
ar
X

iv
:0

81
2.

21
88

v1
  [

m
at

h.
C

O
] 

 1
1 

D
ec

 2
00

8

A Local Branching Heuristic for MINLPs

Giacomo Nannicini1, Pietro Belotti2, Leo Liberti1

1 LIX, École Polytechnique, F-91128 Palaiseau, France

Email:{giacomon,liberti}@lix.polytechnique.fr
2 Lehigh University, 200 West Packer Avenue, Bethlehem, PA 18015

Email:belotti@lehigh.edu

October 28, 2018

Abstract

Local branching is an improvement heuristic, developed within the context of
branch-and-bound algorithms for MILPs, which has proved to be very effective
in practice. For the binary case, it is based on defining a neighbourhood of the
current incumbent solution by allowing only a few binary variables to flip their
value, through the addition of a local branching constraint. The neighbourhood
is then explored with a branch-and-bound solver. We propose a local branching
scheme for (nonconvex) MINLPs which is based on iteratively solving MILPs and
NLPs. Preliminary computational experiments show that this approach is able to
improve the incumbent solution on the majority of the test instances, requiring only
a short CPU time. Moreover, we provide algorithmic ideas for a primal heuristic
whose purpose is to find a first feasible solution, based on the same scheme.

1 Introduction

Local branching was introduced by Fischetti and Lodi [5] as a primal heuristic for Mixed-
Integer Linear Programs (MILPs) within the context of a Branch-and-Bound (BB) al-
gorithm. It is sometimes referred to as an improvement heuristic, in that it aims at
improving the primal bound by finding a better feasible solution, starting from the in-
cumbent (i.e. the best known feasible solution). The natural setting for local branching
is within problems with binary variables, although it has also been extended to the case
of general integer variables [5]. The idea is as follows: whenever a new incumbent is
found, a new problem is solved, which has the same feasible region and objective of the
original problem, but with the addition of a local branching constraint, whose purpose
is to allow only a given number of binary variables to change their value with respect
to the incumbent. This new problem, which we call the local branching problem, defines
a neighbourhood which is explored by employing a BB algorithm. The computational
time required to solve the local branching problem is typically very small, as the local
branching constraint greatly reduces the feasible region. Therefore, it is some kind of
local search. Moreover, the local branching problem need not be solved to optimality:
when employed as heuristic for difficult problems, it is typically solved with a maximum
running time, or until a better solution is found. Computational experiments have shown
that this simple idea is often able to improve the incumbent on a large number of real-
world test problems, thus being practically useful to reduce the running time of a BB
algorithm by providing a better bound. Clearly, this paradigm can be directly applied
to BB methods for nonconvex Mixed-Integer Nonlinear Programs (MINLPs): the only
difference is that the local branching problem should be solved by employing a BB algo-
rithm for MINLPs. However, branch-and-bound methods for this class of problems are

http://arxiv.org/abs/0812.2188v1
{giacomon,liberti}@lix.polytechnique.fr
belotti@lehigh.edu


2 THEORETICAL BACKGROUND 2

in practice significantly slower than in the linear case, because branching can occur on
integer and continuous variables [15, 2], a convexification refinement step is applied, and
large continuous Nonlinear Programs (NLPs) are solved at some nodes. Therefore, the
exploration of the neighbourhood may require more time, losing effectiveness.

In this paper, we propose a local branching scheme for nonconvex MINLPs, which is
based on repeatedly solving a sequence of limited-size MILPs and NLPs. Each of these
problems has a different purpose. We use a NLP to estimate the descent direction of
the original objective function. Then, we solve a MILP on the convexification of the
feasible region with a local branching constraint, to enforce integral feasibility. Finally,
we fix the integer variables and try to satisfy the original constraint via a NLP. In case of
failure, we cut off the computed solution from the MILP, and iterate the algorithm. As
each solved problem has a smaller feasible region or involves fewer variables with respect
to the original MINLP, this approach is fast. We report preliminary computational
experiments to assess its usefulness. We also propose ideas for a primal heuristic whose
purpose is to obtain a first feasible solution at the root node of the BB tree. Future
research will include the implementation of these heuristics within an existing solver for
nonconvex MINLPs, to test them in practice on a larger number of instances, and a full
version of this preliminary paper.

2 Theoretical Background

Consider the following mathematical program:

min f(x)
∀j ∈M gj(x) ≤ 0
∀i ∈ N xL

i ≤ xi ≤ xU
i

∀j ∈ NI xj ∈ Z,















P (1)

where f and g are possibly nonconvex functions, n = |N | is the number of variables, and
x = (xi)i∈N is the vector of variables. This general type of problem has applications in
several fields [3, 7, 12]. Difficulties arise from the integrality of some of the variables, as
well as nonconvexities. Solution methods typically require that the functions f and g
are factorable, that is, they can be expressed as

∑

i

∏

j hij(x) [15]. When the function
f is linear and the gj ’s are affine, P is a MILP, for which efficient Branch-and-bound
or Branch-and-Cut methods have been developed [14, 17]. Commercial codes (e.g. [10])
are often able to solve MILPs with thousands of variables in reasonable time. Branch-
and-Bound methods for MINLPs attempt to closely mimick their MILP counterparts,
but many difficulties have to be overcome. In particular, obtaining lower bounds is not
straightforward. The continuous relaxation of each subproblem may be a nonconvex NLP,
whose global optimum is difficult to find. One possibility is to compute a convexifica-
tion of the feasible region of the problem, so that lower bounds can be easily computed.
In the following, we will assume that the Branch-and-Bound method that we address
computes a linear convexification of the original problem; that is, the objective function
f and all constraints gj are replaced by suitable linear terms which underestimate and
overestimate the original functions over all the feasible region. The accuracy of the con-
vexification greatly depends on the variable bounds. If the interval over which a variable
is defined is large, the convexification of functions which contain that variable may be a
very loose estimation of the original functions. For this reason, branching can also occur
on continuous variables, so as to reduce the variable bounds. This improves the quality of



3 LOCAL BRANCHING FOR MINLPS 3

the convexification. Moreover, bounds can be tightened by applying various techniques,
such as Feasibility Based Bound Tightening (FBBT), Optimality Based Bound Tighten-
ing (OBBT), etc. (see [2]). We note that a good incumbent solution not only provides
a better upper bound, but also allows for the propagation of tighter bounds through
expression tree based bound tightening techniques. Moreover, OBBT benefits from a
better upper bound. Therefore, finding good feasible solutions is doubly important for
BB algorithms for MINLPs.

Local Branching [5] is an improvement heuristic for BB algorithms which relies on
exploring a neighbourhood of the incumbent, looking for a better solution. For problems
with only continuous and binary variables, the neighbourhood is defined by adding a local

branching constraint to the original problem, obtaining the local branching problem. Let
B ⊂ NI be the set of binary variables, 0 < k ∈ N, and let x̄ be any feasible solution; then
the local branching constraint is:

∑

i∈B:x̄i=1

(1− xi) +
∑

i∈B:x̄i=0

xi ≤ k. (2)

This constraint has the effect of allowing only k binary variables to flip their value from
0 to 1 or vice versa. Typically, k is a small value; experiments in [5] suggest k ≈ 10.
As a consequence, the number of feasible solutions of the local branching problem is
very small, and an efficient BB code requires little time to find its optimal solution.
The heuristic was proposed and applied as a primal heuristic for BB algorithms for
MILPs; it has also been used in conjunction with other metaheuristics, such as Variable
Neighbourhood Search (VNS) [8], both in the context of MILPs [9], and of nonconvex
MINLPs [13]. In particular, the latter paper reports very good results over a large
collection of possibly nonconvex MINLPs by applying an iterative exploration of the
solution space defining neighbourhoods of increasing size (in the spirit of VNS), where
the neighbourhood for binary variables is defined through (2). As the majority of the
test instances have binary variables, this turns out to be effective, and further motivates
our interest for local branching in the context of nonconvex MINLPs. However, in [13]
the local branching neighbourhood is explored by means of a solver for convex MINLPs
[4, 11], i.e. MINLPs whose continuous relaxation is convex. In this case, the solvers are
employed as a heuristic. For this purpose, [4] suggests using a BB algorithm choosing
the branching variables via NLP strong branching, which implies solving several NLPs at
each node of the BB tree. As a result, the solution of the local branching problem may
be slow. Within the context of a BB algorithm for nonconvex MINLPs, a local branching
heuristic should be as fast as possible.

3 Local Branching for MINLPs

Branch-and-Bound solvers for nonconvex MINLPs are slower than for MILPs. There are
several reasons for this. First, the convexification of the problem may be computationally
expensive. The convexification is carried out at the root node, but it is typically refined
at various stages of the optimization process. This is also true for the bound tightening
phase. Second, branching can occur on integer and continuous variables, therefore there
is an overhead because more possible branching variables have to be dealt with. Third,
continuous NLPs are solved at some nodes of the BB tree. Moreover, available software
for nonconvex MINLPs does not have the same reliability and speed as solvers for MILPs,
which have been tested and improved for almost 20 years. All these difficulties motivate



3 LOCAL BRANCHING FOR MINLPS 4

our idea for a local branching scheme which does not employ a solver for nonconvex
MINLPs to solve the local branching problem.

Let x̄ be the incumbent which we want to improve. Let P̄ be the linear relaxation
of P with the addition of the local branching constraint (2). Let Q be the continuous
relaxation of P , i.e., P with no integrality constraints, and let Q̄ be Q with the additional
constraint (2). A naive approach would be to solve P̄ using a MILP solver, and then, if
the solution obtained is not feasible with respect to the original constraints of P , employ
a local NLP solver fixing the integer variables to regain feasibility. Two problems arise.
First, the convexification of the objective function of P may be very different from the
original objective function. Hence, optimizing with respect to the convexified objective
function could deteriorate the objective value. Second, the solution of P̄ is likely to be
an infeasible point with respect to the original constraints of P . We would like to find a
point which is as close as possible to the feasible region, so that constraint feasibility can
be regained by modifying the continuous variables only, and keeping the integer variables
fixed. To do so, we solve the continuous relaxation Q̄ using a local NLP solver. This
yields a point x′ such that f(x′) ≤ f(x̄), since we have relaxed integrality. Moreover,
x′ is feasible with respect to the constraints of P , although it is typically not integral
feasible. We use x′ to estimate the descent direction of the original objective function,
i.e. to indentify the region in which a better incumbent could be found. Let P̄ be the
feasible region of P̄. We find an integral feasible point by employing a MILP solver on
the problem:

min
x∈P̄
‖x− x′‖ℓ. (3)

If ℓ = 1 or ℓ =∞, (3) is a MILP. If ℓ = 2, it can be solved as a Mixed-Integer Quadratic
Program (MIQP). In the following, we assume ℓ = 1. Let x′′ = argminx∈P̄ ‖x − x′‖ℓ.
By solving (3), we hopefully find an integral feasible point which is near x′, hence it is
likely that x′′ is almost feasible and improves the objective value. In the following step
we fix the integer variables of x′′, and solve P with a local NLP solver with starting
point x′′. We obtain a new point x∗. If x∗ is feasible for P and f(x∗) < f(x̄), we have
a new incumbent, and the algorithm terminates with success. Otherwise, we append the
constraint LBrev(x

∗):
∑

i∈B:x∗

i
=1

(1 − xi) +
∑

i∈B:x∗

i
=0

xi ≥ 1 (4)

to P̄ , and iterate the algorithm. (4) avoids finding a solution with the same values on
the binary variables as x∗. This way, at each iteration we find different solutions.

Algorithm 1 Local Branching Heuristic for MINLPs

Initialization: stop← false

Solve Q̄ with a local NLP solver, obtaining point x′

while ¬stop do

Solve minx∈P̄ ‖x− x′‖1 with a MILP solver, obtaining point x′′

Solve P with a local NLP solver and initial point x′′, keeping the integer variables
fixed, obtaining point x∗

if (x∗ is not feasible for P) ∨ (f(x̄) ≤ f(x∗)) then
Append LBrev(x

∗) to P̄
else

stop← true

return x∗



4 COMPUTATIONAL EXPERIMENTS 5

We give a description of our algorithm in Algorithm 1. Although Algorithm 1 may
iterate until an improved incumbent is found or one of employed solvers fails, additional
stopping criteria can be used, such as a maximum CPU time or a maximum number of
iterations. Trivially, if |B| is the number of binary variables, and k is the rhs of (2), Algo-

rithm 1 will stop after at most
(

|B|
k

)

iterations, returning either an improved incumbent,
or no solution. This follows from the fact that, after each iteration, one realization of the
vector of binary variables is excluded from the set of feasible solutions to (3) (through

the addition of LBrev(x
∗)), and there are at most

(

|B|
k

)

possible combinations.
Algorithm 1 employs a MILP solver and a local NLP solver only, therefore it does

not rely on BB nonconvex MINLP solvers, which would typically slow down the local
branching heuristic. However, a nonconvex MINLP solver guarantees to find an improved
incumbent within the neighbourhood defined by the local branching constraint, if one
exists. In this case, we are trading reliability for speed. In the context of a BB software
for nonconvex MINLPs, heuristics are supposed to be fast, therefore this approach finds
application.

4 Computational Experiments

In this section we provide preliminary computational experiments. The heuristic was
implemented with the AMPL scripting language in order to test if it is able to find
improved solutions, so as to simulate its behaviour when integrated within a MINLP
solver. We used couenne [1] to obtain the convexification of the problems. As MILP
solver, we employed Cplex 11.0 [10], whereas the local NLP solver is ipopt [16]. The
tests were run on one core of an Intel Centrino Duo clocked at 1.06 Ghz, on a machine
with 1.5 GB RAM. The right hand side k of the local branching constraint was computed
as

k = min(15,max(1, |B|/2)),

where B is the set of binary variables. Algorithm 1 was terminated after 10 iterations
of the main loop. Cplex was run with default parameters and maximum running time
of 2 seconds, whereas ipopt was run with the options expect infeasible problem,

start with resto. To test the heuristic, we ran couenne for 10 minutes on instances with
both binary and continuous variables taken from the MINLPLib (http://www.gamsworld.com/minlp/minlplib.htm),
and recorded the first feasible solutions found, up to a maximum of two. Then we applied
Algorithm 1 on each of them, trying to find a better incumbent. Results are reported in
Table 1. For each instance, we record the objective value of each initial feasible solution
tested; then we report the iteration of Algorithm 1 at which we found the first improved
solution, the value of the new incumbent, and the total required CPU time. We also
record the best solution found during the 10 iterations. Note that, since we used an
AMPL script, no data is shared between the solvers, and each time the problem data
structures have to be initalized; a more clever implementation, integrated within the code
of a MINLP solver, is likely to be faster. Moreover, we did not tune the parameters of
the solvers. Therefore, we believe that running time can be further reduced.

We tested the heuristic on 21 instances: for 18 instances we obtained 2 feasible solu-
tions from couennewithin the 10 minutes time limit, for the remaining 3 we only obtained
1 feasible solution. In total, the heuristic was tested on 39 points used as incumbents.
Note that the instances: fo7, fo7 2, fo8, fo9, m7, o7, o7 2 are convex; therefore, the
linearization given by couennemay not be the tightest, which would be given by an outer
approximation algorithm [6].

http://www.gamsworld.com/minlp/minlplib.htm


4 COMPUTATIONAL EXPERIMENTS 6

Initial First Imp. Solution Best Solution

Instance Solution It. Objective Time It. Objective Time

csched1 -28438.6 1 -30639.3 0.316 1 -30639.3 0.316
-29779.8 1 -30639.3 0.292 1 -30639.3 0.292

csched1a -29719.5 1 -30430.2 0.108 1 -30430.2 0.108
-29862.4 1 -30430.2 0.136 1 -30430.2 0.136

csched2 -123261 1 -135365 3.600 10 -141523 23.777
-128347 1 -137722 2.952 2 -149076 5.296

csched2a -139073 1 -142403 2.560 7 -143793 18.867
-151353 1 -155252 3.908 4 -155977 14.284

elf 4.03665 1 2.57999 0.156 10 2.47666 1.808
2.04448 6 1.61999 0.164 10 1.40666 1.912

eniplac -132010 - - - 1 -131648 1.700
-132117 - - - 1 -131648 1.688

enpro48 189132 9 188887 20.393 9 188887 20.393
enpro56 276551 1 266094 2.480 1 266094 2.480

275296 1 266094 2.476 1 266094 2.476
ex1233 161022 - - - 6 178588 5.220

155522 - - - 7 155522 60.351
fo7 46.9636 1 46.2517 2.192 4 39.6749 9.112

30.4694 2 28.9003 4.324 8 28.5415 17.161
fo7 2 41.3952 - - - 2 41.3952 6.408

30.9608 1 28.0644 2.232 2 21.6761 4.356
fo8 39.2582 - - - 1 39.62582 2.216
fo9 42.7099 1 42.0448 2.336 1 42.0448 2.336

41.1547 1 39.5119 2.320 2 37.1786 4.536
m7 202.098 1 150.357 2.348 3 126.337 7.144

175.142 1 144.505 2.244 3 136.905 6.568
o7 167.586 8 159.605 17.865 8 159.605 17.865

161.379 6 158.269 13.508 6 158.269 13.508
o7 2 161.337 - - - 5 161.337 11.244

127.366 3 116.946 6.500 3 116.946 6.500
ravem 295020 1 269590 1.236 1 269590 1.236

283851 1 269590 1.256 1 269590 1.256
st e36 0 1 -2 0.416 1 -2 0.416

-1 1 -2 0.380 1 -2 0.380
water4 1645.76 1 1022.47 2.456 1 1022.47 2.456

1616.63 1 1000.94 2.512 1 1000.94 2.512
waterx 1277.88 1 1024.85 10.848 7 997.27 71.696
waterz 1700.58 - - - - - -

1497.95 - - - - - -

Table 1: Results obtained by applying the proposed local branching heuristic on instances
taken from the MINLPLib. Time is expressed in seconds.



5 FEASIBILITY HEURISTIC 7

In 9 cases, the heuristic was not able to improve the incumbent within the 10 iter-
ations. On the waterz instance, no feasible solution was found by the algorithm. In 2
of the 9 unsuccessful runs (instances fo7 2, o7 2), it found a solution with the same
objective value as the incumbent; this may indicate the presence of symmetric solutions.
For 30 out of 39 initial feasible points (76.9%), Algorithm 1 was able to find a better
solution. In 24 cases (61.5%), an improved incumbent is found at the first iteration. The
improvement is significant. On the csched1, csched1a, ravem and st e36 instances, our
approach returns the best known solution (reported on the MINLPLib website) from the
first feasible solution found by couenne. On the o7 2 instance, the best known solution is
returned from the second feasible solution found by couenne. The new incumbent is also
very close to the best known solutions for the instances: enprob48, enprob56, water4,

waterx. Large improvements are reported on the remaining instances. Running time is
typically less than 2.5 seconds; we remark that we put a time limit of 2 seconds for Cplex.
Therefore, the running time can probably be reduced by decreasing Cplex’s time limit.
On some instances (enpro48, o7, o7 2, waterx) several seconds are required to solve
the NLPs with ipopt. This may be due to lack of tuning of the parameters.

5 Feasibility Heuristic

An interesting observation is that our local branching heuristic found at least one feasible
solution on almost all the test instances. This suggests employing a scheme similar to
Algorithm 1 to develop a primal heuristic whose purpose is only to find an initial feasible
point, regardless of its objective value. The first question which arises is how to choose
the point x′, which determines the objective function for the MILP that is solved at
the following step. Since the purpose of this heuristic would be the discovery of a first
feasible solution, x′ should be a point in the interior of the feasible region of P . We can
determine such point by solving a continuous NLP over the feasible region of P , with the
objective of maximizing the slacks between the constraints and their respective bounds.
For instance, if the problem is expressed in the form (1), we should solve:

minx maxj∈M gj(x)
∀j ∈M gj(x) ≤ 0
∀i ∈ N xL

i ≤ xi ≤ xU
i

∀j ∈ NI xj ∈ Z,















F . (5)

This serves the purpose of finding a point x′ which is feasible and maximizes the distance
from the boundaries of the feasible region; therefore, an integer feasible point near x′ is
more likely to satisfy the constraints. Since F may be a nonconvex problem, depending on
the constraints gj’s, we solve it with a local NLP solver in a multistart approach. Suppose
we find h local minima x′

1
, . . . , x′

h. Following the scheme of Algorithm 1, the next step is
the solution of a MILP to obtain an integral feasible solution to the convexification of the
original problem, such that the solution is near to one of the x′

i, i = 1, . . . , h. This can be
modeled as a MILP. Clearly, since no feasible point is known, a local branching constraint
cannot be enforced when solving the MILP. Therefore, the solution may take more time.
However, we can use early stopping criteria, such as a maximum time limit. Albeit this
approach is very simple, the computational experiments for the local branching heuristic
suggest that the idea might work.



6 CONCLUSIONS AND FUTURE RESEARCH 8

6 Conclusions and Future Research

In this preliminary paper, we presented an idea for a local branching heuristic that can
be applied on nonconvex MINLPs with continuous and binary variables. Our approach
iteratively relies on solving a sequence of MILPs and NLPs. We have reasons to believe
that this method is faster than to closely mimick the original idea of Fischetti and Lodi
[5] substituting the MILP solver with a MINLP solver. Computational experiments run
with a prototype of the algorithm, written in AMPL, show that on most of the instances
we are able to significantly improve the incumbents, requiring a small CPU time. We also
observed that an approach similar to the one that we presented could be used as initial
feasibility heuristic, to be employed at the beginning of the Branch-and-Bound tree. We
did not provide computational experiments for this idea. Our future research will focus
on the integration of the proposed techniques within an existing solver for nonconvex
MINLPs, to assess their usefulness in practice.

References

[1] P. Belotti. Couenne, an open-source solver for mixed-integer nonconvex problems.
In preparation.

[2] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wäcther. Branching and bounds
tightening techniques for non-convex MINLP. Technical Report RC24620, IBM,
2008. http://www.optimization-online.org/DB_HTML/2008/08/2059.html

[3] L. Biegler, I. Grossmann, and A. Westerberg. Systematic Methods of Chemical

Process Design. Prentice Hall, Upper Saddle River (NJ), 1997.

[4] P. Bonami and J. Lee. BONMIN user’s manual. Technical report, IBM Corporation,
June 2007.

[5] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–37,
2005.

[6] R. Fletcher and S. Leyffer. Solving Mixed Integer Nonlinear Programs by outer
approximation. Mathematical Programming, 66:327–349, 1994.

[7] C. Floudas. Global optimization in design and control of chemical process systems.
Journal of Process Control, 10:125–134, 2001.

[8] P. Hansen and N. Mladenović. Variable neighbourhood search: Principles and ap-
plications. European Journal of Operations Research, 130:449–467, 2001.

[9] P. Hansen, N. Mladenović, and D. Urošević. Variable neighbourhood search and
local branching. Computers and Operations Research, 33(10):3034–3045, 2006.

[10] ILOG. ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France, 2007.

[11] S. Leyffer. User manual for MINLP BB. Technical report, University of Dundee,
UK, March 1999.

[12] L. Liberti, C. Lavor, and N. Maculan. A branch-and-prune algorithm for the molec-
ular distance geometry problem. International Transaction in Operational Research,
15:1–17, 2008.

http://www.optimization-online.org/DB_HTML/2008/08/2059.html


REFERENCES 9

[13] L. Liberti, G. Nannicini, and N. Mladenović. A good recipe for solving MINLPs.
In V. Maniezzo, T. Stuetze, and S. Voss, editors, MATHEURISTICS: Hybridiz-

ing metaheuristics and mathematical programming, Operations Research/Computer
Science Interface Series. Springer, 2008.

[14] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wiley, New
York, 1988.

[15] M. Tawarmalani and N. Sahinidis. Global optimization of mixed integer nonlin-
ear programs: A theoretical and computational study. Mathematical Programming,
99:563–591, 2004.

[16] A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Mathematical

Programming, 106(1):25–57, 2006.

[17] L. Wolsey. Integer Programming. Wiley, New York, 1998.


	Introduction
	Theoretical Background
	Local Branching for MINLPs
	Computational Experiments
	Feasibility Heuristic
	Conclusions and Future Research

