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Abstract
In this paper, a full Acoustic Modal Analysis (AMA) procedure to improve the CAE predictions of the car
interior noise level is proposed. Some of the challenges that can be experienced during such an analysis are
described and new solutions to face them are proposed. Particular AMA challenges range from the arrange-
ment of the experimental setup to the post-processing analysis. Since a large number of microphones are
needed, a smart localization procedure, which automatically determines the microphone three dimensional
(3-D) positions and dramatically reduces the setup time, is presented herein. Furthermore, the need for a
large number of sound sources spread across the cavity to assure a homogeneous sound field makes modal
parameter estimation a nontrivial task. Traditional modal parameter estimators have indeed proven not to be
effective in cases where many input excitation locations have to be used. Hence, a more suitable estimator,
the Maximum Likelihood Modal Model-based (ML-MM) method, will be employed for such an analysis.

1 Introduction

Nowadays, the automotive industry is asked to fulfil ever more demanding requirements for noise reduction
and passenger comfort. Due to international legal restrictions on noise and air pollution and the increas-
ing customer’s sensitiveness for the acoustic comfort, automotive companies have been driving more and
more resources to acoustic treatment and isolation, as well as to environmentally compatible hybrid-electric
powertrain concepts. Design engineers are asked to face the big challenge of reducing in-vehicle noise and
improving passengers acoustic experience by keeping the intervention costs to a minimum. It is clear that the
adoption of a numerical method to perform vibration and acoustic analyses is attracting increasing attention
because of its merits in saving costs and time.
It is of paramount importance to fine-tune the structural and acoustic design of a vehicle cavity to achieve
specific NVH objectives. Structural-acoustic finite element (FE) models of the cavity represent an important
tool in this context, because of the freedom given in testing different design strategies targeted at improv-
ing the passengers acoustic comfort. They can also be used as a diagnostic tool to identify the potential
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noise sources and also to evaluate the effectiveness of the proposed design modifications. Nevertheless, it
is obvious that the effectiveness of this approach greatly depends on the accuracy of the predictions made
using such models. So, in order to guarantee reliable simulations of the interior sound field of a vehicle
cabin, experimental Acoustic Modal Analysis (AMA) can be considered a must-be-performed step [1], since
it allows for validation and updating of these numerical models, and improvement of the overall modelling
know-how.
In this paper, a full procedure to perform an experimental acoustic modal survey of an automotive cabin is
proposed, with the goal of providing useful and practical guidelines. The particular challenges of such an
analysis, which range from the test preparation to the post-processing analysis, will be shown, and different
solutions will be presented. The first big challenge to face during the test preparation is the creation of a cor-
rect, geometrical wireframe model that represents the three-dimensional (3-D) position of the sensors. An
acoustic modal analysis test can indeed easily consist of hundreds of degrees of freedom, particularly when
the results are used for validating and updating finite element (FE) models, or, more generally, for having a
good description of the mode shapes. In current practice, one has to measure the geometry of the test object
by hand, which is extremely time-consuming and typically yields inaccurate results. Establishing a precise
test geometry then relies on the capability of the operator to instrument exactly at predefined locations. It is
clear that in many realistic cases this task can be rather challenging, above all when the structure is complex.
Smart methods, which reduce this setup time and yield more accurate results, are therefore highly sought
for. In this paper, a fast, accurate and cost-effective procedure to automatically localize microphones in a car
cabin [2, 3] is proposed and will be briefly described. The approach, which exploits the same hardware used
for AMA tests, provides more accurate 3-D positions compared to manual measurements, and drastically
reduces the measurement set-up time.
A further challenge is represented by the high modal damping ratios resulting in highly overlapping modes
with complex mode shapes. It has been observed [4–6] that, due to the high damping, a large number
of acoustic sources distributed across the cabin are needed to get a sufficiently homogeneous sound field.
Nevertheless, traditional modal parameter estimation methods may prove less suited for such data. Thus, a
method overcoming the difficulties that the classical methods face when fitting an FRF matrix consisting of
many (i.e., 4 or more) columns needs to be used. A Maximum Likelihood Modal Model-based (ML-MM)
estimator [7] has been proven to be more suitable for such an analysis [6,8]. Herein, the new method will be
briefly described, and its performance showed by using a real test case.
The paper is organized as follows. Section 2 briefly recalls the formulation for internal acoustic problems.
Using a discretized formulation, one can see that an analogy exists between acoustic and mechanical systems.
Thanks to this equivalence, the classical approach can be used also in the acoustic modal analysis case. In
section 3, with reference to the case study on a fully trimmed car reported in [6], the test preparation, set-up
and measurements are described in detail. Sound sources, measurement points, and their respective location
will be presented. Furthermore, a smart localization procedure to automatically localize microphones inside
a car cabin is proposed. Section 4 discusses the modal parameter estimation. The ML-MM estimator is
briefly illustrated and employed. The results will be compared to more classical modal parameter methods
in terms of curve fitting, mean error, values of the modal parameters and mode shapes. Finally, in Section 5
some concluding remarks are given.

2 Formulation of the acoustic problem

In this section, the formulation of internal damped acoustic problems is recalled.
The internal acoustic problem considered is illustrated in Fig. 1. It consists of a cavity of volume V enclosed
by a surface Ω = ∂V and excited by a point monopole of volume velocity per unit volume q, located at the
arbitrary point r0. Part of the surface Ω0 is acoustically rigid and the part ΩA is covered by a sound-absorbing
material. If this material is assumed to be locally reacting, then its properties can be represented by a specific
acoustic impedance Za.
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Figure 1: Description of the acoustic problem

Within V , the governing equation of the system is [9]:

∇2p(r, t)− 1

c2
∂2p

∂t2
(r, t) = −ρ∂q

∂t
δ(r − r0), (1)

where p is the acoustic pressure, which is a function of space r and time t, ∇2 is the Laplace operator, c is
the speed of sound and ρ the density of the medium, and the source function is represented mathematically
by a delta function. Over the boundary surface, the fluid particle velocity normal to the surface is equal to
the normal velocity of the surface. This gives rise to the following boundary conditions:

n · ∇p = 0 over Ω0, (2a)

where n is the outward-directed unit vector normal to the surface and

n · ∇p = −jρω p

Za
over ΩA. (2b)

The discretization of the continuous acoustic wave equation is based on the finite element formulation. The
acoustic domain of volume V is represented by an assemblage of acoustic finite elements (FEs). The pres-
sure distribution within an element is interpolated in terms of the nodal pressures by using shape functions.
Variational formulation based on Eq. (1), boundary conditions (2a), (2b) and FE discretization gives the MF ,
CF and KF matrices. To preserve the analogy with a structural finite element model, the matrix MF is called
the acoustic mass matrix, although it represents a compressibility matrix, relating the pressure to a displace-
ment; the matrix CF is the acoustic damping matrix, induced by the impedance boundary condition (2b); the
matrix KF is called the acoustic stiffness matrix, although it represents an inverse mass or mobility matrix,
relating the pressure to an acceleration. Assuming now that a number of point monopoles of known volume
velocity per unit volume are placed in the cavity and the sound pressure across the volume is sampled at an
appropriate number of points, it can be shown that the continuous wave equation (1) can then be substituted
by its discrete equivalent:

MF p̈ + CF ṗ + KFp = −ρq̇. (3)

Taking the Laplace-transform and assuming zero initial conditions one gets:[
s2MF + sCF + KF

]
· p(s) = −ρsq(s). (4)

As usual in structural dynamics, the inverse of the matrix term can be substituted by the frequency response
function H(s):

p(s) = −ρsH(s) · q(s). (5)



One can prove that the FRF-matrix can be expressed as a partial fraction expansion of modal parameters [10]:

H(s) =

Nm∑
r=1

Arφrφ
T
r

s− λr
+
A∗

rφ
∗
rφ

∗T
r

s− λ∗r
, (6)

whereNm are the number of modes, φr the r-th modal vector, Ar the modal scaling factor for the r-th mode,
and λr the system pole for the r-th mode. Substituting now s by jω and using Eq. (5) it is obvious that the
modal parameters of the system can be gained from the FRF measurements where the sound pressures across
the volume are referenced to the volume accelerations of the sources. Notice that Eqs. (4)-(6) are in complete
analogy with those being used in structural dynamics, therefore, it can be concluded that the classical modal
parameter estimation approach can be followed also in the acoustic modal analysis case.

3 Test preparation, test model creation and setup

In this section, the measurement setup and equipment needed for typical AMA tests will be described.
Details on the sound sources and their position, on the number of sensors, their spatial distribution, and their
mounting inside the cavity will be given.

3.1 Sound sources

Calibrated volume velocity sources are necessary to measure acoustic FRFs that are required in AMA tests.
The sound sources have to be omnidirectional and have a negligible size in order not to influence the field,
especially in the higher frequency range. So the need exists for a dedicated source that is compact, omnidi-
rectional and capable of generating high noise levels. The LMS Qsources Low-Frequency Monopole Sound
Source (Q-MED) can fulfil such requirements (Fig. 2). It is a unique monopole sound source that has been
developed to acquire acoustic and vibro-acoustic FRFs accurately without disturbing the acoustic behaviour
of the passenger compartment.

Figure 2: LMS Qsources low-frequency monopole
sound source

(a) Side View

(b) Front View (c) Back View (d) Top View

Figure 3: Reference distribution

As shown in [4–6], an appropriate source distribution over the entire cabin is required to properly excite
the acoustic modes. With reference to the analysis reported in [6], where up to 12 volume velocity sources
were set in geometrically symmetric locations, close to the edges, corners and at the maximum amplitude
locations to avoid nodal lines and excite close to pressure maxima on the boundaries, a typical distribution
of sound sources is displayed in Fig. 3. Too few sources do not allow for correct identification of the mode
shapes as exciter-location-dependent mode shape distortions are clearly visible. As an illustration of such an



effect, Fig. 4 compares the use of all 12 columns (12 source locations) to the use of a single column (either
the second or third column was selected). While the 12-source case clearly yields a first lateral mode, the
shapes of the single-source cases are severely distorted, and the appearance makes it possible to locate the
selected source based on the observed mode shape distortions. For this reason, it is highly advisable to use a
rather large number of sources and source locations to excite as many modes as possible.

(a) (b) (c)

Figure 4: Mode shape distortion of I lateral mode when not using enough acoustic source locations: (a) Pure
mode shape identified using all 12 sources; (b) Distorted mode shape with one source at Location 2 (front
right); (c) Distorted mode shape with one source at Location 3 (rear left)

3.2 Sensor Placement

Over the years, different strategies for the optimal placement of actuators and sensors (OPAS) have been
developed for system identification [11–14], in order to obtain an optimal or sub-optimal actuator and sensor
layout assuring the goodness of the excitation and the observability of modes with a minimum number of
sensors, respectively. Although such methods are extremely useful when only a few sensors are available,
in practice they are proven to be effective only when the numerical models have already been calibrated or
are close to the real one. It is clear that such conditions are far from being satisfied when the goal of the
analyses is the overall improvement of the modelling know-how. Therefore, a large number of sensors is
actually needed for this purpose [4, 6, 15]. Nevertheless, information extracted from an initial numerical
model, like the number of modes in the frequency range of interest and mode shapes, can still support the
decision process, taking into account that most information might be uncertain. An acoustic FE model of
an interior car cavity with rigid boundaries (Fig. 5) may indeed be helpful to: i) have an idea on where to
properly locate the sound sources to avoid nodal lines; ii) have a preliminary geometry of the measurement
points; iii) select meaningful modes and address the dominant acoustic modes in such a coupled system
where the FRFs are also influenced by the resonances of the structural system.

Figure 5: CAE cavity model Figure 6: Wireframe model



In order to guarantee a good description of the mode shapes and a sufficient number of degrees of freedom
for the updating, a sensor layout as the one depicted in Fig. 6 is hence usually employed. Sensors need to
be uniformly spread across the whole cabin, even in extreme positions, such as in foot regions, between the
windshield and the dashboard, and in the hat shelf region. With reference to the test case reported in [6],
more than 500 measurement points are required. Determining the exact location of so many sensors by hand
would be extremely cumbersome. Hence, automatic methods would be essential for drastically reducing the
setup time and localizing microphones in a smarter way. For this purpose, a fast, accurate and cost-effective
procedure has been developed and validated [2, 3, 16].

3.2.1 Smart localization procedure

The microphone localization procedure herein proposed is based on multilateration: the distances between at
least four sources (anchors), whose coordinates are known or estimated a priori, and a microphone (target)
are utilized to determine the unknown position of the microphone in three-dimensional (3-D) space. Hence
the estimation of microphone coordinates comprises two steps (Fig. 7): i) acoustic ranging measurements,
ii) multilateration.

RANGE
ESTIMATION

PROCESS

MULTILATERATION
PROCESS

Transmitted and
Received signals

Distance
Estimates

Localization
Estimate

s1(t), s2(t), . . . , si(t), . . . , sM (t)

r1(t), r2(t), . . . , rj(t), . . . , rN (t)

D̂ = d̂ij x̂j

Figure 7: Localization process

However, due to the complex structure and obstructions typical of a car cabin (e.g., seats, dashboard, etc.),
the direct path may be obstructed, a so-called Non-Line-Of-Sight (NLOS) condition. As a consequence,
acoustic range estimates based on the time-of-arrival (TOA) may have an erroneous positive bias, i.e., the
signal arrives at a microphone through reflections instead of through the direct (shortest) path (Fig. 8a).
Furthermore, estimating the TOA of the direct path (when it exists) can be rather challenging in such a harsh
environment. Reflections of the wavefront may indeed cause the strongest path not to be the first, leading to a
possible erroneous detection of the actual first path, because of fading. The (overestimated) NLOS distances
may subsequently lead to large 3-D position errors (Fig. 8b).
The proposed method copes with the problem of NLOS through an identification and discard (IAD) algo-
rithm: the erroneous NLOS measurements are detected and pruned, so that the microphones are localized
using the LOS distances only, hence yielding more accurate 3-D localization results.

Range Estimation Process

Localization performances are highly dependent on the quality of the range measurements. Hence, particular
attention has to be paid to this crucial first phase. The TOA can be simply estimated by cross-correlating
the received signal with the transmitted signal template. In ideal propagation conditions, the TOA estimate
is given by the time instant corresponding to the maximum absolute peak of the cross-correlation function
(CCF) over the observation interval. Nevertheless, in dense multipath scenarios, the TOA estimation actu-
ally consists in the correct detection of the first arriving path. In general, while the dominant peaks may
correspond to the signal echoes, it is not straightforward to find the correct peak due to the presence of noise
and fading. Hence, this ambiguity highlights that TOA estimation in the presence of multipath is not a pure
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Figure 8: TOA-based localization in NLOS environments

parameter estimation problem, but rather a joint detection-estimation problem [17]. In this approach the
TOA estimation problem will be considered as a change detection problem without relying on any threshold.
Details on the TOA estimator are available in [16].
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Figure 9: Flowchart of the Ranging Process

Multilateration and NLOS Identify and Discard Algorithm

3-D localization problem is treated as an optimization problem. In absence of noise and NLOS bias, the ac-
tual distance di between the target and the i-th anchor defines a sphere around the i-th anchor corresponding
to possible target locations, i.e.,

(x− xi)2 + (y − yi)2 + (z − zi)2 = d2i , for i ∈M, (7)

where {xi = [xi yi zi]
T , i ∈ M} are the known locations of the M anchors, and {xj = [xj yj zj ]

T } is the
unknown location of the j-th target, which we wish to determine.
The exact location of the target is then found at the unique intersection of all the spheres. In practice however,
the noisy distance measurements and NLOS bias yield spheres which do not intersect at the same point,
resulting in the inconsistent equations

(x− xi)2 + (y − yi)2 + (z − zi)2 = d̂2i , for i ∈M. (8)



Equation (8) can hence be solved by minimizing the sum of squared residuals, i.e.,

min
x

{
M∑
i=1

(
||x− xi|| − d̂i

)2}
(9)

whose solution yields the final estimate x̂ of the target location.
In multilateration, at least four LOS anchors are required for a unique 3-D solution. If there are more than
four LOS anchors, the redundancy of these sources can be utilized in a least square (LS) sense for a more
accurate localization result. Minimizing the non-linear expression in Eq. (9) can be achieved by numerical
search methods [18].
Evidently, the optimization method will be most effective in estimating the location when only LOS dis-
tance measurements are combined. Therefore, there is a need for a NLOS identification and discard (IAD)
algorithm, which is able to identify the NLOS observed distances and discard them in the LS calculation.
The method is able to identify the number L of LOS anchors and localize the target with them only. To
achieve this, the method exploits the redundancy and compares the squared residual of a set of distances to a
predefined threshold, ζ: (

d∗i − d̂i
)2

< ζ2 (10)

where d∗i = ||x̂ − xi|| is the estimated distance between the i-th anchor and the target at estimated location
x̂.
First, the algorithm begins by using all the available M distances. It estimates the microphone location, x̂,
and compares the residuals, as in Eq. (10). If all the M residuals are below the threshold ζ, then L = M ,
otherwise the optimization procedure moves to groups of (L − 1) sources. The algorithm stops when all
the residuals of the k-th set of M sources taken L are below the threshold, or when L = Mmin, i.e., the
minimum number of sources which are necessary for a unique localization result. For further details, the
reader can refer to [2].

Equipment and Localization results

For multilateration, the sound source should ideally be a monopole. It means that, within the frequency range
of interest, the characteristic length of the source must be smaller than the minimum wavelength, and the
source itself must be always omnidirectional. For this purpose, a new, dedicated and compact LMS Qsources
volume source has been utilized (Fig. 10). Such a source incorporates an internal sound source strength sen-
sor which outputs a realtime volume acceleration signal, and it emits the noise as a monopole source up to
several kHz. These LMS Qsources volume velocity sources are designed to be used in a high frequency band
(1 to 20 kHz), which is an important bandwidth to ensure accurate TOA measurements [19, 20].

Figure 10: New compact LMS Qsources volume ve-
locity source

Figure 11: Source Distribution



The anchors should be placed in strategic positions so as to localize the largest number of microphones. With
reference to the experimental case reported in [16], where microphones were placed in critical positions, an
example of anchors configuration is illustrated1 in Fig. 11. During the measurements, the averaged temper-
ature of the environment must be recorded in order to calibrate the speed of sound, whereby the temperature
is assumed to be constant throughout the cabin.
In order to have the highest possible temporal resolution of the CCF, the maximum sampling rate provided by
the acquisition system is recommended. Furthermore, the pulse length must be short to avoid the overlapping
of near echoes in the CCF. This is not a trivial requirement, as it is difficult to emit sharp pulses for speaker
limitations. In addition, the signal has to be emitted with the highest power available in order to increase
the signal-to-noise ratio (SNR), and to minimise the Cramer-Rao Lower Bound (CRLB) [19]. Nevertheless
the SNR is proportional to pulse duration [21]. The contradiction can be solved by long duration signals
which lead to short duration correlation functions, i.e., where the cross-correlation of the received signal and
an appropriate template signal leads to a short pulse. A signal commonly used in radar application for this
purpose is the linear frequency modulated (chirp) signal.
In order to have a qualitative idea of the effectiveness of the method, the coordinates from the CAD model
are assumed as a reference. The discrepancies between the (inaccurate) CAD positions and the acoustically
estimated coordinates do not allow for an absolute localization error quantification, but they are sufficient for
demonstrating the effectiveness of the approach in a complex scenario, such as a car cabin.
In Fig. 12, a comparison is made between a localization algorithm were the pruning is not applied (i.e. NLOS
distances remain present), versus the considered localization algorithm where erroneous distances are iden-
tified and discarded2. As visible in Fig. 12, the application of the NLOS IAD algorithm is not only effective,
but also essential for a correct localization of all microphones.

(a) (b)

Figure 12: Localized microphones without (a) and with (b) the application of the NLOS IAD algorithm

4 Modal Parameter Identification

It has been observed in [4–6,8] that it is quite challenging for classical modal parameter estimation methods
to curve-fit an FRF matrix with so many columns (12 references, as reported in § 3.1); typically, not all
references are well fitted for a particular sensor location. Therefore, there is a need for a new solver capable
to overcome such a difficulty. The Maximum Likelihood Modal Model-based (ML-MM) modal parameter

1The model of the car is for illustrative purposes only.
2The results have been obtained by using all the 11 sources, imposing a threshold ζ = 2 cm, and using as initial guess the centre

of gravity of the anchors.



estimator [7] has been proven to be more suitable for such a kind of data [6, 8]. A brief description of the
estimator is reported in the follow.

4.1 Maximum Likelihood Modal Model-based method

The so-called ML-MM method is a multiple-input, multiple output (MIMO) frequency-domain estimator
providing global estimates of the modal model parameters. Since it is an iterative method based on solving
a non-linear optimization problem, initial values for the modal model parameters (i.e., poles, participation
factors, mode shapes, lower and upper residuals) are needed to start the optimization process. In the first
step, the Polymax method [22] is applied to the FRFs to obtain the initial estimates for the poles and the
participation factors of the physical modes within the analysis band. Then, initial values for the mode shapes
and the lower and upper residuals are estimated in a complementary step using the so-called Least-Squares
Frequency Domain (LSFD) estimator [10]. In the next step, once the initial values for the entire modal
model parameters are obtained, the ML-MM solver starts minimizing the error between the modal model
equation and the measured data in a maximum-likelihood sense. Assuming the different measured FRFs to
be uncorrelated, the ML-MM cost function to be minimized can be formulated as:

KML-MM(θ) =

No∑
o=1

Ni∑
i=1

Nf∑
k=1

∣∣Hoi(ωk)− Ĥoi(θ, ωk)
∣∣2

σ2Hoi
(ωk)

, (11)

where N0 is the number of outputs, Ni the number of inputs, Nf the number of frequency lines, ωk = 2πfk
the circular frequency at frequency fk [Hz],Hoi(ωk) ∈ C is the measured FRF, Ĥoi(θ, ωk) ∈ C the modelled
FRF, and σ2Hoi

(ωk) = var[Hoi(ωk)] ∈ R.
Assuming volume acceleration FRFs, Ĥ(θ, ωk) ∈ CNo×Ni can be represented using the modal model formu-
lation [10]:

Ĥ(θ, ωk) =

Nm∑
r=1

(
φrlr

jωk − λr
+

φ∗r l
∗
r

jωk − λ∗r

)
+

LR
(jωk)2

+ UR, (12)

whereNm is the number of the identified modes, φr ∈ CNo×1 is the r-th mode shape, λr is the r-th pole, (•)∗
stands for the complex conjugate of a complex number, lr ∈ C1×Ni is the r-th participation factors vector,
LR ∈ RNo×Ni and UR ∈ RNo×Ni are the lower and upper residual terms used to compensate for the out-
of-band modes, and θ is the parameters vector (i.e., θ = {φr, lr, λr,LR,UR}). The maximum likelihood
estimates of θ are obtained by using a Gauss-Newton optimization. Furthermore, to ensure convergence, the
Gauss-Newton optimization is implemented together with the Levenberg-Marquardt approach, which forces
the cost function to decrease. More details about the ML-MM method are presented in [7].

4.2 Considerations and results

An important issue to be addressed when processing acoustic modal analysis data is to identify predomi-
nantly acoustic modes in FRFs with a rather high modal density [4, 15]. Even if purely acoustic FRFs have
been measured, the modal density is indeed high since the acoustic cabin is coupled to a flexible body and
also the resonances of the structural system (mainly panel vibrations from the windshield, the roof, etc.)
show up in sound pressure measurements. So, among the several coupled natural frequencies, the number
of effective acoustic eigenvalues must be narrowed down to a level that is around the number of uncoupled
acoustic eigenvalues computed analytically or numerically. For this purpose, data acquired by accelerome-
ters placed on strategic positions (windshield, roof, trunk, side windows, etc.) might help to distinguish the
dominant acoustic modes: analyzing the structural driving-point FRFs, the main peaks in these FRFs can be
considered to be structural modes. If these frequencies are also revealed in the acoustic FRFs, then they can
be assumed as not purely acoustic.



Moreover, the high damping of the cabin involves lower and wider peaks in FRFs resulting in highly over-
lapping modes. Finally, possible data inconsistencies, due to the fact that the different runs are usually per-
formed in different days, can cause resonance frequencies to vary within the test database. When analyzed
altogether, these problems can cause a rather unclear stabilization chart, and hence a non-trivial selection of
the right stable pole. Or more precisely, the right stable pole does not exist as such since there are multiple
stable poles identifying the same mode.
Taking that into account, the ML-MM method has been proven to outperform more classical modal parame-
ter estimators with such a kind of data.
With reference to the test case in [6], the initial values generated by applying the Polymax method to the full
526 × 12 FRF matrix were improved by applying the ML-MM method. The analysis was stopped after 20
iterations. Nine pure acoustic modes are well identified in the frequency range from 0-200 Hz (Tab. 1 and
Fig. 14). The initial mean fitting error between measured FRFs and Polymax synthesized FRFs was around
9%. The mean fitting error after applying the ML-MM method reduced to only 2%. This improved overall
curve fit is illustrated using two typical elements from the full FRF matrix in Fig. 13.

Figure 13: Improved FRF curve-fitting quality shown for two typical FRFs; - Measured (red), Polymax
synthesis (green), ML-MM synthesis (blue)

# Frequency
[Hz]

Damping
[%] Mode Shape

2 51.06 13.82 I Longitudinal

3 81.44 14.94
I Longitudinal &

Rigid-Body Trunk
4 97.24 10.65 I Lateral

5 137.79 7.25
II Longitudinal &
Rigid-Body Trunk

6 148.66 13.70 I Vertical

7 149.34 6.57
I Longitudinal &

I Lateral

8 150.74 11.79
I Longitudinal &

I Lateral & I Lateral
Trunk

9 195.13 6.05 III Longitudinal

Table 1: Modal parameters estimates



# Numerical Modes # Experimental Modes Mode Shapes

2 2 I Longitudinal

3 3
I Longitudinal &

Rigid-Body Trunk

4 4 I Lateral

5 5
II Longitudinal &
Rigid-Body Trunk

7 6 I Vertical

6 7
I Longitudinal & I

Lateral

8 8
I Longitudinal & I
Lateral & I Lateral

Trunk

9 9 III Longitudinal

Figure 14: Identified mode shapes using 12 references (rigid-body mode not shown)



5 Conclusions

A full Acoustic Modal Analysis (AMA) procedure to improve the CAE prediction of the the car interior
noise level has been proposed and successively validated. The challenges of typical AMA tests are described
in details. The huge amount of sensors required to have a good description of the acoustic cavity, and the
large number of sound sources to properly excite the cavity of a car cabin make such tests extremely time-
consuming and demanding. In order to have a good description of the dynamic behaviour of the system,
many sensors are indeed placed inside the cabin. In such a complex environment, determining the micro-
phone positions by hand is not only tedious, but also inaccurate and cumbersome. Furthermore, where many
input excitation locations have to be used, it has been observed that traditional modal parameter estimators
have proven not to be effective.
In order to face such typical challenges, different solutions are proposed. Firstly, a smart approach capable
to automatically localize microphones in such a complex scenario is presented. The method is based on
acoustic distance measurements between a microphone and (at least 4) sources. With the introduction of
novel algorithms coping with reflections and non-line-of-sight issues, the localization procedure has been
proven to be effective, providing reliable results and drastically reducing the measurement set-up time. Sec-
ondly, modal parameters are estimated in the frequency range between 40 and 200 Hz, by applying a new
modal parameter estimation method, the so-called ML-MM estimator. Nine acoustically dominant modes
are identified. Although Polymax still yields good modal parameter estimates, ML-MM provides superior
FRF synthesis results and, hence, more reliable values.
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