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Abstract Short-term power load forecasting plays a key role in power supply systems. Many meth-

ods have been used in short-term power load forecasting during the past years. A new short-term

power load forecasting method is proposed in this study. First, the study represents a Fractional

Auto-regressive Integrated Moving Average (FARIMA) model based on long-range dependence

(LRD). The LRD model is governed by the Hurst exponent, which shows whether the model exhi-

bits the LRD or not. Then, the study employs Cuckoo Search (CS) algorithm based on two param-

eters dynamic adjustment for parameter optimization of the forecasting model. As test problem, we

use the real power consumption data, and test it for different forecasting models. Our results indi-

cate that the FARIMA model and the improved optimization algorithm show relatively high accu-

racy and effectiveness in forecasting short-term power load.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Short-term power load forecasting is the premise and founda-
tion for efficient power dispatching systems or Programme

Planning, reasonable arrangement of the ‘‘start-up”, ‘‘stop-
up” and the maintenance of the generating units. It also
ensures stable and effective operation of power systems. Hence
it makes this study useful in engineering applications. The
short-term power load forecasting usually refers to the daily
load forecasting or weekly load forecasting, where the forecast-

ing step size is either 30 min or 60 min. The importance of
short-term power load forecasting is that it can produce accu-
rate forecasting of daily production and domestic electricity

consumption, effectively economize the time and cost of power
supply departments.

With the gradual recognition of the importance of power

load forecasting, many methods and models have been applied
to the short-term power load forecasting since the 1960 s. Such
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methods andmodels can be roughly divided into two categories:
traditional forecasting methods and artificial intelligence (AI)
forecasting methods [1–5]. The traditional forecasting methods

include the ARMA model, Grey Model (GM), the Kalman fil-
tering methods, etc. The ARMA and the ARIMA represent the
classical time series forecasting models [6–8]. However, the

obvious shortcoming of the classical models is that such models
do not directly consider the influence of other random variables.
The GM algorithm also represents a traditional power load

forecasting algorithm [9–11]. In fact, many forecasting practices
show that the GM is not effective for all problem statements. In
order to use the Kalman filtering method [12–14], the mathe-
matical model and noise statistics need to be identified. The fil-

tering designed with inaccurate mathematical model and noise
statistical characteristics can lead to large state estimation
errors or even filter divergence. In 90ies, the developed tech-

niques of artificial intelligence (AI) technology generated many
novel AI forecastingmethods, which were also applied to power
load forecasting. The artificial neural networks (ANNs) are the

most widely used method in AI forecasting methods [15–18].
However, ANNs have some disadvantages, such as local mini-
mization, slow convergence speed, and different structure selec-

tion. Support VectorRegression (SVR) algorithm is widely used
because of Disadvantages of ANN methods [19–22]. However,
once the appropriate kernel function is chosen, the SVR model
will become rather difficult to use. Deep-Learning methods

have achieved the state-of-art performance in such forecasting
fields as the Convolutional Neural Networks (CNN), the
Recurrent Neural Networks (RNN) and some other improved

forms [23,24].
Fractional Auto-regressive Integrated Moving Average

model is known as FARIMA (p, d, q)[25]. This model can be

regarded as the ARIMA model with fractional order charac-
teristic. This characteristic enables the FARIMA model to
exhibit simultaneously both long-range dependence (LRD)

and short-range dependence (SRD). The series of power load
data is investigated with LRD, so that the FARIMA model
can be used for effective forecasting. In order to use the FAR-
IMA model, one need to study the LRD of the forecasting ser-

ies. Hence, this paper comes out the definition of the LRD and
the essential parameter: Hurst exponent (H) to evaluate the
LRD. If 0 < H < 0:5, the time series exhibits a short-range

dependence; while 0:5 < H < 1, the time series is LRD. Many
methods have been proposed to calculate H, like the Variance
time method (V-T methods), the log–log correlogram and the

Rescaled range analysis (R/S) [26–28]. Hurst exponent is not
only used to evaluate the dependence, but also to derive the
difference d-parameter in FARIMA model. Once the d-
parameter is calculated and the parameters p, q are evaluated

according to the ARIMA model, we can get the FARIMA
forecasting model. However, the d-parameter is not constant.
When the optimal parameter d is calculated, the forecasting

accuracy can be easily improved. In order to get the optimal
d-parameter, we propose an improved Cuckoo Search (ICS)
algorithm [29,30]. Instead of simply isotropic random walk,

the algorithm can search global optimum by Levy flights.
The conventional CS algorithm searches for the optimal pro-
cess by Levy flight [31,32]. In this study, the two parameters

dynamic adjustment strategy is used to optimize the process
to achieve the purpose of improving the algorithm. The
improved optimization algorithm can effectively optimize the
parameter d. So that we use the FARIMA algorithm combined
with the improved optimization algorithm for forecasting the
real power load data. Our forecasting simulation illustrates
the superiority of this optimization model, compared with

the AI forecasting models, and uses four methods: RBF,
RNN, FARIMA and ICS + FAIRMA. The main novelty
of this paper is summarized as the following steps:

(1) LRD model forecasting is used to solve the problem of
nonlinear series preprocessing by judging the depen-

dence of series.
(2) An improved cuckoo algorithm is proposed to optimize

the important parameter of the model and improve the
forecasting accuracy of power load.

The organization of this paper is as follows. The LRD

description and the Hurst exponent computational details
are given in Section 2. In Section 3 we show the deduction
and the calculation processes of the FARIMA model. The

key features of the ICS algorithm are given in Section 4. In
Section 5 we describe the specific steps for optimizing d-
parameter by using the ICS algorithm. Forecasting experi-

ments based on real power load data are carried out in Sec-
tion 6. Concluding remarks are given in Section 7.

2. Long-range dependence and hurst exponent estimation

Long-range dependence (LRD) is often associated with self-
similar random processes or random fractals. When the

auto-correlation refers to the scale behavior of the finite-
dimensional distribution in a continuous-time or a discrete-
time processes, The LRD denotes Long tail behavior of
auto-correlation function for stationary time series [33–35].

The definition of LRD can be summarized as follows: for
X1;X2; :::;Xn are sampled observations of the given pro-
cessXðtÞ, the mean and variance of XðtÞread as l ¼ EðXiÞ
andr2 ¼ varðXiÞ, respectively. The auto-correlation between
Xi and Xjcan be described as:

q kð Þ ¼ vði; jÞ
r2

ð1Þ

wherevði; jÞ ¼ Xi � lð ÞðXj � lÞ� �
is the auto-covariance

betweenXiandXj.

If the following expression is true:

X1
K¼ - 1

qðkÞ ¼ 1 ð2Þ

The correlation is so slowly decaying that its partial sum
diverges. This process can be considered as a process with long
memory or exhibiting LRD. More formally, the LRD is

defined as follows:

qðkÞc~k2H�2 ð3Þ
where cis the non-negative constant, His the Hurst exponent

which can be used to evaluate the LRD of time series.
Many methods have been proposed to calculate the Hurst

exponent. For example, the variance time (V-T) method, the

log-log correlogram and the Rescaled range analysis (R/S).
In the following we use the R/S method for the Hurst exponent
estimation. The specific steps are as follows:

For the observation series Xtf g, let its length T be divided

into kadjacent subintervals of length n, whereT ¼ kn. The



Fig. 1 The 1000 Trajectories simulation of the Levy flight.
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average value of each subinterval gives the new series YðiÞ. The
difference between the maximum and minimum values of the

new series YðiÞand the standard deviationS2ðnÞ can be calcu-
lated. The ratio between the two values read as follows:

ðR=SÞn ¼ ðmaxðYiÞ �minðYiÞÞ=
ffiffiffiffiffiffiffiffiffiffiffi
S2ðnÞ

q
ð4Þ

YðiÞ ¼
Xn
j¼1

Xj � X
�
n ð5Þ

where X
�
nandS

2ðnÞ represent the mean and the variance of the

subinterval, respectively. The value R/S scales looks like-

cnHasn ! 1, where c is a constant, which is independent on

n. The method is robust in the case of heavy tails. In addition,
the heavier tails mean the closer to the expected true value.

3. The farima forecasting model

The model of the Fractional Auto-regressive Integrated Mov-
ing Average is usually expressed as the FARIMA (p, d, q). It
was first proposed by Hosking [25]. Where parameters p, d

and q represent the autoregressive order, the difference order
and the moving average order, respectively.

The FARIMA model is capable to express long and short

range dependences at the same time. So, it is often applied in
network traffic forecasting. It can also be regarded as the spe-
cial form of the ARIMA model.

The FARIMA model can be defined as follows:
If the given series Xtf g is stationary and satisfies the differ-

ence equation:

UðBÞDdXt ¼ hðBÞat ð6Þ
where atf gis the white noise sequence, UðBÞis the polynomial of
order p, which denotes the Auto-regressive term, B is the back-
ward moving operator, which satisfies the equation:

BXt ¼ Xt�1, hðBÞis the polynomial of order q. The expressions
for UðBÞand hðBÞhave the form:

UðBÞ ¼ 1� U1ðBÞ � U2ðBÞ2 � � � � � UpðBÞp ð7Þ

hðBÞ ¼ 1� h1ðBÞ � h2ðBÞ2 � � � � � hpðBÞp ð8Þ
whereUðBÞandhðBÞdonot have commonzero’s anddonot equal
zero for Bj j 6 1. LetD ¼ ð1� BÞbe the backward-shift operator,
andDddenotes the fractional differencing operator, we have

Dd ¼ ð1� BÞd ¼
X1
k¼0

d

k

� �
�Bð Þk ð9Þ

d

k

� �
¼ C dþ 1ð Þ= Cðkþ 1ÞCðd� kþ 1Þ½ � ð10Þ

where Cdenotes the gamma function.
It is clear that ford ¼ 0, the FARIMA (p, d, q) model rep-

resents the common ARMA (p, q). If d 2 0; 0:5ð Þ, then the
LRD or persistence occurs in the FARIMA model. Especially,
FARIMA (0, d, 0) is the simplest and most fundamental form

of FARIMA model. According to Section 2, parameterdis
related to LRD, so it can be drawn from H: d ¼ H� 0:5.

Taking into account the above equations and d-parameter

definition, the fundamental steps of FARIMA can be summa-
rized as follows:
Select real power load data for a period of time;

According to the LRD of power load series, the primary
FARIMA prediction model is established.
Use the fractional difference filtering for power load data;

The ARMA model is used to identify the power load data
after the differential filtering;
Following the principle of the ARMA model, the parame-
ters p and q are evaluated.

Use a period of past power load data into the model to pre-
dict the future power load

4. Improved optimization algorithms for forecasting model

Although the FARIMA model is considered as an effective

method for power load forecasting, its accuracy still remains
poor. As a result, an optimization algorithm is used to opti-
mize both parameters of the forecasting model respectively.

In the following we will use the improved Cuckoo Search algo-
rithm (ICS) to optimize the parameters of the FARIMA
model.

The Cuckoo Search (CS) algorithm is the natural heuristic
algorithm, proposed by Yang, X. and Deb, S. in 2009. The CS
algorithm simulates certain species of cuckoo’s parasitic brood
process to solve global optimization problems. The CS algo-

rithm adopts Levy flight search mechanism, which makes the
optimization algorithm more effective. The one thousand tra-
jectories simulation of the Levy flights are shown in Fig. 1.

The CS algorithm follows three basic rules adopted by the
Cuckoo bird:

Rule 1: Only one egg at the time is laid down by cuckoo.

Cuckoo dumps its egg in a randomly chosen nest.
Rule 2: only the best nest of hatching cuckoo eggs will be

preserved for the next generation.
Rule 3: The number of available host nests is fixed. Eggs

laid by a cuckoo bird is discovered by the host bird with a
probability pa 2 ½0; 1�.

On the basis of these three rules, the Levy flight has the

form:
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Xtþ1
i ¼ Xt

i þ a� levyðbÞ ð11Þ
where i is theXt

isolution for t generation t, a > 0 denotes a

step size control factor, � denotes point to point multiplica-

tion, levyðbÞdenotes the random search path:

LevyðbÞ � u ¼ t�k; 1 < k 6 3 ð12Þ
In Eq. (12), LevyðbÞ is calculated by the Mantegna Method

[36,37], as:

LevyðbÞ � u� l

mj j1=b
ð13Þ

wherelandmare the random numbers, which obey the nor-
mal distribution/ For b ¼ 1:5, u can be calculated by the

following:

u ¼ C 1þ bð Þ � sin p� b
2

� �
C 1þb

2
� b� 2

b�1
2

	 

0
@

1
A

1=b

ð14Þ

In addition, during the iteration process of CS, after updat-

ing the nest according to Eq. (14), the discovery probability
pais compared to the uniformly distributed random num-
bersrandð0; 1Þ. Ifrand > pa, the cuckoo eggs are discovered

and abandoned, the next Xtþ1
i is randomly changed. Finally,

calculate the fitness function:

Yt
i ¼ fitnessðXt

iÞ ð15Þ
Then nests with better fitness values will be reserved, and it

is written as Xtþ1
i .

There are four parameters in the CS algorithm: nests num-
ber N, discovery probability pa, step sizea and k in Levy flight.

Due to the number of nests and Levy flight parameter are basi-
cally determined after initialization, the strategy of dynamic
adjustment of two parameters is equal to adjusting the a and
pa. First of all, the original step size is also fixed, which reduces

the prediction accuracy when the number of iterations is
adjusted. In the following, we propose a method of exponen-
tially decreasing a with the number of iterations to adjust thea.
The specific equation is as follows:

a0 tð Þ ¼ a tð Þ �max it � exp � i

max it

� �
ð19Þ

where i is the current number of iterations, max itis the maxi-
mum iterations. Then there is the improvement of discovery
probabilitypa. We change its probability to two-stage changing
probability. In the first half of the max it, the negative sinu-

soidal adaptive decline is adopted, while in the second half
of the max it, the negative cosine adaptive decline is adopted
to search for the best nest location. The equation is as follows:
Fig. 2 The flowchart of the d-parameter optimization by ICS

optimization algorithm.
pa ¼
pamax � sin p

2
� i�1
max it�1

� �
pamax � paminð Þ; i 6 max it

2

pamax � cos p
2
� i�1
max it�1

� �
pamax � paminð Þ; i P max it

2

(
ð20Þ

where pamaxandpamin the maximum and minimum of the discov-
ery probability. Therefore, the optimization ability of CS algo-
rithm is improved by adjusting the above two parameters.

5. d-Parameter optimization

In this section, the improved optimization algorithm ICS will

be used to optimize the model parameter, because it plays an
important role in FARIMA prediction. The process of the d-
parameter optimization is based on the following steps.

Step 1: Initialize the objective function fðdÞ;
Step 2: Set the CS algorithm parameters, i.e., number of

nestsN, the discovery probabilitypa ¼ 0:25, the maximum
and minimum of the discovery probability pamax ¼ 0:5 and

pamin ¼ 0, step sizea and k in Levy flight, initial position

nest0 ¼ d01; d
0
2; :::; d

0
N

� �
and set the first Root Mean Square

Errors (RMSE), which are calculated by substituting the
parameters into the objective function as the fitness val-

uesfbest0 ¼ y01; y
0
2; :::; y

0
N

� �
, set maximum iterationsmax it.

Step 3: Choose the best nest position of the previous gener-

ationdih (1 6 i 6 max it, h 2 ½1;N�), calculate step size. Accord-

ing to Eq. (19), then search for the nest location based on the

Levy flight. Record new nest ass, takesinto objective function
and then calculate new fitness valuefnew. Comparefnewwith

the optimal fitness value of the previous generationyih, if

fnew < yih, the nest location based on Levy flight become the

new best nest position.

Step 4: Updatepa according to Eq. (14), set the random
number randð0; 1Þ. If rand > pa, choose the nest position ran-
domly, and replace it with the worst position.

Step 5: If the number of iterations is satisfied, stop search-

ing; otherwise, step back to Step 3.
Step 6: Output the nest position with the least fitness value

as optimum solution dbest.

The flowchart of the d-parameter optimization by ICS opti-
mization algorithm is shown in Fig. 2.
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6. Experiments and numerical analysis

In this section, we use the forecasting model and the optimiza-
tion algorithm to forecast the power load data. Our simulation

refers to the actual data provided by the EIRGIRD GROUP
(Ireland). The simulation utilizes the data collected in Febru-
ary 2018. In order to show the superiority of the ICS method

and to compare with the existing mainstream methods, this
experiment also takes ANN method: RBF model, Deep Learn-
ing method: RNN model and the original method: FARIMA
model into forecasting.

Since this paper focuses on short-term power forecasting,
the forecasting steps are set to 24 h to forecast next 24 h.
Fig. 3 shows the forecasting results and actual data of the

power load on weekdays and weekends using the above four
forecasting methods.

On the basis of the forecasted data, this experiment first cal-

culated the Mean absolute error (MAE) and the mean absolute
percentage errors (MAPE) for different models. Two conven-
tional error criteria can show the specific effect of each

method, They are computed as follows:

MAPE ¼ 1

N

XN
i¼1

PLf
i � PLr

i

�� ��
PLr

i

�� �� � 100% ð21Þ
(a) weekdays 

Fig. 3 Forecasted power consumptio

Table 1 Comparison of the four forecasting methods during weekd

Methods Error criteria Weekdays

Tues.

RBF MAPE 0.03229

MAE 22.3595

RNN MAPE 0.02533

MAE 17.7124

FARIMA MAPE 0.02272

MAE 15.8421

ICS + FARIMA MAPE 0.02173

MAE 15.1634
MAE ¼ 1

N

XN
i¼1

PLf
i � PLr

i

�� �� ð22Þ

where N is the number of power load data; PLf
i is the predicted

power load data of validation sample i; and PLr
i is the real

power load data of validation sample i. In this experiment,
we have four methods to forecast power load data on week-
days (Tuesday and Wednesday) and weekends (Saturday and

Sunday) respectively. The detailed results are shown in
Table 1.

Table shows that the short-time power load forecasting in a

week as given by four models (RBF, RNN, FARIMA and
FARIMA + ICS).

In order to describe the accuracy of forecasting more com-

prehensively, we have considered in the next experiment 4, 11,
18 and 25 during Sundays in February into forecasting. More-
over we have used three new error criteria to describe forecast-

ing effect of the above four models. The three new error
criteria are: root mean-squared error (RMSE), normalised
MAPE (NMAPE) and normalised RMSE (NRMSE) defined
as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

PLf
i � PLr

i

� �2vuut ð23Þ
 (b) weekends

n during weekdays and weekends.

ays and weekends.

Weekends Average

Wed. Sat. Sun.

0.03132 0.03285 0.03231 0.03219

20.2877 22.9815 21.9443 21.8933

0.02658 0.02817 0.02791 0.02699

17.3113 19.6599 19.0431 18.4317

0.02241 0.02388 0.02068 0.02242

14.7176 16.6083 14.1739 15.3355

0.02153 0.02282 0.01924 0.02132

14.2012 15.8475 13.1878 14.5998



Table 2 Comparison of the four forecasting methods during each Sunday in February.

Methods Error criteria 1st 2nd 3rd 4th

Feb.4 Feb.11 Feb.18 Feb.25 Average

RBF NMAPE 3.0329 2.8022 3.3786 3.2308 3.1111

RMSE 27.1687 23.5084 28.9891 27.2223 26.7221

NRMSE 3.9301 3.6152 4.0937 4.0568 3.9239

RNN NMAPE 2.4276 2.3138 2.5972 2.7908 2.5323

RMSE 20.9917 20.0663 23.0569 24.0105 22.0313

NRMSE 2.9812 3.0108 3.2623 3.5023 3.1891

FARIMA NMAPE 2.2624 2.2397 2.3886 2.0687 2.2398

RMSE 20.7051 19.1651 20.8811 18.7117 19.8657

NRMSE 2.9559 2.8652 2.9827 2.7201 2.8809

ICS + FARIMA NMAPE 2.1865 2.1168 2.2834 1.9243 2.1277

RMSE 19.7475 18.3004 19.8345 18.0592 18.9854

NRMSE 2.8101 2.7207 2.8426 2.6202 2.7484

(a) Feb. 4 (b) Feb. 11 

(c) Feb. 18    (d) Feb. 25

Fig. 4 Box-scatter plot representation of relative errors during the four Sundays.
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NMAPEð%Þ ¼ 1

N

XN
i¼1

PLf
i � PLr

i

�� ��
PLN

� 100 ð24Þ

NRMSEð%Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

PLf
i � PLr

i

PLN

 !2
vuut � 100 ð25Þ
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where PLNis the nameplate capacity of the power load system.

The forecasting results of the four Sundays are brought into
the above formulas for calculation. Then the final results are
shown in the Table 2. From the data in Table 2, the proposed

ICS + FARIMA combining method performance the best
result in short-term power load forecasting compared with
the other methods. This experiment also gives a graphical
insight about the forecasting accuracy of the above four fore-

casting methods. The Box-scatter plot representation of rela-
tive errors (which denote each independent of NMAPE)
during the four Sundays are shown in Fig. 4.

7. Conclusion

A new short-term power load forecasting model with a LRD

and an algorithm for model optimization are proposed in this
paper. The FARIMA model can be regarded as the special
form of the ARIMA model with the LRD. The difference

order d-parameter of the model can be deduced from the Hurst
exponent H, which is used to evaluate the LRD. The d-
parameter plays an important role in the forecasting formulas:

excellent global optimization capability of the improved opti-
mization algorithm allows us to optimize the parameter. The
experiments, based on the real power load data illustrates
the effectiveness of the optimized forecasting model and the

proposed ICS + FARIMA optimized forecasting model has
been shown to have the best performance than the other three
forecasting models.
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