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Unexpected collision detection, estimation and reaction for a
free-flying orbital robot
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Alessandro M. Giordano ‡ and Gianluca Garofalo §

German Aerospace Center, Oberpfaffenhofen-Weßling, Starnberg, 82234, Germany

This paper addresses the unexpected contact handling problem for a free-flying orbital robot.

A nonlinear observer is developed to detect, isolate and estimate a collision. Then, a reaction

control strategy is proposed, which aims at avoiding the build-up of the contact force and

possible instabilities. It is proved that the controlled system is input-to-state stable. The

performance of the observer and the controller is assessed through a numerical example

featuring a 7 degrees-of-freedom arm mounted on a spacecraft and a realistic measurement

model. The spacecraft is equipped with thrusters and variable speed control moment gyros.

I. Introduction
On-orbit servicing missions have been a long-term goal since their first conceptual designs in the early 1980s,

with the ARAMIS project[1]. However, after almost 40 years, the use of orbital robots is still very limited. The

major experiences are the ones related to the space shuttle and the International Space Station (ISS)[2–5]. The first

OOS demonstration mission can be dated 1997: the Experimental Test Satellite VII (ETS-VII)[6] of the JAXA. A

6-degrees-of-freedom (DoF) manipulator was mounted on an unmanned vehicle and autonomous rendezvous and

docking, teleoperation and servicing tasks were verified. Another demonstration mission was the Orbital Express[7] in

2007 by the Defense Advanced Research Project Agency (DARPA), in which different technologies for autonomous

servicing, such as docking, refueling, and ORU replacement were tested. Despite the potential of robotic technologies

for OOS missions, after this latter experience, no other space robotic arms for servicing have been launched. The reason

lies in the high complexity involved in this kind of missions, especially if the system is required to be autonomous.

Several technological challenges have to be faced and overcome. Among them, one of the most critical is to deal

with physical contacts between the free-flying orbital robot and a possible target object, which could be unknown and

uncooperative.

The dynamics of the contact phase has been extensively studied, considering in particular free-floating robots[8–11].
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Moreover, many authors have addressed the problem of guaranteeing a safe interaction when the robot’s end-effector

comes into contact with the target[12–15]. In these works, a nominal capture operation is considered, in which the

robot has to perform planned grasping tasks and the goal of the controller is to keep a stable contact in order to enable

the correct capture of the target. Conversely, this paper focuses on unexpected collisions that may occur during the

on-orbit proximity operations as well. Imagine a mission involving an unknown and uncooperative target. The algorithm

responsible for the shape reconstruction may fail in identifying some appendages, which can collide with the manipulator

moving nearby. Another example is given by a scenario in which the robot could move close to several objects, and a

wrong estimation of the relative distances could lead to an unplanned collision. These are only a couple of examples

of off-nominal situations that can happen, but many others can be visualized. Therefore, the space robot should be

endowed with algorithms to handle contacts, which can occur unexpectedly along its entire structure.

Collision handling has been extensively studied for several years within the robotics community, especially for

fixed-base manipulators[16, 17], humanoids[18, 19] and flying robots[20, 21]. On the other hand, to the best of the

authors’ knowledge, this problem for free-flying orbital robots has not been addressed so far. Along the same line of

[16], contact handling can be divided into different phases:

• Contact detection: the goal of this phase is to detect whether a contact occurred or not. A signal, whose modulus

is expected to lie below a certain threshold, is monitored and, whenever an unexpected change happens, an alarm

is risen.

• Contact isolation: this phase aims at locating the exact point of the contact along the robot, or at least the part

involved.

• Contact identification: in this phase the contact force is estimated, which is a valuable information that may be

exploited in the implementation of control strategies to guarantee a safe physical interaction.

• Contact reaction: in this last phase the robot is controlled to react properly to the external disturbance caused by

the contact, avoiding multiple impacts and possible instabilities.

In order to address the first three phases jointly, one could think to use tactile sensors, such as sensitive skins, as

proposed for some terrestrial robotic applications [22–24]. However, in a space scenario, it is obviously more practical

and convenient to detect, isolate and estimate a collision without using additional and dedicated sensors, which result

in a higher cost and power demand. For this reason, in [25], the authors propose a nonlinear observer to estimate an

external wrench acting at a generic point along the robot. This scheme is an extension to floating-base robot of the

well-known and well-established momentum-based observer initially developed for fixed-base robot[26]. Three residual

vectors are defined as the difference between the real and estimated linear, angular and joints momentum, respectively.

Under ideal conditions, two residual vectors turn out to be an estimation of the force and moment acting at the center

of mass (CoM) of the robot due to the contact. The last one is an estimate of the contact disturbance torques at the

joint level. The three residuals can be used to detect and isolate the contact, and, moreover, they can be exploited to

2



reconstruct the entire contact wrench. However, in [25], the linear momentum residual is shown to be sensitive to noise

and uncertainties in the measurements, with consequent deterioration of the wrench reconstruction performance. This is

mainly due to the dependence of this residual on the satellite linear velocity, which is difficult to acquire accurately

at high frequency. Therefore, from a practical point of view, it is more convenient to use only the angular and joints

momentum residuals for the contact detection, isolation and identification. Indeed, they provide an accurate estimation

since their computation relies on sensors featuring relatively high acquisition frequency and low noise, such as encoders,

gyroscopes and joint torque sensors. Further details about this observer can be found in [25]. Also other researchers

have proposed observer schemes to estimate a contact force for a space robot. For instance, in [27] the disturbance

observer is used, while in [28] the force is reconstructed through the target’s equations of motion. However, these

methods assume that the contact is at the end-effector during a nominal capture operation. Moreover, they require

quantities that are not measured directly, such as the joint accelerations and the linear velocity of robot base for the

former, and the target accelerations for the latter. These quantities could be obtained through numerical differentiation,

but they would introduce nonnegligible noise in the estimation process.

In this paper, the first three phases of the physical contact handling are addressed redesigning the nonlinear observer

[25]. In particular, a different formulation of the system dynamics is used, in which the velocity of the CoM of the whole

system, the body-frame angular velocity of the spacecraft and the joint velocities are introduced as new generalized

velocities. This new version of the observer is more suitable to be integrated with the reaction control strategy proposed

in the paper, which is derived from the same dynamics formulation. Indeed, a compliant controller is developed which

regulates the motion of the CoM of the whole system, the spacecraft attitude and the joint positions. The controller

commands the robot to move away from the hit obstacle, while keeping or moving to a desired attitude. The escaping

direction to follow is provided by the nonlinear observer, which is able to estimate the direction and orientation of

the disturbance. Thanks to this strategy, multiple impacts and the build-up of the contact force, which can lead to

damages and instability, are avoided. The controller is proved to be input-to-state stable, namely the error on the states is

bounded during the contact and goes to zero when the contact ends. Finally, the performance of both observer and

reaction control is assessed through a numerical simulation considering a 7DoF arm mounted on a spacecraft, a realistic

measurement model and assuming the spacecraft equipped with thrusters and variable speed control moment gyros

(VSCMG). Moreover, the developed reaction strategy can be integrated with the controllers proposed in [29, 30] by one

of the authors, which are coordinated controllers of the base and end-effector for nominal grasping operations without

and with reaction wheels, respectively. The controllers [29, 30] can already handle small contacts avoiding the drift

of the base for workspace need. In this paper, riskier contact situations are considered and the integration of these

controllers with the proposed reaction strategy is suggested. In particular, the controllers [29, 30] can be used until an

unexpected collision occurs, then, if the collision does not satisfy safety criteria, the control authority may be switched

to the present reaction control for safety. The main difference of the reaction control compared to [29, 30] is that it
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works in joints space rather than in task space. In this way, singularity issues are avoided during the escape maneuver

and maximum safety is ensured during the risky situation.

To summarize, the main contributions of the paper are: 1) the physical contact handling problem on a generic point

is addressed for free-flying orbital robots for the first time; 2) a reaction control strategy to unexpected collisions is

developed and proved to be input-to-state stable; 3) the observer presented in [25] is further developed and analyzed

considering a more realistic actuation system, namely thrusters and VSCMG.

The paper is organized as follows. Section II provides the main notations and the robot’s dynamics. In Section III,

the dynamics is reformulated introducing the velocity of the CoM of the whole robot as new generalized velocity. In

Section IV, a nonlinear observer is developed based on the dynamics reformulation to address the contact detection,

isolation and identification. Then, in Section V, the proposed reaction control is derived and the input-to-state stability

is proved. In Section VI the performance of both observer and control is assessed through a numerical example. Finally,

in Section VII the limitations of the proposed strategy are discussed and in Section VIII the main conclusions are drawn.

II. Preliminaries

A. Problem statement

The free-flying orbital robot is required to perform servicing operations in orbit. In this context, dealing with

physical contact can be necessary. The most common situation is the space robot performing manipulation or grasping

tasks, in which the end-effector comes into contact with a target object. However, unexpected collisions may occur as

well.

In this study, the space robot is modelled as a multibody system made up of = + 1 rigid bodies connected by =

revolute joints (see Fig. 1). No environmental disturbances are taken into account (e.g., solar pressure, gravity gradient,

air drag and magnetic torques), since they are smaller than the contact and actuation forces. A contact on a generic point

along the robot is considered.

B. Main notations

Four main reference frames are defined (see Fig. 1). One, denoted by B, is the body frame located on the

center-of-mass (CoM) of the spacecraft. The second one, denoted by C, is a non-inertial frame, always parallel to B,

placed on the CoM of the space robot. The third one, denoted by E, is a frame located on the end-effector. The last one

is the inertial frame, denoted by T .

In order to transform forces and velocities between reference frames, the Adjoint transformation [31] is introduced:
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Fig. 1 Floating orbital robot.

GGH =


XGH [ pGH]∧XGH

0 XGH

 ∈ R
6×6, (1)

where pGH ∈ R3 and XGH ∈ SO(3) indicate the generic position vector, expressed in X, and rotation matrix from frame

X to frame Y, respectively. The operator [ · ]∧ stands for the skew-symmetric matrix of the argument. Finally, the

identity matrix and zero matrix are denoted by K and 0 of suitable dimensions, respectively.

C. Robot dynamics during the contact phase

The dynamics of the free-flying robot during the contact phase can be expressed as follows:



SC SCA SC<

S)
CA SA SA<

S)
C< S)

A< S<

︸                            ︷︷                            ︸
S (q)



¤v1

¤81

¥q


+



IC ICA IC<

IAC IA IA<

I<C I<A I<

︸                         ︷︷                         ︸
I (q, ¤q, v1 ,81)



v1

81

¤q


=



f1

m1

3


+



f4GC,1

m4GC,1

34GC


, (2)

where



f4GC,1

m4GC,1

34GC


=


G)

?1

P)?

 F4GC , (3)

and where
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F4GC = [ f)4GC m)
4GC ]) ∈ R6 is the contact wrench at a generic point ? along the robot,

P? ∈ R6×= is the fixed-base robot’s Jacobian for the point ?,

v1 ,81 ∈ R3 are the linear and angular velocity of the base expressed in B,

q, ¤q ∈ R= are the joint angles and velocities,

f1 ,m1 ∈ R3 are the commanded base force and torque around B, expressed in B,

3 ∈ R= are the commanded joint torques,

SC ,SCA ,SA ∈ R3×3 are submatrices that compose the inertia matrix of the composite rigid body,

SC<,SA< ∈ R3×= are the coupling inertia matrices,

S< ∈ R=×= is the inertia matrix of the manipulator,

I (q, ¤q, v1 ,81) ∈ R(6+=)×(6+=) is the Coriolis/centrifugal matrix.

The analytical expression of the inertia matrix S (q) can be found in [32].

D. Definitions and theorem for the input-to-state stability

Consider the following generic dynamic system:

¤x = 5 (x, u)

y = ℎ(x, u)
(4)

where x ∈ R=, u ∈ R<, and y ∈ R6 are the state vector, input vector and output vector, respectively.

Definition 1 [33] The system (4) is Input-to-State Stable (ISS) if there exist functions ∗ V ∈ KL and W ∈ K such that

|x(C, x0, u) | ≤ V( |x0 |, C) + W (sup( |u |)) (5)

for all C ≥ 0, x0 ∈ R=, and u. An equivalent condition for the ISS [34] is the existence of a differentiable function V:

R= → R such that U1 ( |x |) ≤ + (x) ≤ U2 ( |x |) for some U1, U2 ∈ K∞, and satisfying for all x, u

¤+ ≤ −W( |x |) + f( |u |) (6)

where W ∈ K∞ and f ∈ K. The function + is called an ISS-Lyapunov function.

Definition 2 [34] The system (4) admits an Input-Output-to-State-Stable Lyapunov function (IOSS-Lyapunov) if
∗A scalar continuous function U(A ) , defined for A ∈ [0, 0) , belongs to class K if it is strictly increasing and U(0) = 0; it belongs to class K∞ is

it is defined for all A ≥ 0 and U(A ) → ∞ as A →∞. A scalar function V (A , B) , defined for A ∈ [0, 0) and B ∈ [0,∞) , belongs to class V ∈ KL if,
for each fixed B, the mapping V (A , B) belongs to K with respect to A and, for each fixed A , the mapping V (A , B) is decreasing with respect to B and
V (A , B) → 0 as B →∞.
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there exist a differentiable V: R= → R such that U1 ( |x |) ≤ + (x) ≤ U2 ( |x |) for some U1, U2 ∈ K∞, and for all x, u:

¤+ ≤ −W( |x |) + f( |u |) + _( |y |) (7)

where f, _ ∈ K and W ∈ K∞.

Definition 3 [34] The system (4) admits a quasi ISS Lyapunov function (qISS-Lyapunov) if there exist a differentiable

V: R= → R such that U1 ( |x |) ≤ + (x) ≤ U2 ( |x |) for some U1, U2 ∈ K∞, and for all x, u:

¤+ ≤ −W̄( |y |) + f( |u |) (8)

where f, W̄ ∈ K∞.

Theorem 1 [34] The system (4) is Input-to-State Stable provided that:

• it admits a qISS-Lyapunov function: ¤+1 ≤ −W̄( |y |) + f1 ( |u |)

• it admits a IOSS-Lyapunov function: ¤+2 ≤ −W( |x |) + f2 ( |u |) + _( |y |)

• lim sup
A→∞

_(A)/W̄(A) < +∞

III. Decoupled translational and rotational dynamics
In this paragraph the dynamics (2) is reformulated substituting the velocity of the base v1 with the velocity of the

center of mass of the whole system, expressed in T . In this way, it is possible to obtain a decoupling of the translational

dynamics from the rotational dynamics of the base and the joints dynamics. In the following sections, it will be shown

that this feature provides some useful advantages in the observer design.

Introducing the velocity of the center of mass of the whole system in the inertial frame, denoted by v2 ∈ R3, the

following transformation, through the matrix � ∈ R(6+=)×(6+=) , can be defined:



v2

81

¤q


=



XC1 −XC1 [ p12]∧ XC1 P̄E

0 K 0

0 0 K

︸                                        ︷︷                                        ︸
�



v1

81

¤q


, (9)

where

P̄E =
1
<
SC< ∈ R3×=, (10)

and where < ∈ R is the total mass of the satellite-manipulator ensemble. Consequently, the generalized forces transform

as
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

f1

m1

3


= �)



fC

m2

3∗


, (11)



f4GC,1

m4GC,1

34GC


= �)



f4GC,C

m4GC,2

3∗4GC


, (12)

where fC ∈ R3, m2 ∈ R3, and 3∗ ∈ R= are new control inputs; f4GC,C ∈ R3, m4GC,2 ∈ R3, and 3∗4GC ∈ R= are the

generalized external forces in the new variables space.

Then, the dynamics in the new generalized velocities is derived pre-multiplying (2) by �−) and substituting v1 , 81 ,

¤q and their derivatives computed from Eq. (9) in (2). The resulting system is



<K 0 0

0 O2 O2 P̄l

0 P̄)l O
)
2 S̃<





¤v2

¤81

¥q


+



0 Ĩ2A Ĩ2<

−Ĩ)
2A ĨA ĨA<

−Ĩ)
2< Ĩ<A Ĩ<





v2

81

¤q


=



fC

m2

3∗


+



f4GC,C

m4GC,2

3∗4GC


, (13)

where O2 ∈ R3×3 is the rotational inertia around C of the whole body, and where

P̄l =

(
SA −

1
<
S)

CASCA

)−1 (
SA< −

1
<
S)

CASC<

)
∈ R3×=, (14)

S̃< = S< −
1
<
S)

C<SC< ∈ R=×=. (15)

It can be proven (see Appendix) that Ĩ2A81 + Ĩ2< ¤q = 0 and

−Ĩ)
2A v2 + ĨA81 + ĨA< ¤q = ( ¤O2 + [81]∧O2)81 + ( ¤O2 P̄l + O2 ¤̄Pl + [81]∧O2 P̄l) ¤q, (16a)

−Ĩ)
2<v2 + Ĩ)

<A81 + Ĩ< ¤q = ( ¤̃S< −
1
2
S̃A</@ −

1
2
S̃</@) ¤q + ( ¤̄P)l O)2 + P̄)l ¤O)2 +

1
2
O−)
2/@ O

)
2 −

1
2
P̄)
l/@ O

)
2 )81 , (16b)

where

S̃A</@ =



8)
1

m(O2 P̄l)
m@1

...

8)
1

m(O2 P̄l)
m@=


, S̃</@ =



¤q) mS̃<

m@1

...

¤q) mS̃<

m@=


∈ R=×=. (17)
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O−)
2/@ =



(81 + P̄l ¤q)) O)2
mO−)2
m@1

...

(81 + P̄l ¤q)) O)2
mO−)2
m@=


, P̄)

l/@ =



¤q)
mP̄)

l

m@1

...

¤q)
mP̄)

l

m@=


∈ R=×3. (18)

Note that P̄)
l/@ , S̃</@ , ¤̄Pl and ¤O2 are function of q and ¤q, S̃A</@ is function of q and 81 , and O−)

2/@ is function of q, ¤q

and 81 . Therefore, the translational dynamics is completely decoupled from the rotational and joints dynamics:

< ¤v2 = fC + f4GC,C , (19a)

O2 ¤81 + O2 P̄l ¥q + ( ¤O2 + [81]∧O2)81 + ( ¤O2 P̄l + O2 ¤̄Pl + [81]∧O2 P̄l) ¤q = m2 + m4GC,2 , (19b)

S̃< ¥q + P̄)l O)2 ¤81 + ( ¤̃S< −
1
2
S̃A</@ −

1
2
S̃</@) ¤q + ( ¤̄P)l O)2 + P̄)l ¤O)2 +

1
2
O−)
2/@ O

)
2 −

1
2
P̄)
l/@ O

)
2 )81 = 3∗ + 3∗4GC . (19c)

The decoupling between the translational dynamics and the rotational and joints ones is exploited in the following to

develop a nonlinear observer for use in the detection, isolation and estimation phases. Moreover, the proposed reaction

strategy is based on this decoupled dynamics as well.

IV. Contact detection, estimation and isolation
In order to address the contact detection, isolation and estimation problems jointly, a momentum-residual-based

observer for free-flying orbital robots is developed based on the dynamics (19). The design of this observer follows the

same idea of the one presented in [25] by the authors. It is an extension to the floating-base case of the well-known

momentum-based observer, proposed in [26] for fixed-base robots, in which a residual vector is defined as the difference

between the generalized momentum of the robot and its estimate. Under ideal condition, this residual vector turns out to

be a filtered estimation of the external disturbance acting on the joints.

Based on (19), three residual vectors f̂4GC,C , m̂4GC,2 and 3̂∗4GC can be defined as the difference between the real

9



momentum and the estimated one:

f̂4GC,C = Q 5 ( <v2︸︷︷︸
hCC

−
∫ C

0
( fC + f̂4GC,C )3B), (20a)

m̂4GC,2 = Q< (O281 + O2 P̄l ¤q︸            ︷︷            ︸
hA2

−
∫ C

0
(m2 − [81]∧ (O281 + O2 P̄l ¤q) + m̂4GC,2)3B), (20b)

3̂∗4GC = Qg (S̃< ¤q + P̄)l O)2 81︸               ︷︷               ︸
h 9

−
∫ C

0
(3∗ + 1

2
(S̃</@ + S̃A</@) ¤q +

1
2
(−O−)

2/@ O
)
2 + P̄)l/@ O

)
2 )81 + 3̂∗4GC )3B), (20c)

where hCC ∈ R3 is the translational momentum of the whole system expressed in T , hA2 ∈ R3 is the rotational momentum

of the whole system around C and expressed in C, and h 9 ∈ R3 is the generalized joints momentum.

Differentiating Eqs. (20a), (20b), and (20c), and using the dynamics (19), the resulting relations between the

estimates and the true quantities are
¤̂f4GC,C = Q 5 ( f4GC,C − f̂4GC,C ), (21a)

¤̂m4GC,2 = Q< (m4GC,2 − m̂4GC,2), (21b)

¤̂3∗4GC = Qg (3∗4GC − 3̂∗4GC ), (21c)

meaning that f̂4GC,C , m̂4GC,2 , and 3̂∗4GC are first-order-filtered estimations of f4GC,C , m4GC,2 , and 3∗4GC , respectively.

Increasing the observer gains reduces the time constants of the transient response of the estimates, and thus a faster

estimation of f4GC,C ,m4GC,2 , and 3∗4GC . Ideally, if the observer gains tend to infinity, it would be achieved f̂4GC,C ≈ f4GC,C ,

m̂4GC,2 ≈ m4GC,2 and 3̂∗4GC ≈ 3∗4GC , respectively. However, in practice, noise and uncertainties induce an upper bound

on the values that the observer gains can take. Then, note that the computation of the residual f̂4GC,C requires the

knowledge of the linear velocity of the spacecraft, which is difficult to acquire accurately and at high frequency in

practice. Indeed, no direct measurements are available, and numerical differentiation or estimation are necessary,

introducing non-negligible noise and uncertainties in the estimation process of the force. In [25], it is shown that this

noise and uncertainties on v1 highly affect the computation of the translational momentum residual, limiting significantly

the value of the gain, and thus the bandwidth. Consequently, fast and relatively soft impacts are hardly detected and

identified. On the other hand, thanks to the decoupled structure of the dynamics (19), the residuals m̂4GC,2 and 3̂∗4GC

do not depend on the base velocity and can be computed just relying on sensors featuring high acquisition frequency

and relatively low noise, such as encoders, gyroscopes, joint torque sensors. Higher gains can be set leading to larger

10



bandwidths, which means a faster transient and better estimation of the base torque and joint torques due to the contact.

Another aspect to consider is the quality of the wrench reconstruction. Theoretically, the three residuals can

be exploited together to reconstruct the external wrench. However, the authors show in [25] that it is better from a

practical point of view to reconstruct the wrench using only angular and joints momentum residuals, namely m̂4GC,2 and

3̂∗4GC , without including the translational momentum residual f̂4GC,C †. Indeed, the latter one introduces in the wrench

reconstruction process the noise and uncertainties of the base linear velocity, deteriorating significantly the performance.

Moreover, the limited acquisition frequency prevents a good estimation of fast contact. For these reasons, in the

following, only m̂4GC,2 and 3̂∗4GC are considered for the contact detection, isolation and wrench estimation.

A. Detection

In the detection phase, a significant signal for the problem is monitored. This signal is expected to lie below a certain

threshold, and when it is not, an alarm is risen. In this case, the components of m̂4GC,2 and 3̂∗4GC are perfect monitoring

signals for the contact detection. Indeed, theoretically, until a collision occurs, all the components are zero. In practice,

as already observed, noise and uncertainties affect these signals, and thus a certain threshold for each components must

be set. The problem can be stated as follows:


|A: | < n: → no collision

|A: | ≥ n: → collision
(22)

where A: ∈ R is a generic component of the residual vectors m̂4GC,2 and 3̂∗4GC , and n: ∈ R is the related threshold. The

choice of the threshold must be made analyzing the effects of noise and uncertainties on the monitored signals. It is a

trade-off between sensitivity, which requires a low threshold, and robustness to false positive, which requires a high

threshold.

B. Wrench reconstruction

Assuming knowledge of the contact point, once estimates of f4GC,C , m4GC,2 , and 3∗4GC are available, the external

wrench F4GC can be estimated. Indeed, using the relations (3) and (12), it is possible to write
†The observer derived in [25] is slightly different from the one proposed in this paper since it exploits a different formulation of the dynamics.

In particular, the velocity of the CoM expressed in C, the angular momentum around C and expressed in C, and the joints velocity are used as
generalized velocities. However, the two observers are related to each other, and the observations made for the one in [25] are valid also here.

11





f̂4GC,C

m̂4GC,2

3̂∗4GC


= �−)


G)

?1

P)?

 F̂4GC =



X)
?C 0[

p2?
]∧

X)
?1

X)
?1

P)E ? − P̄)E X
)
?1

P)l?

︸                             ︷︷                             ︸
P∗)? ∈ R(=+6)×6

F̂4GC , (23)

where PE ? , Pl? ∈ R3×= are the sub-blocks of P? =
[
PE ? Pl?

]
, i.e., the Jacobians mapping ¤q into the linear and

angular velocity of a frame attached on the contact point ?, respectively.

Since f̂4GC,C is expected to be particularly corrupted by noise and uncertainties [25], it is better to remove it from the

reconstruction process, reducing the relation (23) to


m̂4GC,2

3̂∗4GC

 =


[
p2?

]∧
X)

?1
X)

?1

P)E ? − P̄)E X
)
?1

P)l?

︸                             ︷︷                             ︸
P̃∗)? ∈ R(=+3)×6

F̂4GC . (24)

Assuming that = > 3 and P̃∗? has maximum rank, an estimate of the external wrench F4GC can be computed using only

the residuals m̂4GC,2 , and 3̂∗4GC in the following way

F̂4GC =

(
P̃∗)?

)#


m̂4GC,2

3̂∗4GC

 , (25)

where the operator ( · )# stands for the Moore-Penrose pseudo-inverse. It is worth stressing that the use of only m̂4GC,2 ,

and 3̂∗4GC in the reconstruction process enables to obtain fast and accurate estimation of the external wrench, since it

involves high-frequency and relatively low-noise measurements.

Note that Eq.(25) requires the knowledge of the contact point to compute the Jacobian P̃∗? . In case of an unexpected

collision, assuming this knowledge is unrealistic. Therefore, before performing the reconstruction, it is necessary to

locate where the collision occurred. To this aim, in the next section, a strategy involving only the rotational and joints

momentum residuals, is proposed.

C. Isolation

In the isolation phase, the objective is to locate where a collision occurred along the space robot. In the development

of the proposed strategy, it is assumed that the point of application of the external disturbance does not change during

the contact and the wrench consists only in a linear force and no torque, namely F4GC = [ f)4GC 0) ]) . Note that these are
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reasonable assumptions for unexpected collisions.

Assuming that the link 82 on which the contact occurred is known, the external wrench F4GC can be transformed

with respect to a frame attached on a known position to link 82 using the Adjoint matrix, as

F82 =


f82

m82

 = G)
?82

F4GC =


K 0

[ p82 ?]∧ K




f4GC

0

 , (26)

where p82 ? is constant.

The effect of the contact wrench at frame 82 can be estimated using the reconstruction strategy previously explained

as

F̂82 =


f̂82

m̂82

 =
©­­­«


[
p282

]∧
X)
821

X)
821

P)
E82
− P̄)E X

)
821

P)
l82


ª®®®¬

# 
m̂4GC,2

3̂∗4GC

 , (27)

where PE82 , Pl82 ∈ R3×= are the Jacobians mapping ¤q into the linear and angular velocity of the frame 82 . At this point,

by manipulating Eq. (26) the following relation can be written

m̂82 = [ p82 ?]∧ f̂82 , (28)

from which the line of action of f4GC can be computed as

s82 ? = (−[ f̂82 ]∧)#m̂82 + 382
f̂82

| | f̂82 | |
∈ R3. (29)

with 382 ∈ R being a varying scalar. Assuming the knowledge of the geometry of the link 82 , the contact point can be

found as the intersection between the link and the line s82 ? .

Unfortunately, the contact link is usually not known in advance. However, it is possible to overcome this issue.

Indeed, the scheme just explained can be applied to each link, assuming it is the one in contact. At the end, two possible

results can be obtained:

• no intersections are found between the line of action and the link;

• a candidate contact point is found.

Among all the candidate points, the real contact point is the one minimizing

X8 ? =

�������� P̃∗)?,8


f̂4GC

0

 −


m̂4GC,2

3̂∗4GC


�������� , (30)
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where P̃∗
?,8
∈ R6×(=+3) is the Jacobian at the candidate point on link 8. Fig. 2 reports the isolation method schematically.

To summarize, the residuals m̂4GC,2 and 3̂∗4GC allow not only to detect and reconstruct a contact force, but also to

isolate it.

As last remark, note that the isolation strategy proposed in [16] for fixed-base robots can not be applied using the

residual 3̂∗4GC . In [16], the contact link 82 is identified as the one associated to the last component different from zero of

an estimate of 34GC . This feature is not valid anymore when the estimate 3̂∗4GC is used. Indeed, from (12), the following

relation results

3∗4GC = 34GC − P̄)E X
)
C1 f̂4GC,C , (31)

where it can be clearly observed that 34GC and 3∗4GC are not the same quantity. To stress this fact, consider a contact on

the base of the robot. The components of 34GC will be all zero. On the contrary, the components of 3∗4GC will not, due to

the second term in (31). This is also an advantage in the considered example. Indeed, 3∗4GC contains useful information

for the detection and reconstruction of the contact on the base.

Select link 8

?
Compute F̂8

?
Compute s8 ?

?

Check the intersection
with link 8

? ?

No Yes

Move to link 8 + 1 Compute X8 ?

?
Move to link 8 + 1

?

X8 ? < X8 ?−1X8 ? > X8 ?−1

Take the intersection
as contact point

?
Move to link 8 + 1

Fig. 2 Scheme of the proposed isolation method.

V. Reaction control strategy
Once the unexpected collision has been detected and identified, the robot should be commanded to react properly in

order to avoid other impacts, the build-up of the force and consequently possible instabilities. In the proposed strategy

based on the dynamics (19), the CoM of the robot and the manipulator are commanded to move away from the obstacle.

Imaging a collision on the robotic arm, the distance between the contact point on the robot and the one on the obstacle
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is increased by two actions: a displacement of the entire system and a change of the manipulator configuration. The

escape directions to follow can be derived from the force reconstruction and the joint momentum residual, as it will be

shown later. On the other hand, the attitude controller is required to keep or to move to a prescribed orientation of the

spacecraft. This is motivated by the fact that a desired attitude can be necessary in order to communicate information or

to keep a possible target in the field of view of the sensors, e.g. cameras or lidar.

In the following, first, the derivation of the controller is reported and the input-to-state stability of the controlled

system during contact is proved. The controller is derived with the assumption that the required state is available. Then,

the advantages of the proposed strategy are analyzed. Finally, the introduction of the VSCMG and thrusters as actuators

is discussed.

A. Controller derivation

The dynamics (19) can be rewritten in a more compact way as follows:

< ¤v2 = fC + f4GC,C , (32a)

S∗ ¤̆8 + I∗8̆ = m∗ + m∗4GC , (32b)

where 8̆ = [8)
1
¤q) ]) ∈ R3+=, m∗ = [m)

2 3∗) ]) ∈ R3+=, m∗4GC = [m)
4GC,2 3∗)4GC ]) ∈ R3+=, and where

S∗ (q) =


O2 O2 P̄l

P̄)l O
)
2 S̃<

 ∈ R
(3+=)×(3+=) , (33)

I∗ (q, ¤q,81) =


¤O2 + [81]∧O2 ¤O2 P̄l + O2 ¤̄Pl + [81]∧O2 P̄l

¤̄P)l O)2 + P̄)l ¤O)2 + 1
2 O
−)
2/@ O

)
2 − 1

2 P̄
)
l/@ O

)
2

¤̃S< − 1
2 S̃A</@ − 1

2 S̃</@

 ∈ R
(3+=)×(3+=) . (34)

Note that, for the dynamics (32b), the property 8̆) ( ¤S∗ − 2I∗)8̆ = 0 is valid (see the Appendix for the proof).

A compliant controller for the reaction can be implemented exploiting the new control inputs as follows

fC = −Q2 x̃2 − J2v2 , (35a)

m∗ = −P)
q̃
Q∗5̃ − J∗8̆ (35b)

where x̃2 ∈ R3 is the error on the position of the CoM of the whole system, 5̃) = [2&̃) q̃) ]) ∈ R3+=, with &̃ ∈ R3

being the vector part of the quaternion error extracted from X131 = X)
C13

XC1 , and q̃ ∈ R= being the joint angles error.
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The rotation matrix XC13
is the desired one. The matrices Q2 , J2 , Q

∗, J∗ are positive definite matrices of appropriate

dimensions. In addition, Q∗ is block diagonal, i.e., Q∗ = blockdiag{Q∗
ñ
, Q∗

@̃
}, with Q∗

ñ
, Q∗

@̃
being the attitude stiffness

and the joint stiffness, respectively. Finally, Pq̃ is defined as follows:

¤̃5 = Pq̃8̆ (36)

where

Pq̃ =


([̃K + [&̃]∧) 0

0 K

 ∈ R
(3+=)×(3+=) , (37)

and where [̃ ∈ R is the scalar part of the quaternion error.

B. Input-to-state stability of the controlled system

In this section, it is shown the input-to-state stability (ISS) of the controlled orbital robot. Consider the dynamics

(32) and the control actions (35), the closed-loop dynamics is

< ¤v2 + J2v2 + Q2 x̃2 = f4GC,C , (38a)

S∗ ¤̆8 + (I∗ + J∗)8̆ + P)
q̃
Q∗5̃ = m∗4GC . (38b)

Since the dynamics (38a) and (38b) are decoupled, the stability analysis is carried out separately, one subsystem at

time. In both cases, only the regulation problem is considered and it is assumed that the external disturbance due to the

contact is bounded. The definitions and the theorem used in the ISS stability proof are reported in Sect. II.D.

Proposition 1: The generalized rotational controlled dynamics of the free-flying orbital robot (38b) is input-to-state

stable w.r.t. the input m∗4GC .

Proof. Consider the following candidate Lyapunov function:

+A1 =
1
2
8̆) S∗8̆ + 1

2
5̃) Q∗5̃, (39)

1
2
_∗<8= (S∗, Q∗) ( |8̆ |2 + |5̃ |2) ≤ +A1 ≤

1
2
_∗<0G (S∗, Q∗) ( |8̆ |2 + |5̃|2), (40)

where _∗
<8=
( · , ◦ ) = min(_<8= ( · ), _<8= ( ◦ )) and _∗<0G ( · , ◦ ) = max(_<0G ( · ), _<0G ( ◦ )), with

_<8= ( · ), _<0G ( · ) being the minimum and maximum eigenvalue of the matrix argument, respectively.
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The time derivative of +A1 is

¤+A1 = 8̆) S∗ ¤̆8 + 8̆) P)
q̃
Q∗5̃ + 1

2
8̆) ¤S∗8̆ =

= −8̆) J∗8̆ + 8̆) m∗4GC +
1
2
8̆) ( ¤S∗ − 2I∗)8̆ =

= −8̆) J∗8̆ + 8̆) m∗4GC ≤ −_<8= (J∗) |8̆|2 + |8̆| |m∗4GC |

≤ −2A1 |8̆ |2 + 2A2 |m∗4GC |2 = −W̄A ( |8̆ |) + fA1 ( |m∗4GC |)

(41)

where 2A1, 2A2 = const. > 0. In the computation of the derivative, the relations (36)-(38b) and the property

8̆) ( ¤S∗ − 2I∗)8̆ = 0 are used. For the last inequality, note that for all E, F ∈ R the inequality 2EF ≤ 1
0
E2 + 0F2 is

valid, with 0 > 0.

From this result, recalling Definition 3 and considering y = 8̆, it is possible to say that the system admits a

qISS-Lyapunov function. Note also that the system is passive w.r.t. the pair (8̆,m∗4GC ).

Now, consider the candidate Lyapunov function +A2, which is defined by slightly modifying +A1:

+A2 =
1
2
8̆) S∗8̆ + 1

2
5̃) Q∗5̃ + n 5̃) S∗8̆√

1 + 5̃) 5̃
, (42)

1
2
(_∗<8= (S∗, Q∗) − n_<0G (S∗)) ( |8̆|2 + |5̃ |2) ≤ +A2 ≤

1
2
(_∗<0G (S∗, Q∗) + n_<0G (S∗)) ( |8̆|2 + |5̃ |2), (43)

with the constant n sufficiently small and satisfying 0 < n < _∗
<8=
(S∗ ,Q ∗)

_<0G (" ∗) .

The time derivative of +A2 is

¤+A2 =8̆
) S∗ ¤̆8 + 8̆) P)

q̃
Q∗5̃ + 1

2
8̆) ¤S∗8̆ + n

8̆) P)
q̃
S∗8̆√

1 + 5̃) 5̃
+

+ n 5̃) ¤S∗8̆√
1 + 5̃) 5̃

+ n 5̃) S∗ ¤̆8√
1 + 5̃) 5̃

− n
(5̃) Pq̃8̆) (5̃) S∗8̆)

(1 + 5̃) 5̃) 3
2

=

= − 8̆) J∗8̆ − n
5̃) P)

q̃
Q∗5̃√

1 + 5̃) 5̃
+ n

8̆) P)
q̃
S∗8̆√

1 + 5̃) 5̃
+

+ n 5̃
) ( ¤S∗ − I∗)8̆√

1 + 5̃) 5̃
− n 5̃) J∗8̆√

1 + 5̃) 5̃
+ n

5̃) m∗4GC√
1 + 5̃) 5̃

+

− n
(5̃) Pq̃8̆) (5̃) S∗8̆)

(1 + 5̃) 5̃) 3
2

+ 8̆) m∗4GC

(44)

As previously, the equations (36)-(38b) and the property 8̆) ( ¤S∗ − 2I∗)8̆ = 0 are used in the derivation of (44).

In order to find an upper bound for ¤+A2, the following properties and assumptions are used:

• for all E, F ∈ R, 2EF ≤ 1
0
E2 + 0F2, with 0 > 0;

• only revolute joints are considered, and thus S∗ is a periodic function of q. Therefore, |S∗ | ≤ 31, | ¤S∗ | ≤ 32 |8̆|,
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|I∗ | ≤ 33 |8̆|, with 31, 32, 33 = const. > 0 [35];

• it is assumed that 0 < [̃ ≤ 1;

• all the functions |5̃ |√
1+|5̃ |2

, 1√
1+|5̃ |2

,
|5̃ |

(1+|5̃ |2)
3
2
are positive and bounded by 1.

Then, considering one term of (44) at a time, the following relations can be written:

5̃) P)
q̃
Q∗5̃√

1 + 5̃) 5̃
=

1√
1 + 5̃) 5̃

[
2&̃) q̃)

] 
([̃K − [&̃]∧) 0

0 K



Q∗

ñ
0

0 Q∗
@̃




2&̃

q̃

 =
=

1√
1 + 5̃) 5̃

[
2&̃) q̃)

] 
[̃Q∗

ñ
0

0 Q∗
@̃




2&̃

q̃

 =
5̃) Q̃∗5̃√
1 + 5̃) 5̃

, (45)

n
8̆) P)

q̃
S∗8̆√

1 + 5̃) 5̃
≤n
|P)

q̃
| |S∗ | |8̆ |2√
1 + |5̃ |2

≤ n |P)
q̃
| |S∗ | |8̆|2 ≤ 0A1 |8̆|2, (46)

n
5̃) ( ¤S∗ − I∗)8̆√

1 + 5̃) 5̃
≤ n |5̃|√

1 + |5̃|2
( | ¤S∗ | + |I∗ |) |8̆|

≤ n ( | ¤S∗ | + |I∗ |) |8̆ | ≤ 0A2 |8̆|2, (47)

−n 5̃) J∗8̆√
1 + 5̃) 5̃

≤ n |J
∗ | |5̃ | |8̆|√
1 + |5̃ |2

≤ n |J∗ | |8̆| ≤ 0A3 |8̆|, (48)

−n
(5̃) Pq̃8̆) (5̃) S∗8̆)

(1 + 5̃) 5̃) 3
2

≤ n
|Pq̃ | |S∗ | |5̃ |2 |8̆|2

(1 + |5̃ |2) 3
2

≤ n |P)
q̃
| |S∗ | |8̆|2 ≤ 0A1 |8̆ |2 (49)

8̆) m∗4GC ≤ |8̆ | |m∗4GC | ≤ 2A3 |8̆|2 + 2A2 |m∗4GC |2 (50)

n
5̃) m∗4GC√
1 + 5̃) 5̃

≤ n |5̃ |√
1 + |5̃ |2

|m∗4GC | ≤ n |m∗4GC | (51)

where 0A1, 0A2, 0A3, 2A3 = const. > 0.
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Using Eqs. (45)-(51), it is possible to find an upper bound for the time derivative of +A2 as follows:

¤+A2 ≤ − 8̆) J∗8̆ − n 5̃) Q̃∗5̃√
1 + 5̃) 5̃

+

+ (2A2 |m∗4GC |2 + n |m∗4GC |) + (2A4 |8̆|2 + 0A3 |8̆ |)

≤ − _<8= (J∗) |8̆|2 − n_<8= (Q̃∗)
|5̃|2√

1 + |5̃ |2
+

+ (2A2 |m∗4GC |2 + n |m∗4GC |) + (2A4 |8̆|2 + 0A3 |8̆ |)

≤ − _∗<8= (J∗, n Q̃∗)
|8̆ |2 + |5̃ |2√

1 + |8̆|2 + |5̃ |2
+

+ (2A2 |m∗4GC |2 + n |m∗4GC |) + (2A4 |8̆|2 + 0A3 |8̆ |) =

= − WA ( | [5̃) 8̆) ]) |) + fA2 ( |m∗4GC |) + _A ( |8̆ |),

(52)

where 2A4 = 20A1 + 0A2 = const. > 0.

Recalling the Definition 2 and considering y = 8̆, +A2 is an IOSS-Lyapunov function for the system (38b). Moreover,

lim sup
A→∞

_A (A)/W̄A (A) is a constant, and thus the controlled system (38b) is ISS by virtue of the Theorem 1. �

Proposition 2: the controlled translational dynamics (38a) of the free-flying orbital robot is input-to-state stable.

Proof. In the following only the main steps are reported since the proof is analogous to the previous one on the

attitude-joints dynamics.

Consider the following candidate Lyapunov function:

+C1 =
1
2
<v)2 v2 +

1
2
x̃)2 Q2 x̃2 , (53)

1
2
_∗<8= (<, Q2) ( |v2 |2 + |x̃2 |2) ≤ +C1 ≤

1
2
_∗<0G (<, Q2) ( |v2 |2 + |x̃2 |2). (54)

The time derivative of +C1 is

¤+C1 =v)2 < ¤v2 + v)2 Q2x2 = −v)2 J2v2 + v)2 f4GC,C

≤ − 2C1 |v2 |2 + 2C2 | f4GC,C |2 = −W̄C ( |v2 |) + fC1 ( | f4GC,C |),
(55)

where 2C1, 2C2 = const. > 0. Therefore, recalling Definition 3, the controlled system (38a) admits a qISS Lyapunov

function. Also in this case, note that the controlled system (38a) is also passive w.r.t. the pair (v2 , f4GC,C ).
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Define another candidate Lyapunov function as follows

+C2 =
1
2
<v)2 v2 +

1
2
x̃)2 Q2 x̃2 + n

x̃)2 <v2√
1 + x̃)2 x̃2

, (56)

1
2
(_∗<8= (<, Q2) − n<) ( |v2 |2 + |x̃2 |2) ≤ +C2 ≤

1
2
(_∗<0G (<, Q2) + n<) ( |v2 |2 + |x̃2 |2), (57)

with the constant n sufficiently small and satisfying 0 < n < _∗
<8=
(<,Q2)
<

.

The time derivative of +C2 can be computed as follows

¤+C2 =v)2 < ¤v2 + v)2 Q2x2 + n
v)2 <v2√
1 + x̃)2 x̃2

+

+ n x̃)2 < ¤v2√
1 + x̃)2 x̃2

+ n (x
)
2 v2) (x)2 <v2)
(1 + x̃)2 x̃2)

3
2

=

= − v)2 J2v2 + v)2 f4GC,C + n
v)2 <v2√
1 + x̃)2 x̃2

+

− n x̃)2 J2v2√
1 + x̃)2 x̃2

− n x̃)2 Q2 x̃2√
1 + x̃)2 x̃2

+

+ n
x̃)2 f4GC,C√
1 + x̃)2 x̃2

+ n (x
)
2 v2) (x)2 <v2)
(1 + x̃)2 x̃2)

3
2

≤ − v)2 J2v2 − n
x̃)2 Q2 x̃2√
1 + x̃)2 x̃2

+ v)2 f4GC,C+

+ (20C1 |v2 |2 + 0C3 |v2 |) + n | f4GC,C |

≤ − _∗<8= (J2 , nQ2)
|v2 |2 + |x̃2 |2√

1 + |v2 |2 + |x̃2 |2
+

+ (2C4 |v2 |2 + 0C3 |v2 |) + (2C2 | f4GC,C |2 + n | f4GC,C |) =

= − WC ( [x̃)2 v)2 ]) ) + fC2 ( | f4GC,C |) + _C ( |v2 |),

(58)

where 0C1, 0C3, 2C4 = const. > 0.

Recalling Definition 2, the controlled system (38a) is said to admit an IOSS Lyapunov function. Since

lim sup
A→∞

_C (A)/W̄C (A) is a constant, it is possible to conclude that also the system (38a) is ISS by virtue of Theo-

rem 1. �

C. Reaction setpoints

As already explained, the spacecraft is commanded to a desired attitude, while the manipulator is moving and the

entire robot is translating away from the obstacle. To this aim, the information from the observer can be used in order to

identify the escape direction. Indeed, the desired position of the center of mass pC2,3 ∈ R3 and of the joints q3 ∈ R=
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can be defined as follows:

pC2,3 = pC2,C3 + Δ ?C2

f̂4GC,C

| f̂4GC,C |
, (59)

q3 = qC3 + Δ@

3̂4GC
|3̂4GC |

, (60)

where

3̂4GC = 3̂∗4GC + P̄)E X)
C1 f̂4GC,C ∈ R

=, (61)

and where pC2,C3 ∈ R3, qC3 ∈ R= are the CoM position and joint positions at the detected contact time, respectively,

and Δ ?C2 ,Δ@ ∈ R are some desired constant "bounce" coefficients, which define the amount of displacement. Thanks

to the second term in both Eqs. (59) and (60), the robot is commanded to move along the direction of the external

contact force, projected in the frame T and in the joints space, respectively, escaping from the obstacle. In order

to perform this maneuver, an estimate of the actual joint contact torques is necessary since it provides directly

the escape direction at the joint level. This estimate can be obtained through Eq. (61). Note that the estimate

f̂4GC,C can be derived multiplying the force in the reconstructed wrench (25) by XC ?. The parameters Δ ?C2 ,Δ@

should be selected depending on the scenario. In particular, an assessment of a safe distance should be performed

depending on the mission, the geometry of the target and the presence of other objects close to each other. The

"bounce" coefficients can also be set equal to zero. In this case, the robot would stop keeping the position and

configuration at the detection time. For instance, in some situations with the collision at arm level, it could be conve-

nient for the operations to move away from the obstacle only with the manipulator, while keeping the position of the CoM.

D. Discussion on the proposed control strategy

In the proposed control strategy, the space robot system is like split into an "external" translational motion of the

entire composite body and an "internal" rotational motion modifying the configuration. The spacecraft force actuators

are used to move the center of mass of the whole system, and their action is compensated at the attitude and joint level

thanks to the triangular form of the Eq. (11). This can be seen imaging to impose a change in the position of the CoM,

and setting m2 and 3∗ to zero. When the computed control actions are transformed into the real ones provided by the

actuators through Eq. (11), all the actuators are activated. In particular, the base force is used to translate the CoM of

the whole system, while the base torque and the joint torques are used to keep the position compensating the disturbance

caused by the translation.

The proposed controller is developed only to address the reaction to an unexpected collision. However, it could be

used for the nominal operations as well, such as reaching a target. In this case, note that the translational control is

activated only when an external contact occurs, modifying the position of the CoM, while in the contact-free phase only
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attitude and joint positions are controlled. This means that, in case the attitude is actuated only through momentum

exchange devices, the use of the thrusters can be completely avoided. In contrast, when the thrusters are employed also

to actuate the attitude, the fuel consumption is reduced. However, for the nominal operations, it would be better to

control the manipulator in the operational space, instead of the joints space. To this aim, a controller similar to the one

presented herein was proposed recently in [29] by one of the author, which is based on this transformation:



v2

81

.⊕4


=



XC1 −XC1 [ p12]∧ XC1 P̄E

0 K 0

0 Ml1
P⊕a4





v1

81

¤q


, (62)

where

.⊕4 = .4 −


X4C

0

 v2 (63)

and where .⊕4 ∈ R6 is called "end-effector circumcentroidal motion", i.e., the motion around the CoM, Ml1
∈ R6×3 and

P⊕a4 ∈ R
6×= are matrices mapping the angular velocity of the spacecraft and the joints in the circumcentroidal motion.

The vector .⊕4 is exactly equal to the vector containing the linear and angular velocity of the end-effector, .4 ∈ R6, when

the velocity of the CoM of the whole system is zero. More detail about this controller can be found in [29].

The main difference between the strategy in [29] and the one proposed here is exactly the control of the manipulator,

that in [29] is controlled in the end-effector space, whereas the present controller works in joint space. Note that these

two controllers can actually work together since they address two different objectives. The space robot can be controlled

by the strategy in [29] during the nominal operations, which require end-effector maneuvering. When an unexpected

collision occurs, which does not satisfy safety criteria, the robot switches to the control proposed in this paper, limiting

the possible damages. For the reaction phase, it is better to control the system in the joints space since the manipulator

can be controlled without taking care of possible singular configurations or degrees of freedom in the end-effector’s null

space (in case of redundant arm). Indeed, the goal of the reaction phase is to move the robot safely and quickly in a

configuration and position away from the obstacle, and this can be achieved efficiently by the proposed controller.

The integration of these two controllers leads to a control system capable of operating in both nominal and emergency

conditions, and saving fuel in contact-free end-effector maneuvering. The switch between the controllers occurs in case

of a risky situation and just at the manipulator control level. Only when the robot is safe, the control is switched back.

In the simulation example presented later in the paper, the performance of the proposed controller is assessed imaging a

scenario in which a nominal operation is performed using the controller in [29] and at a certain time the robot switches

the control to face an unplanned collision.
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Fig. 3 Position of the thrusters on the spacecraft.

E. VSCMG integration

In this paper, it is assumed that the actuation system of the spacecraft comprises a set of 12 thrusters and 4 variable

speed control moment gyros (VSCMG) in a pyramid configuration. The position of the thrusters is reported in Fig. 3.

The commanded base force, computed by Eqs. (11) and (35a), is modulated through a pulse width modulation (PWM)

approach and provided directly to the thrusters. The commanded base torque is actuated by the VSCMG, as analyzed in

more detail in the following.

Consider a reference frame attached to each VSCMG and defined by the following three versors:

• n̂B is the spin axis, along the rotation axis of the wheel;

• n̂6 is the gimbal axis, along the rotation axis of the gimbal;

• n̂C is the axis that completes the frame {n̂B , n̂C , n̂6}.

The equations of motion for a spacecraft with a cluster of : VSCMG have been developed in [36], and the angular

momentum of the spacecraft-VSCMG ensemble, expressed in B, is

hA1,Ω = O1,Ω81 +[6 O26 ¤$ +[B OFB8F︸                    ︷︷                    ︸
hΩ ∈ R3

∈ R3, (64)

where [6, [B ∈ R3×: are matrices having as columns the directions of the gimbal and spin directional unit vectors,

respectively, expressed in the frame B, O26 ∈ R:×: is a diagonal matrix having as elements the inertias along the axes

n̂6 of the gimbal-wheel structures, OFB ∈ R:×: is a diagonal matrix having as elements the inertias along the axes n̂B

of the only-wheel structures, ¤$, 8F ∈ R: are the vector of the gimbal angular velocities and the vector of the wheel

angular velocities, respectively, both expressed in the VSCMG frame, hΩ is the contribution of the VSCMG to the

angular momentum of the spacecraft-VSCMG ensemble, and O1,Ω ∈ R3×3 is defined as

O1,Ω = O1 +[B O2B[
)
B +[C O2C[

)
C +[6 O26[

)
6 , (65)
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where O1 ∈ R3×3 is the inertia matrix of the spacecraft including the point masses of the VSCMG, O2C , O2B ∈ R:×: are

diagonal matrices having as elements the inertias along the axes n̂C and n̂B of the gimbal-wheel structures, respectively,

and[C ∈ R3×: is a matrix having as columns the directions of the transverse directional unit vectors, expressed in the

frame B.

Computing the time derivative of Eq. (64), it is possible to find the relation between the actuation torque m1 and the

control parameters ¤$ and ¤8F [37]:

m1 = − ¤O1,Ω81 − ¤hΩ − [81]∧hΩ. (66)

Typically, the gimbal acceleration term in ¤hΩ can be neglected, and the control parameters can be computed as [37]


¤$

¤8F

 = −�
# (m1 + [81]∧[B OFB8F ), (67)

where

M =

[
� �

]
∈ R3×2: , (68)

� = , +[C OFB [8F ]3 + [81]∧[6 O26 ∈ R3×: , (69)

� = [B OFB ∈ R3×: , (70)

, = [C (O2B − O2C ) [[)
B 81]3 +[B (O2B − O2C ) [[)

C 81]3 ∈ R3×: , (71)

and where the operator [ · ]3 stands for a diagonal matrix with its elements being the components of the argument vector.

Introducing the VSCMG, it is necessary to include their contribution to the momentum in the computation of the

angular momentum residual in order to estimate correctly the contact torque. To this aim, the Eq. (20b) can be modified

in the following way:

m̂4GC,2 = Q< (hA2,Ω −
∫ C

0
(−[ p12]∧ f1 − [81]∧ hA2,Ω + m̂4GC,2)3B), (72)

where

hA2,Ω = O2,Ω81 + O2,Ω P̄l ¤q +[6 O26 ¤$ +[B OFB8F ∈ R3, (73)

and where O2,Ω ∈ R3×3 is the rotational inertia around C including the VSCMG contribution. Also in this case, it can be

proved that m̂4GC,2 is the first-order-filtered estimation of m4GC,2 .

The new definition of the angular momentum residual (72) is valid for any momentum exchange devices. Indeed,

if the reaction wheels are selected, it is sufficient to set ¤$ = 0; if the control moment gyros are chosen, 8F will be
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constant; finally, if the VSCMG are preferred, as in this study, both ¤$ and 8F can vary in time.

As last remark, note that the ISS stability proof developed in Sect. V.B does not consider the dynamics of the

actuators. Its inclusion in the stability analysis is left for future work.

VI. Simulation example

A. Simulation scenario and setup

A spacecraft mounting a 7DoF robotic arm is considered. The kinematics and dynamics parameters are reported

in Tab. 1. As already said, the spacecraft is equipped with 4 variable speed control moment gyros in a pyramid

configuration and 12 thrusters, commanded through a PWM approach. In order to have a realistic simulation scenario,

the model of the thrusters includes a delay in the activation, due to the opening/closure of the valve, a dead-zone and a

first-order dynamics with different time constant for the rising and falling phase. Therefore, the controller commands a

certain action, but the system receives a slightly different one. The characteristics of both actuators are reported in Tab.

2, where the parameters 5<0G is the maximum force provided by a single thruster, )?F< is the PWM period, C34;0H is

the delay of the opening/closure of the valve, )A8B8=6 and ) 5 0;;8=6 are the time constants of the first-order dynamics. The

spacecraft is endowed with an IMU, measuring accelerations and angular velocities, a star tracker for the attitude, a

vision system for measuring the relative distance, while the manipulator’s joints position and torques are measured by

encoders and torque sensors, respectively. The noise model for the measurements is presented in the following section.

For the translational and attitude control, the gains are the same for G, H and I directions: :2 = 100 Nm−1 and

32 = 250 Ns, : ñ = 750 Nmrad−1 and 3l1
= 300 Nmsrad−1. For the first four joints, the gains : @̃ = 70 Nmrad−1 and

3@̃ = 10.5 Nmsrad−1 are set, while for the first two wrist joints, : @̃ = 1 Nmrad−1 and 3@̃ = 0.7 Nmsrad−1, and for the

last wrist joint : @̃ = 0.2 Nmrad−1 and 3@̃ = 0.04 Nmsrad−1. The parameters Δ ?C2 and Δ@ are set equal to 0.60 m and

0.26 rad. Finally, the gains for the computation of the residuals m̂4GC,2 and 3̂∗4GC are set equal to 20 s−1.

The presented multibody dynamics simulations are performed in Dymola, which is a commercial software for

Table 1 Kinematics and dynamics parameters.

; [m] < [kg] �G [kgm2] �H [kgm2] �I [kgm2]
Base 1.2 150 15 21.8 18.8
Link 1 0.2 2.71 0.023 0.023 0.005
Link 2 0.2 2.71 0.026 0.026 0.053
Link 3 0.2 2.54 0.014 0.014 0.005
Link 4 0.2 2.50 0.028 0.028 0.005
Link 5 0.19 1.30 0.026 0.026 0.026
Link 6 0.12 1.57 0.003 0.003 0.003
Link 7 0 0.2 0.003 0.003 0.003
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Table 2 Actuators parameters.

Parameters

VSCMG
�FB = 0.042kgm2 �FC = 0.024kgm2 �F6 = 0.024kgm2

�6B = 0.093kgm2 �6C = 0.054kgm2 �66 = 0.054kgm2

Thrusters
5<0G = 4 N )?F< = 50 ms C34;0H = 8 ms
)A8B8=6 = 1.5 ms ) 5 0;;8=6 = 3 ms

simulation of multi-disciplinary complex systems‡. In section VI.C.2, in order to simulate the contact, the Dymola

library presented in [38] is used. The normal force to the contact surface is modeled as the sum of an elastic and

damping terms, which depend on the penetration in the normal direction and, for the damping, its time derivative.

Friction is neglected, and thus tangential components are null. Further details can be found in [38].

The dynamic matrices required by the observer (20) are computed through the algorithms proposed in [39].

B. Measurement model and velocity reconstruction

The angular velocity, the joint angles and the joint torques can be directly measured using a gyro, encoders and joint

torque sensors, respectively. On the other hand, the linear velocity and the joint velocities are not directly measured but

need to be reconstructed, either using a discrete derivative or by data fusion. Herein only the problem of the estimation

of the linear velocity is addressed, while a simplified noise performance model is used for the joint velocities.

The measurements of the angular velocity, joint angles and joint velocities are assumed to be affected by a white

Gaussian noise with zero mean, while an uniform noise is considered for the torque sensors. For the angular velocity a

bias is also introduced leading to the following model [40]:

8<
1 = 81 + bl + (l ,

¤bl = (1l ,

(74)

where8<
1
∈ R3 is the measured angular velocity of the base; the term bl ∈ R3 is the bias, considered to be a "Brownian"

motion process; the terms (l , (1l ∈ R3 are white Gaussian noise with zero mean.

The linear velocity is reconstructed through a kinematics-based Kalman filter using a gyro and an accelerometer in

the prediction step, and camera measurements for the update step. These sensors are placed on the spacecraft. The

camera measures the base position with respect to the inertial frame T (see Fig. 1), that can be imagined to be located

on a target object [41].

The position of the target with respect to the base p1C ∈ R3 and base velocity v1 , expressed in B, compose the state

vector, and their time derivatives are
‡https://www.3ds.com/products-services/catia/products/dymola
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Table 3 Standard deviations and biases of the considered noise model.

f@ [rad] f ¤@ [rad/s] fg [Nm] f?1C [m] f1l [ `rad/s3/2]
5 · 10−5 10−4 0.2 0.005 3.162 · 10−4

fl [ `rad/s1/2] f10 [m/s5/2] f0 [m/s3/2] 1l,0 [rad/hr] 10,0 [m/s2]
0.316 6.00 · 10−5 9.81 · 10−5 0.0017 0.003

¤p1C = −[81]∧ p1C − v1 ,

¤v1 = −[81]∧v1 + a1 ,
(75)

where a1 ∈ R3 is the spacecraft acceleration. Eq. (75) is the prediction step of the filter, where 81 and a1 are measured

by the inertial measurement unit (IMU), including the gyro and the accelerometer.

The measurement equation is

p̃1C = p1C , (76)

where p̃1C ∈ R3 is the measurement vector.

Also for the accelerometer, the noise model (74) is used[42]. On the other hand, for the camera, the noise is

introduced by adopting the exponentially correlated random variable model[43][44]

n:+1 =  n: +
√

1 −  2N(0, f),

 = 4−1/( 50) ) ,

(77)

where n is the error with respect to the true quantity, N(0, f) is a random number generated with a normal distribution

of zero mean and standard deviation f, 50 is the acquisition frequency and ) is the autocorrelation time.

The standard deviations and biases of the considered noise models are reported in Tab. 3. The vision system

acquires measurements at 3 Hz, while the other sensors work at 200 Hz. The filter prediction step is performed at 200

Hz, whereas the update step at 3 Hz. Note that the attitude is controlled to be fixed. To achieve this goal, attitude

measurements are necessary, and thus it is assumed that the spacecraft is equipped with a star tracker, which measures

the Euler angles� ∈ R3. The exponentially correlated random variable model reported in Eq. (77) is used to reproduce

the noise of the sensor[43], with standard deviation fΦ = 1.04 · 10−4 rad. The star tracker works at 3 Hz, while the

controller works at 200 Hz. Hence, the EKF for quaternions presented in [45] is implemented§. Similar to the filter for

the base velocity, the prediction step run at 200 Hz, while the update at 3 Hz.
§In [45] the filter estimates also the angular velocity and the measurements are assumed to be acquired by a laser vision system. In this work,

only the attitude is estimated and the measurements are provided by the star tracker, but the implementation of the filter is analogous.
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Fig. 4 Reconstruction of the external force acting on a generic point on link 5.

C. Results

1. Observer

Before presenting the results for the complete collision handling, a numerical validation of the observer is presented.

In this example, the robot is commanded to keep the initial position of the CoM, attitude and arm configuration through

the control (35). At time instant C = 1.5 s, a constant force f4GC = [−4 − 10 − 6]) N is introduced on a point at the

midsection of link 5 for 1 second.

After the detection through the monitoring signals m̂4GC,2 and 3̂∗4GC , the contact is isolated with a maximum error

norm of 1.4 cm, which is acceptable for a good reconstruction of the force. The isolation is performed following the

scheme shown in Fig. 2. Then, the contact force f4GC is estimated through the Eq. (25) and the result is reported in Fig.

4. It can be appreciated that the proposed method based on the observer (20) provides a good estimate of the force

acting on a generic point along the robot even in presence of nonidealities, such as sensors noise, thrusters’ valve delay

and non-modelled dynamics.

2. Collision handling

Initially, the controller presented in [29] is active. The free-flying orbital robot is commanded to keep the initial

attitude and position of the CoM. The end-effector is controlled to follow a trapezoidal velocity profile along the H

direction, while keeping the initial orientation and initial position along G and I. At a certain time instant, the link 5 of

the manipulator collides with another object. See Fig. 5 for a graphical representation of the collision location on the

orbital robot. The residuals m̂4GC,2 and ˆ̄3∗4GC are exploited to detect the collision and trigger the reaction control (35).

The new setpoints for the joint positions and the CoM position are set through Eqs. (59)-(60), while the attitude is kept.

In Fig. 6, the force generated in the collision is reported in the case in which the reaction control is activated and

in the case in which it is not. When the contact occurs, the magnitude of the force is very similar in both situations.
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Fig. 5 Graphical representation of the collision location on the robot.

However, in the latter one, the space robot does not recognize the contact and tries to pursue the first goal, namely to

move the end-effector along the direction H. Consequently, multiple contacts and the build-up of the force occur. This is

a dangerous condition when colliding at high velocity, or with fragile objects, causing serious damages and jeopardizing

the mission. On the other hand, if the proposed reaction control is activated, the contact is detected and the robot moves

away avoiding other collisions and the increase of the force. In this way, the possible damages are mitigated and the

space robot can reach a safe position, where then the subsequent actions can be planned. It is important to stress that

this is a capability a space robot should have in order to carry out the mission safely.

Figs. 7a-7b show the residuals m̂4GC,2 and 3̂∗4GC , and the set thresholds for the detection (red dashed lines). The

contact is detected both at the angular momentum level and at the joint level. In particular, the contact is recognized

on the components G and I of m̂4GC,2 and by the monitoring signals at the joints 1 and 3. In Fig. 8, the effects of the

discrepancy between the commanded thrusters’ force and the real one, which includes delay, dead-zone and first-order

dynamics, on the residual computation can be noted. Note that this discrepancy, along with other uncertainties and

measurements noise, affects the selection of the threshold, and thus the sensitivity. The amplitude of these oscillations

can be modified acting on the observer gains.

In Fig. 9, the position of the CoM of the whole system is reported. Until the contact occurs, the position is

constant, then the reaction control is activated and the entire spacecraft-manipulator system translates away from the

obstacle reaching the new setpoint. Note that the setpoint is computed using Eq. (59), where the external force is

estimated through Eq. (25), and the direction of the motion after the contact is along the line of action of the force

(see Fig. 6). Indeed, the "bounce" is mainly along the H direction, which is the component of the contact force having
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Fig. 6 Contact force generated by the collision in case the reaction control is active and in case it is not.

the higher magnitude in modulus. For the reconstruction, the knowledge of the contact point is necessary and it is

performed following the scheme reported in Fig. 2. Therefore, in the simulation, the complete loop detection, isolation,

identification and reaction is implemented and was demonstrated to work satisfactorily.

The error on the absolute angles of the spacecraft is reported in Fig. 10. The error is always small, even during the

contact phase, and it further decreases after the contact. Note that keeping or moving to a certain fixed orientation can

be required either to communicate or to have the target in the field of view of some sensors, e.g. vision system.

Finally, Fig. 11 reports the response of the joint angles. Before the contact, the manipulator moves towards the obstacle,

following the desired trajectory imposed in the end-effector space. Afterwards, the collision occurred and the new

desired positions for the joints are computed by Eq. (60). Smooth trajectories are generated and the manipulator escapes

from the obstacle successfully. In particular, joints 1 and 3 mainly contribute to the inversion of the motion. Indeed,

higher disturbance torques act on these joints. On the other hand, the last two joints keep basically the same position

they have at the contact time. This is because the contact is at link 5, and thus the corresponding components of 34GC are

zero, theoretically. Actually, they are not exactly zero in the estimate 3̂4GC due to noise and uncertainties, but very close

to zero.
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(a) Residual m̂4GC,2 . (b) Residual ˆ̄3∗4GC .

Fig. 7 Components of the residual m̂4GC,2 and ˆ̄3∗4GC , and the set thresholds (red dashed line).

Fig. 8 Effects of the non-modelled dynamics of the thrusters on the residual m̂4GC,2 .
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Fig. 9 Response of the CoM position before and after the contact.

Fig. 10 Error on the Euler angles of the spacecraft.
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Fig. 11 Response of the position of the joints before and after the contact.

VII. Limitations of the proposed strategy
The proposed reaction strategy is based on the assumption that only one contact occurs at a time. However, dealing

with multiple contacts may be necessary, especially in case a grasping operation is planned. In this situation, a contact is

expected at the end-effector, and an unexpected collision could occur on another part of the robot at the same time. To

face this scenario, the robot could be equipped with a force/torque sensor at the wrist to deal with the planned contact,

while the observer is used to detect the unexpected collision. In particular, the sensor measures directly the wrench

exchanged between the end-effector and the target, and this information is provided to the model-based observer. The

contributions at force, moment and torque level are added in the term under the integral in Eqs. (20). In this way, the

residuals turn out to be the first-order-filtered estimation of f4GC,C , m4GC,2 , 3∗4GC only due to the unexpected collision,

and they can be used for detection and isolation. As regards the reaction, if the task allows a safe release of the target,

the end-effector could perform it and the system can follow the proposed reaction strategy. On the other hand, in case

the task is critical and it is not safe to release immediately the target, the redundancy of the system could be exploited to
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change the configuration of the arm and move the base to escape from the contact, while keeping the same pose of the

end-effector. This scenario is worth a deeper analysis, which is left for future work.

Another open issue is the case with multiple unexpected contacts at the same time. Indeed, the observer would

estimate and locate only the force resultant, which can not be used for a safe reaction in every circumstance. Additional

information would be required to identify each force acting on the system, and consequently an effective escape direction

to move.

The other main assumption in this work is the rigidity of the system. Actually, space robots have flexible components,

such as the joint transmission and the links. The proposed strategy can be easily extended to robots with flexible joints

equipped with torque sensors. Indeed, in the observer, the measured joint torques can be used in place of the commanded

torques for the rigid model, as shown in [26] for fixed-base robots. For the control, the availability of torque sensors

enables to implement torque control loop, and thus to use the proposed reaction strategy. Note that torque sensors are

suggested in scenarios involving contact situations since they can be effectively used to implement compliant controllers

[46]. Regarding the flexibility at link level, further analyses are necessary and they will be addressed in future work. It

is expected that the reaction control can be integrated with techniques dedicated to suppress vibrations, e.g., acting at

setpoint level as [47]. Considering the rigid-model-based observer, the effects of vibration on the estimation of the force

will be assessed. Proper tuning of the gains may mitigate them to some extent. Alternatively, the links deflection could

be approximated introducing new coordinates and its contribution added to the generalized momenta, which are used for

the computation of the residuals. The feasibility of this possible solution will be assessed in future research.

VIII. Conclusions
In this paper, the unexpected collision handling problem for free-flying orbital robots has been addressed. In particular,

a nonlinear observer to detect, isolate and estimate the contact has been proposed. It is based on a formulation of the

dynamics, in which the velocity of the center of mass (CoM) of the whole system, the angular velocity of the spacecraft

and the joint velocities are used as generalized velocities. Then, a compliant controller has been developed to react to

the collision. Thanks to the proposed control strategy the build-up of the contact force and instability in the post-impact

phase are avoided. It has been proved that the controlled system is input-to-state stable. Finally, the performance of the

observer and controller has been assessed through a numerical example, considering a 7 degrees of freedom (DoF)

arm on a spacecraft equipped with thrusters and variable speed control moment gyros (VSCMG). In the simulation,

the reaction controller has been integrated with the control proposed in [29], leading to a control system capable of

operating in both nominal and emergency conditions, and saving fuel in contact-free end-effector maneuvering. Future

work will address the open issues described in Sect. VII and the proposed strategy will be validated on real hardware,

e.g., on the On-Orbit Servicing (OOS) simulator facility of the DLR.
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Appendix

A. Derivation of the relations (16)

In order to derive the relation Ĩ2A81 + Ĩ2< ¤q = 0 , it is sufficient to write the time derivative of the translational

momentum in the inertial frame and compare it to the first row of Eq. (13). Indeed,

¤hCC = < ¤v2 = fC ,C>C , (A.1)

where fC ,C>C ∈ R3 is the total force in the inertial frame, thus including fC and f4GC,C . Therefore, comparing Eq. (A.1)

and the first row of Eq. (13), the relation Ĩ2A81 + Ĩ2< ¤q = 0 can be obtained. A similar result is obtained also in [48].

The relation (16a) can be derived computing the time derivative of the rotational momentum around C and expressed

in C

¤hA2 + [81]∧hA2 = m2,C>C , (A.2)

where m2,C>C ∈ R3 is the total centroidal torque acting on the system, and thus including m2 and m4GC,2 . Then,

considering that hA2 = O281 + O2 P̄l ¤q, it is possible to write

O2 ¤81 + O2 P̄l ¥q + ¤O281 + ¤O2 P̄l ¤q + O2 ¤̄Pl ¤q + [81]∧ (O281 + O2 P̄l ¤q) = m2,C>C . (A.3)

Again, comparing Eq. (A.3) with the second row of Eq. (13), the relation (16a) is derived.

Finally, regarding the relation (16b), a quasi-Lagrangian approach [49] is used to rederive the joints equation in Eq.

(13). Then, the relation (16b) is obtained by comparison of the quasi-Lagrangian joints formulation with the third row

of Eq. (13). This approach is necessary because not all the variables used to express the dynamics are integrable. In

particular, this is the case of the velocity 81 , which is called quasi-velocity. In order to derive the dynamic equations,

integrable coordinates are required, and thus the generalized coordinates y ∈ R6+= are defined, whose derivatives are:



v2

81

¤q


=



K 0 0

0 P−1
Φ

0

0 0 K





¤pC2

¤�

¤q


= �) ¤y. (A.4)

where � ∈ R3, ¤� ∈ R3 are the Euler angle vector and its time derivative, respectively; PΦ ∈ R3×3 is the Jacobian

mapping 81 in ¤�. The matrix � is function of the generalized coordinates y. Note that any rotation parameterization

different from the Euler angles can be used without affecting the following joints dynamics derivation.
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Introducing x = [v)2 8)
1

¤q) ]) ∈ R6+=, the following relation can be written:

¤y = 
x (A.5)

where 
 = �−) ∈ R(6+=)×(6+=) .

Exploiting Eqs. (A.4)-(A.5), the quasi-Lagrangian formulation can be derived from the standard one [49], resulting

in

Xy)
(
�
3

3C

[
m)

mx

]
+ ¤�m)

mx
− m)
my
− N

m)

mx
− W

)
= 0, (A.6)

where

N =



x)
) m�
mH1

...

x)
) m�
mH6+=


∈ R(6+=)×(6+=) , (A.7)

and where W ∈ R6+= is the vector of the generalized forces, ) ∈ R is the kinetic energy of the system expressed in terms

of x. The potential energy is assumed to be zero.

Theoretically, Eq. (A.6) should be used to derive the dynamics equations of the system. However, it can be noticed

that the relations in Eq. (A.4) are completely decoupled, which, in particular, means that the joints coordinates are not

associated with nonholonomic relations. Consequently, for these degrees of freedom, the general equation (A.6) is

simply the standard Lagrange equation [49]. Hence, it is possible to proceed in the following way.

First, the kinetic energy is computed as follows

) =
1
2
(<v)2 v2 + 8̆) S∗8̆). (A.8)

Then, the Lagrange formalism is applied to derive the joints dynamics, and the following equation is obtained:

S̃< ¥q + P̄)l O)2 ¤81 + ( ¤̃S< −
1
2
S̃A</@ −

1
2
S̃</@) ¤q + ( ¤̄P)l O)2 + P̄)l ¤O)2 +

1
2
O−)
2/@ O

)
2 −

1
2
P̄)
l/@ O

)
2 )81 = 3̄∗C>C , (A.9)

where S̃</@ and S̃A</@ are defined in Eq. (17). In (A.9), the following relations have been used


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1
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m@1

...
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1
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+
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¤q) P̄)l
mO)2
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+
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l
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O)2
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l
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O)2
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l/@ O
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2 − O−)

2/@ O
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2 , (A.10)
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where O−)
2/@ and P̄)

l/@ are defined in Eq. (18).

From the comparison between Eq. (A.9) and the third row of Eq. (13), the relation (16b) can be derived.

B. Proof of the property l̆) ( ¤"∗ − 2�∗)l̆ = 0

It is well known that for the dynamics (2) the property v) ( ¤S − 2I)v = 0 is valid, with v = [v)
1
8)

1
¤q) ]) , and it is

transferred to the dynamics (13) thanks to the chosen transformation (9) [39], and thus

[
v)2 8)

1
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= 0.

(B.11)

Considering the relations (16) proven in Sect. A of the Appendix, it is possible to write

[
v)2 8)

1
¤q)
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−Ĩ)
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0 0

0 I∗



v2

8̆

 . (B.12)

Since the inertia matrix is the same for the dynamics (13) and (32), exploiting the relations (B.11) in (B.12), it is

possible to conclude that the property 8̆) ( ¤S∗ − 2I∗)8̆ = 0 is valid for the dynamics (32b).
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