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Abstract— The FICO Xpress-Optimizer is a commercial op-
timization solver for linear programming (LP), mixed inte-
ger linear programming (MIP), convex quadratic programming
(QP), convex quadratically constrained quadratic programming
(QCQP), second-order cone programming (SOCP) and their
mixed-integer counterparts. Xpress also includes a general
purpose non-linear solver, Xpress-NonLinear, which features
a successive linear programming algorithm (SLP, first-order
method), interior point methods and Artelys Knitro (second-
order methods). This work explores algorithms for mixed-integer
nonlinear programming problems (MINLPs), which are NP-hard
in general, then it presents applications in signal processing and
capitalizes advances in solving these problems with Xpress and
its comprehensive suite of high-performance nonlinear solvers.
Computational results show that signal processing nonlinear
problems can be solved quickly and accurately, taking advantage
of the algebraic modeling and procedural programming language,
Xpress-Mosel, that allows to interact with the Xpress solver
engines in a easy-to-learn way, and its unified modeling interface
for all solvers, from linear to general nonlinear solvers.

I. INTRODUCTION TO MINLP

Optimization problems that feature, at the same time, non-
linear functions as constraints and integrality requirements
for the variables are arguably among the most challeng-
ing problems in mathematical programming. These so-called
mixed-integer nonlinear programs (MINLPs) are applied in
various fields, e.g., in energy networks, power plant design,
telecommunication networks, logistics, water distribution net-
works, chip design verification problems, traffic optimization,
engineering, signal processing, manufacturing, and the chem-
ical and biological sciences, see, e.g., [1], [2]. Real world
problems regularly feature both nonlinear components and
discrete decisions. Traditionally, these were often approxi-
mated by linear models and/or by using continuous variables,
which was rather due to the fact that such models could be
solved efficiently, whereas nonlinear, integer models cannot.
Obviously, artificially linearized models are only a rough
approximation of the reality and there is an high demand for
having software available that can address nonlinear, discrete
optimization problems directly.

Consequently, recent years have seen a strong interest in al-
gorithms for mixed-integer nonlinear programming (MINLP).
Advances in research are also reflected by the development
and computational progress of several general-purpose solvers
for MINLP or specific sub-classes, such as convex MINLP,

mixed-integer quadratically constrained quadratic program-
ming (MIQCQP), or mixed-integer second order cone pro-
gramming (MISOCP) [3], [4], [5]. State-of-the-art solvers for
MINLP and its subclasses comprise a variety of algorith-
mic techniques from several related fields such as nonlinear
programming, mixed-integer linear programming, global opti-
mization, and constraint programming, see, e.g., [6].

An MINLP is a mathematical optimization problem of the
form

min f(x)

s.t. gj(x) ≤ 0 for j = 1, . . . ,m,

xi ∈ Z for i ∈ I,
(1)

where I ⊆ {1, . . . , n} is the index set of the integer variables,
d ∈ Rn, f, gj : Rn → R for j = 1, . . . ,m. Note that this
definition is very general. First, maximization problems can be
transformed to minimization problems by multiplying all ob-
jective function coefficients by −1. Similarly, “≥” constraints
can be multiplied by −1 to obtain “≤” constraints. Equations
can be replaced by two opposite inequalities. Among the most
important subclasses of MINLP, is MIP, mixed-integer linear
programming, for which both the objective function f(x) and
the constraint functions gj(x) are required to be linear.

Branch-and-bound [7] is the most widely used algorithm
to solve mixed integer linear and nonlinear programs. State-
of-the-art MIP solvers such as FICO XPRESS [8], use LP-
based branch-and-bound as a basic algorithm that is enhanced
by various tricky subroutines to make the solvers efficient in
practice.

The idea of branch-and-bound is simple, yet effective: an
optimization problem is recursively split into smaller subprob-
lems, thereby creating a search tree and implicitly enumerating
all potential assignments of the integer variables.

During the course of the algorithm, LP-relaxations are
solved for bounding. For (linear) MIPs, the LP relaxation is
simply constructed by dropping the integrality conditions. For
MINLP, an LP relaxation can be constructed from the bounds
of the variables, gradient cuts for convex constraints and linear
over- and underestimators of the nonconvex terms [9], [2].

II. MINLP PROBLEMS IN SIGNAL PROCESSING

Optimization is a standard tool used in signal processing
applications. Configuration problems on networks, or more
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generally graph structures, can be easily modeled as systems of
linear equations and inequalities, with 0-1 integrality require-
ments on the variables. Resources which generate costs form
the objective to be optimized. While relatively good solutions
for such problems can be found by heuristic approaches or
by simulation, finding an optimal solution, and proving its
optimality, is the key advantage of MINLP.

Location problems for sensor networks are a typical ex-
ample of an optimization problem that can be addressed by
MINLP, see, e.g., [10]. In [11], [12], Hou, Shi, and Sherali
introduce MINLP models to optimize the spectrum sharing for
multi-hop networks with cognitive radios and software defined
radios. Their model uses binary variables to indicate whether
a certain sub-band is used by a link and continuous variables
to determine the fraction a sub-band uses within a band and
for the data rates. The model consists of capacity constraints,
assignment constraints, linking constraints and interference
constraints, the latter involving logarithmic expressions. The
objective is to minimize the required network-wide radio
spectrum resource for a set of user sessions.

Finally, there is a close connection between (non)linear
programming and compressed sensing. Compressed sensing
is searching for solutions of an underdetermined linear sys-
tem, which is the typical setup for linear programming. In
compressed sensing, the goal is to find a sparsest feasible
solution, which corresponds to optimizing a linear or quadratic
objective, depending on the chosen norm. Depending on
the particular application, integer variables come into play.
For recent work on using MIP and MINLP techniques in
compressed sensing, see [13], [14].

III. SOLVING MIXED INTEGER QUADRATIC & CONIC
PROBLEMS

Among the most practically important and approachable
classes of MINLP problems solved by Xpress are two classes
that share two main characteristics: the objective f and all con-
straint functions gj are convex and either linear or quadratic.
In the class of mixed-integer convex quadratically constrained
quadratic programming (MIQCQP) problems, one seeks to
minimize an objective function

f(x) =
1

2
x>Q0x+ c>0 x

subject to constraints

gj(x) = x>Qjx+ c>j x+ dj ≤ 0, j = 1, 2, . . . ,m,

where the matrices Qj are positive semidefinite for all j =
0, 1, . . . ,m. Although the main problem is still nonconvex
due to the discreteness of a subset of variables, convexity in
both the objective and the constraints allows us to efficiently
compute a valid lower bound by simply relaxing the integrality
constraints and solving the convex relaxation.

For the special case where all gj’s are linear, Xpress
implements the quadratic simplex method, which has the same
structure as the simplex method for LP extended to deal with
a quadratic objective function.

Similar to mixed integer linear programming, Xpress can
solve MIQCQP problems to optimality by means of branch-
and-bound (BB). This algorithm relies on the availability of a
method that computes efficiently a lower bound zLB on the
optimal solution of (1) after relaxing the integrality constraints,
and of a method that yields a feasible solution for the original
problem, and as a result gives an upper bound zUB on the
optimal solution. The recursive partitioning performed by BB,
outlined in section I, and the possibility to compare lower and
upper bounds are the fundamental steps that limit dramatically
the portion of the research space that needs to be explored to
find a global optimum.

In the case of a MIP, a lower bound can be computed by
solving a linear programming (LP) via the simplex method.
This is a strong advantage in the solution of MIPs because
BB algorithm generally create a large number of subproblem,
but the corresponding LP problems do not change much; the
simplex method allows for re-solving a previously solved LP
very efficiently as the simplex method can be warm-started.
If we used a BB based on the convex relaxation for solving
convex MIQCQPs, this is no longer true. The reason for this
is that all methods for solving QCQPs, especially the most
sophisticated and efficient interior point methods [15], do not
admit any warm-starting mechanism. As a consequence, the
lower bound of every subproblem visited in a BB algorithm
must be found by performing, without warm start, a full solve
via an interior point method.

A. Outer approximation for MIQCQP

To overcome this efficiency issue, Xpress exploits convexity
to obtain an LP relaxation that, albeit generally loose, can lead
to much better performance. This is based on the Duran and
Grossmann [16] approach to approximate a convex constraint
g(x) ≤ 0 using its first-degree Taylor approximation: for any
vector x̄ ∈ Rn, the following inequality is valid for any x such
that g(x) ≤ 0:

g(x̄) +∇g(x̄)>(x− x̄) ≤ 0,

where ∇g(x̄) is the gradient of g computed at x̄. For any
subset X̄ = {x̄1, x̄2, . . . , x̄k} of k vectors, the system of
inequalities g(x̄i) +∇g(x̄i)>(x− x̄i) ≤ 0 for i = 1, 2, . . . , k
is a relaxation of the original constraint. By applying this
technique, called Outer Approximation (OA), to all quadratic
constraints, the Xpress solver obtains an LP relaxation of the
original feasible set. The trivial trick of replacing the objective
function with an auxiliary variable z and adding the constraint
f(x)−z ≤ 0 yields an LP relaxation once the same technique
is applied to the latter constraint.

Although the resulting LP is larger, in terms of constraints,
than the original formulation (several linear inequalities might
be added for each nonlinear constraint), the branch-and-bound
can now take advantage of warm starting mechanisms and,
with an opportune policy of adding extra linear inequalities
to tighten the LP relaxation, the problem can be solved much
more efficiently. The Xpress solver employs this technique for
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its MIQCQP problems as it leverages on its efficient LP-based
branch-and-bound.

B. Second-order conic problems

A subclass of MIQCQP where the Outer Approximation
implemented in Xpress is successful is one where the quadratic
constraints determine a convex region even though for the
quadratic term x>Qx the matrix Q is not positive semidefinite.
A so-called second-order cone (SOC), or Lorentz cone, is a
constraint of the form

x0 ≥
√
x21 + x22 + · · · + x2h

or equivalently
h∑

i=1

x2i ≤ x20.

It represents a convex region given that x0 ≥ 0. A rotated
SOC is a constraint of the form

h∑
i=1

x2i ≤ 2yz

where y, z ≥ 0. Regular and rotated SOCs admit a matrix

Q =

[
I 0
0 -1

]
and Q =

 I 0 0
0 0 -1
0 -1 0

, respectively,

where I is the identity matrix of order h. This class of
problems, although a very specific case of MIQCQP, finds
applications in countless fields of engineering, finance, and
economics. Furthermore, they are at the base of the robust
optimization [17] paradigm.

The Xpress-Optimizer uses a branch-and-bound method
based on Outer Approximation for MISOCP problems as it
proved to be the most efficient for instances of all sizes.
Among the techniques that contribute to the effectiveness
of the solver are two that have been the subject of intense
research in recent years: perspective reformulations [18] and
cone decomposition [19].

IV. SOLVING MIXED INTEGER NONCONVEX MINLPS VIA
XPRESS-NONLINEAR

The most general case of MINLP (1) has nonlinear, pos-
sibly nonquadratic and nonconvex function f and gi, for all
j = 1, 2, . . . ,m. Adding integrality constraints to a subset
of variables yields perhaps the hardest class of problems in
Optimization, one that cannot be tackled with techniques such
as Outer Approximation because of the nonconvexity of the
problem.

The Xpress-Optimizer has a component for dealing with this
class of problems, which is also known in the literature as the
class of global optimization problems. This component, called
SLP, does not guarantee to find a globally optimal solution
for general nonconvex problems, i.e., if either f or one of the
gj is nonconvex, but it applies a branch-and-bound algorithm
that utilizes a Nonlinear Programming (NLP) solver to find a
local optimum.

Amongst the most important components of such a solver
are heuristics to find a feasible point for the MINLP (see,
e.g. [20], a multistart mechanism for repeating the search of
a good local optimum in case the problem is nonconvex, and
a set of bound reduction techniques.

The importance of good bound reduction algorithms (see
e.g. [21]) is made apparent by the fact that solving a nonconvex
problem requires exploring possibly all local optima in the
search space. In order to exclude as much of the search space
as possible, it is useful to reduce the range of the variables
by exploiting the nonlinear information associated with con-
straints and, if a feasible solution is available, the objective
function. Consider for example the constraint x1x2 ≥ 6 with
x1 ∈ [1, 2], x2 ∈ [2, 4]. It is clear that the constraint implies
that the variable bounds can be further restricted so that
x1 ≥ 6

4 = 1.5 and x2 ≥ 6
3 = 2.

Bound reduction, which is widely used in MIP as well
[22], is heavily employed by Xpress SLP both as a standalone
procedure and in probing procedures [23].

V. COMPUTATIONAL RESULTS

To show the SLP capabilities, we consider a Wireless Sensor
Network (WSN) deployment problem, as described in [10].
In this problem, we need to optimally determine the location
of cluster-heads in order to minimize communication power,
while taking into account a network reliability. So, in this
problem is considered a two-layer network consisting of a
lower layer of sensor nodes and a upper layer of cluster-
heads. Sensor nodes are fixed and, for redundancy purposes,
it’s required that each sensor must connect to at least p cluster-
heads. As a capacity constraint, due to wireless interference,
computing power limits, etc., each cluster-head cannot connect
to more than q sensors. So, considering that the allocation for
each sensor is binary while the location of each cluster-head
is continuous, the goal is to find: (i) the optimal cluster-head
locations and (ii) the optimal network connectivity such that
communication power consumption is minimized.

The cluster-head deployment problem is formulated as a
MINLP problem. This problem belongs to the category of
location-allocation (LA) problems, which is difficult because
it is neither convex nor concave and possesses multiple local
minima and is formulated as follow:
Notation:
Si Known fixed location of sensor node i and i ∈ I

where I is a index set. The total number of sensor
nodes is |I|. It’s assumed that all sensor nodes and
cluster-head are in a plane, so Si ∈ R2.

Rj Decision variable controlling location of cluster-head
j and j ∈ J where J is a index set as well. The total
number of cluster-heads to be allocated is |J |, and
|J | ≥ p. It’s assumed that J is given and fixed and
that all cluster-heads are in the same plane as the
sensor nodes, so Rj ∈ R2.

ci,j Binary variable indicating that sensor node i is
connected to cluster-head j when equals 1, and 0
otherwise.
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Ti,j Transmission power of sensor node i to cluster-head
j.

As stated, the goal is to minimize the total end-point power:

min
∑
i∈I

∑
j∈J

Ti,j (2)

Knowing that

Ti,j =
Noγ||Si −Rj ||d

α
(3)

where α is a constant scaling factor for all i, j, d is the
exponent characterizing the signal attenuation with respect to
transmission distance (usually 2 ≤ d ≤ 3.5), No indicates
the signal noise ratio and γ is a threshold determined by the
electronic characteristics of the receiver. For simplicity, we
consider α, No and γ equals to 1 and d equals to 2.

That way, the optimization problem is formulated as follow:

min
∑
i∈I

∑
j∈J

ci,j
Noγ||Si −Rj ||d

α
(4)

s.t. ∑
j∈J

ci,j ≥ p, ∀i ∈ I (5)∑
i∈I

ci,j ≤ q, ∀j ∈ J (6)

Rj ∈ R2 (7)
ci,j ∈ {0, 1} (8)

The constraint 5 ensure that each sensor connects to at least
p cluster-heads. The constraint 6 ensure that each head-cluster
will not have more than q sensors connected. As said before,
this problem is a MINPL problem which can be solved via SLP
using Xpress which applies a branch-and-bound algorithm that
utilizes a Nonlinear Programming (NLP) solver to find a local
optimum.

We implemented the problem using the mathematical lan-
guage Xpress-Mosel version 3.10. The computing plataform
was a Dell Latitude E7440, Intel Core I7-4600U 2.1GHz CPU,
16GBytes RAM, Windows 10 Enterprise 64-Bit, Xpress 7.9.
Instance cases was generated with increasing sizes and sensors
positioned randomly. The results are given in the following
table.

Case |I| |J | Num. variables Run time (secs) Obj. Val.
1 25 4 108 0.224 230.28
2 50 8 416 0.325 1085.18
3 75 12 924 3.28 853.81
4 100 16 1632 17.043 576.34
5 150 24 3648 74.035 496.56
6 200 32 3264 126.46 446.718

It shows that, even to a extremely difficult MINLP, the
Xpress solve can handle large-scale instances and find a local
optimum solution in a acceptable time.
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[3] P. Bonami, M. Kılınç, and J. Linderoth, “Algorithms and software for
convex mixed integer nonlinear programs,” in Mixed Integer Nonlinear
Programming, ser. The IMA Volumes in Mathematics and its Applica-
tions, J. Lee and S. Leyffer, Eds. Springer New York, 2012, vol. 154,
pp. 1–39.

[4] M. R. Bussieck and S. Vigerske, “MINLP solver software,” in Wiley
Encyclopedia of Operations Research and Management Science, J. J.
Cochran, L. A. Cox, P. Keskinocak, J. P. Kharoufeh, and J. C. Smith,
Eds. John Wiley & Sons, Inc., 2010, online publication.

[5] C. D’Ambrosio and A. Lodi, “Mixed integer nonlinear programming
tools: a practical overview,” 4OR: A Quarterly Journal of Operations
Research, vol. 9, pp. 329–349, 2011.

[6] S. Vigerske, “Decomposition in multistage stochastic programming and
a constraint integer programming approach to mixed-integer nonlin-
ear programming,” Ph.D. dissertation, Humboldt-Universität zu Berlin,
2012, submitted.

[7] A. H. Land and A. G. Doig, “An automatic method of solving discrete
programming problems,” Econometrica, vol. 28, no. 3, pp. 497–520,
1960.

[8] “FICO Xpress Optimization Suite,”
http://www.fico.com/en/Products/DMTools/xpress-
overview/Pages/Xpress-Optimizer.aspx.

[9] G. P. McCormick, “Computability of global solutions to factorable
nonconvex programs: Part I — Convex underestimating problems,”
Mathematical Programming, vol. 10, pp. 146–175, 1976.

[10] X. Ning and C. G. Cassandras, “Optimal cluster-head deployment in
wireless sensor networks with redundant link requirements,” in Pro-
ceedings of the 2nd international conference on Performance evaluation
methodologies and tools. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2007, p. 24.

[11] Y. T. Hou, Y. Shi, and H. D. Sherali, “Optimal spectrum sharing for
multi-hop software defined radio networks,” in INFOCOM 2007. 26th
IEEE International Conference on Computer Communications. IEEE.
IEEE, 2007, pp. 1–9.

[12] ——, “Spectrum sharing for multi-hop networking with cognitive ra-
dios,” Selected Areas in Communications, IEEE Journal on, vol. 26,
no. 1, pp. 146–155, 2008.
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