatic inertia–gravity wave test from Skamarock andKlemp (1994),Dx5 20 km,

Dz 5 1 km, CFLadv 5 0.9. (top left) Initial data and computed value at final time T 5 60 000 s in (top right) compressible mode,

(middle left) pseudoincompressible mode, and (middle right) hydrostatic mode. Contours as in Fig. 5. (bottom) (left) Difference between

the compressible run and the pseudoincompressible run and (right) between the compressible run and the hydrostatic run. In the left

panels contours in the range [22.5, 2.5]3 1024 Kwith a 53 1025 K interval, and in the right panels [25, 5]3 1025 Kwith a 1025 K interval.

Negative contours are dashed.
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the reference’s higher-order discontinuous Galerkin

scheme, albeit with somewhat less of a spreading of the

oscillatory mode.

Furthermore, the nonhydrostatic-, hydrostatic-, and

new planetary-scale setups of the gravity wave test

were run both in pseudoincompressible mode and in

hydrostatic mode, thereby extending the switching

capability previously shown in Benacchio et al. (2014)

for the pseudoincompressible-to-compressible con-

figurations. With increasingly large scales, differ-

ences with the compressible runs increased for the

pseudoincompressible runs and decreased for the

hydrostatic runs as expected, with the reverse trend

for decreasing scales.

The results presented here suggest several avenues

of development in a number of areas. First, the scheme

serves as the starting point for implementing the multi-

model theoretical framework of Klein and Benacchio

(2016), which aims to achieve balanced initialization

and data assimilation at all scales by smoothly blend-

ing between different operation modes. As proposed by

Benacchio et al. (2014), such amultimodel discretization

could be run with reduced soundproof or hydrostatic

dynamics during the first time steps after setup or as-

similation, then resorting to the fully compressible

model for the transient sections. The development in the

present work yields hydrostasy at large scale as well as

pseudoincompressibility at small scales as the accessible

asymptotic dynamics in the blended scheme. The dis-

cretization could then be applied to run tests in spher-

ical geometry, with the ultimate aim of comparing with

existing schemes used in numerical weather prediction

research and operations.

Future tests will necessarily involve a detailed anal-

ysis of efficiency and computational cost of the present

model. The Helmholtz solve described above works

with a nine-point stencil in two dimensions (27-point in

three dimensions). While results on the density current

test closely agree with those of Melvin et al. (2019) and

Melvin et al. (2010)—whose operational version uses

a seven-point stencil in three dimensions—further

work is needed to demonstrate that the scheme has an

effective resolution as high as a C-grid scheme, and that

the implicit solve is as efficient.

Concerning the discretization of the equation of

state, the implicit midpoint rule that is used in (16)

FIG. 7. Potential temperature perturbation for the planetary-scale gravity wave test, Dx5 160 km, Dz5 1 km, CFLadv 5 0.9. (top left)

Initial data (contours as in Figs. 5–6) and computed value at final time T 5 480 000 s in (top right) compressible mode, (middle left)

pseudoincompressible mode, and (middle right) hydrostatic mode. Contours in the range [20.005, 0.005] K with a 0.001K interval.

(bottom) (left) Difference between the compressible run and the pseudoincompressible run and (right) between the compressible run

and the hydrostatic run. In the left panels contours in the range [24, 6]3 1024 Kwith a 1024 K interval, and in the right panels [21.5, 1.5]3
1025 K with a 3 3 1026 K interval. Negative contours are dashed.

4236 MONTHLY WEATHER REV IEW VOLUME 147



is symplectic. In principle, the linearization used here

destroys this property. Yet, the remaining error in a

time step is of the order of the pressure increment

squared, and relative pressure increments in the tests

performed above range from O(1024) for the density

current test case to O(1028) for the planetary-scale

gravity wave–much smaller than the truncation error

associated with the numerical scheme, and close to

the effective accuracy provided by double-precision

calculations. It will be interesting to test the net in-

fluence of a nonlinear iteration on cases with larger

pressure fluctuations in future work.

Finally, the redundancy of the Exner pressure main-

tained in the present scheme deserves further attention.

One possible route forward would be to attempt an

analytical proof that the cell-centered P and nodal

p0 cannot diverge from each other. Another would

be the development of a robust synchronization

strategy that overwrites the nodal pressure using

the cell-centered data.
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APPENDIX A

Second-Order Accuracy

To maintain second-order accuracy of the overall

scheme, a first-order accurate time integration from the

last completed time step at tn is sufficient for generat-

ing the half-time level fluxes (Pv)n11/2. This becomes

transparent through a truncation error analysis for any

equation of the form _y5R(y, t). First we observe that

y(tn11)2 y(tn)

Dt
5 _y(tn11/2)1O (Dt2) (A1)

by straightforward Taylor expansion. Then, for any

first-order approximation, say Rn11/2, to the right-hand

side at the half-time level we have

_y(tn11/2)5R[y(tn11/2)]5R

�
y(tn)1

Dt

2
_y(tn)1O (Dt2)

�
5Rn11/2 1O (Dt2) ,

(A2)

where Rn11/2 5R[y(tn)1 (Dt/2) _y(tn)] is the right-hand

side evaluated at a state that is lifted from tn to tn11/2

just by a first-order method. Reinserting into (A1) we

find indeed

y(tn11)2 y(tn)

Dt
5Rn11/2 1O (Dt2) . (A3)

FIG. 8. (from top to bottom) Temperature perturbation, vertical

velocity, horizontal velocity at final time T 5 28 800 s, and a one-

dimensional cut of vertical velocity through z 5 5 km at time T 5
28 540 s for the inertia–gravity wave test with rotation of Baldauf

and Brdar (2013), Dx 5 5 km, Dz 5 125m, Dt 5 0.5 s. Initial per-

turbation as in Fig. 6 (top panel). Contours in the range [26, 6] 3
1023 K with a 1.2 3 1023 K interval in the top panel, [21.2, 1.2] 3
1023 m s21 with a 2 3 1024 m s21 interval (vertical velocity),

[20.012, 0.012] m s21 with a 2 3 1023m s21 interval (horizontal ve-

locity). Negative contours are dashed, zero contour not shown.
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APPENDIX B

Pressure Convergence

To show that the model does not display oscillations or

instabilities, we ran the case of a traveling rotating vortex in

the doubly periodic domain [0, 1]2 ofKadioglu et al. (2008).

We refer to section 4a of Benacchio et al. (2014) for a de-

scription. Both density and pressure variables after one

revolution of the vortex (at T5 1 s) are in good agreement

with the initial data (not shown). In particular, the error on

the nodal pressure at final time with respect to the initial

data displays second-order convergence with increasing

spatial resolution both in the L2 and L‘ norm (Fig. B1).

APPENDIX C

Preservation of Constant Values of Advected Scalars

The scheme can be shown analytically to preserve

constant values of advected scalars. It is a very brief

argument: Suppose q is advected by (Pv), so that

(Pq)
t
1= � (Pvq)5 0, (C1)

P
t
1= � (Pv)5 0, (C2)

and the initial data have q(0, x) 5 q0 5 const. By con-

struction of the MUSCL advection scheme, which re-

constructs the advected quantities (i.e., q in the present

case), all slopes for q will be discretely zero, and there-

fore discretely (i.e., with = replaced by ~=):

e=� (Pvq)n11/2 5 q
0
e= � (Pv)n11/2 . (C3)

Next, as a consequence,

(Pq)n11 2 (Pq)n 5 q
0
(Pn11 2Pn) 0

qn11 5 (Pq)n11/Pn11 [ q
0
. (C4)

APPENDIX D

Full Variable Formulation

Here we demonstrate that the semi-implicit formula-

tion of our scheme in terms of perturbation variables

x0, p0 has an analytically equivalent form in terms of

full variables. The central expression in this context is

the combination of the vertical pressure gradient and

buoyancy terms in (1c). Multiplying it by P/r, and re-

calling that P 5 rQ, we obtain the form needed in the

explicit and implicit Euler steps of the scheme:

P

r
(c

p
rQp

z
1 rg)5 (PQ)(c

p
p

z
1 gx)5 (PQ)(c

p
p0

z 1 gx0)

5 c
p
(PQ)p0

z 1 gex/x . (D1)

Here we have used that cppz 52gx by (8) to shift from

full to perturbation variables, and Px0 5 ex by the

definition right after (23). It follows that with the

particular use of the current state quantities (PQ)8
and x85 1/Q8 in the formulation of the implicit Euler

step in (24), we can always trivially add and subtract

the background state distributions pz and x to the

perturbations p0
z and x0 without changing the result at

the analytical level:

c
p
(PQ)8p0n11

z 1 g~xn11/x85 (PQ)8(c
p
p0n11
z 1 gx0n11)

5 (PQ)8(c
p
pn11 1 gxn11) .

(D2)

FIG. B1. Convergence story for the nodal pressure variable in the rotating

traveling vortex case. Grid refinements from 48 3 48 to 768 3 768 points, error of

the solution at time T5 1 s with respect to the initial data in the (left) L2 norm and

(right) L‘ norm. The dashed–dotted line displays second-order convergence.
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To actually implement the scheme in full variables, and

to avoid overly large excursions of the vertical velocity

between the Euler forward and Euler backward step,

we have rearranged the pressure solver to yield the

Exner pressure update dpn11 5 pn11 2 pn, so that the

last expression becomes

c
p
(PQ)8p0n11

z 1 g~xn11/x85 (PQ)8[c
p
dpn11

1 (c
p
pn 1 gxn11)] . (D3)

The full variable version of the Euler forward and back-

ward steps then follows straightforwardly from (24)–(28)

by the appropriate replacements. The full variable

scheme was implemented as an option in our scheme

and produced results indistinguishable from the per-

turbation version for all the internal gravity wave tests.

Note that the explicit advection step should only account

for the effect of potential temperature perturbations on

the full potential temperature advection, since the advec-

tion of the background is covered by the linearized implicit

step. There are various options for implementing this in a

full variable formulation. One option, and the onewe used

in a first implementation, is to simply subtract the back-

ground before the advection step and add it back after it.
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