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Abstract. Redundant robots allow multiple robot joint configurations
for the same end-effector pose by moving only in null space. Robot’s
motions in null space are not intuitive to predict in general and in par-
ticular for medical personnel. In this work, we present a control con-
cept that allows the operator to focus on the correct end-effector pose
during time-critical tasks, e.g. change of the endoscope pose during a
surgical intervention, while the shape of the redundant robotic structure
is handled autonomously based on previously learnt preferred shapes
close to the actual end-effector pose. We investigated the benefit of the
proposed learned task space control over naive task space control that
required an operator to manually control a virtual robot in task space
and null space independently. In a first user study, we found that learned
task space control significantly reduced the effort – as measured by task
duration and task load – for operators compared to naive task space
control.
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1 Introduction

Redundant robots have more degrees of freedom (DoF) than required for a pri-
mary task (end-effector pose control). Null space of redundant robots enables
changing the robot shape (joint configuration) as a secondary task with lower
priority, and not affect the primary task [1]. Secondary tasks could for exam-
ple be avoiding obstacles or joint limits. Typical methods to control robots for
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secondary tasks may rely on mathematically defined objective functions [2,3],
making null space motion challenging to predict for medical personnel. Alterna-
tive methods take user input to control the null space [4,5] and are considered
more intuitive since the user has complete control over the robot motion. Nev-
ertheless, methods based on user input may increase the overall effort for the
operator as both task space and null space must be controlled simultaneously.

We aim to increase the intuitiveness in controlling redundant robots and
surgical robots in particular by decreasing the effort for medical personnel in
handling non-intuitive motion of the redundant DoF of the robot. We achieve this
by recording the desired robot joint configurations during preoperative planning.
While the operator controls the robot intraoperatively to perform the surgery
(primary task), the robot automatically moves in null space towards the closest
recorded joint configuration (Fig. 1).

To reach our goal, we present a learned task space control method, which
controls both task space and null space of a redundant robot. We hypothesize
that the operator’s effort to control a robot is reduced with the proposed control
method as compared to a naive task space control method where the operator
actively controls task space and null space.

Fig. 1. Workflow overview: during preoperative planning, the operator uses naive task
space control to move the robot to reach a desired end-effector pose (pink cone). At the
desired end-effector pose, the robot’s joint configuration can be reshaped in null space.
The operator can record the current end-effector pose and related joint configuration.
Intraoperatively, the operator can move the robotic arm using learned task space con-
trol to any desired end-effector pose. As the operator controls the robot in task space,
the robot’s joints automatically move towards the closest recorded joint configuration.
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2 Materials and Methods

2.1 Apparatus

A virtual 7-DoF redundant robot (KUKA LBR iiwa, KUKA AG, Augsburg,
Germany) with a rigid endoscope as the end-effector was visualized on a screen.
This end-effector was controlled with a table-fixed force/torque (F/T) sensor
with a handle on top (Fig. 2).

Fig. 2. Schematic of the setup. A handle with two buttons allows switching control
modes and enables moving to robot poses by applying force on a F/T sensor (Mini45,
ATI Industrial Automation). Real-time calculations are performed on a CPU (CX2020,
Beckhoff Automation GmbH & Co. KG, Verl, Germany) that reads the forces (f̂ )
that the user applies to the handle, and calculates the corresponding desired joint
configuration qcmd. A GUI shows the robot configuration to the user. In the GUI,
obstacle regions are indicated as red spheres and the target pose for the robot’s end-
effector is shown as a cone. Once the end-effector has reached the target pose, the
color of the cone is changed from pink to green. The status of the handle buttons, the
number of existing recorded poses, and the robot status when it reaches a work-, joint-,
or null space limit are shown with text to the user.

2.2 Control Modes

The two buttons on the handle (Fig. 2) allow the user recording poses and switch-
ing between different control modes – null space control, naive task space control,
and learned task space control (Fig. 3). Measured user forces (f̂) were filtered
using a moving median filter with a 100 ms time window.

Record Pose. The interface allows a user to record the current estimated end-
effector pose and joint configuration as (xreci , qreci). The pairs of all recorded
poses (Xrec) and configurations (Qrec), are used in learned task space control.
If an end-effector pose is recorded that is too close to an already recorded one,
the previous pose is overwritten with the new pose and joint configuration. Two
poses (xa and xb) were considered too close if the dissimilarity metrics in position
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Fig. 3. User control modes overview: the red button allows the user to switch
between task space and null space control. The green button allows the user to record
the robot pose and joint configuration used for learned task space control.

(Euclidean distance [6]) and orientation (deviation of the rotation matrix from
the identity matrix [7]) between them is below a predefined threshold:

||Δxpos||2 < 0.15 m, and
||I − aRb||F < 0.73,

(1)

where xpos and aRb are the position vector and the rotational transformation
matrix between the two end-effector poses (xa and xb), I is a 3 × 3 identity
matrix, and || · ||F denotes the Frobenius norm of the matrix.

Null Space Control. Based on the force applied by the user, qcmd is calcu-
lated such that the end-effector pose is unchanged, while the joint configuration
changes only in the null space. The details have been presented previously [8].

Naive Task Space Control. The commanded robot joint configuration qcmd

is calculated based on the estimated joint configuration q̂, and the desired end-
effector velocities in task space ẋcmd (Fig. 4, left):

qcmd = q̂ + Ts · J+ · ẋcmd, J+ = JT
(
JJT − λ2I

)−1

(2)

where J+ is the damped Moore-Penrose pseudo-inverse of the Jacobian, with
the damping parameter λ = 0.001, and Ts = 0.001 s is the cycle time of the real-
time system. The desired end-effector pose velocity, ẋcmd, consists of velocities in
position (vcmd) and orientation (ωcmd). They are calculated from the measured
user forces as, vcmd = cv · f̂ for position control and vcmd = cω · f̂ for orientation
control, where cv = 1.4 m

Ns and cω = 1.0 rad
Ns were used. The commanded velocity

was saturated to 0.035 m/s in position and 0.026 rad/s in orientation.
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Fig. 4. Task space control modes: naive task space control (left) and learned task space
control (right). At each time step, the control modes provide a commanded joint config-
uration qcmd based on the estimated joint configuration q̂ and commanded end-effector
velocities ẋcmd. The learned task space control further considers recorded end-effector
poses Xrec and the corresponding robot configurations Qrec.

Learned Task Space Control. For each time step Ts the learned task space
control (Fig. 4, right) requires as inputs the commanded end-effector velocity
ẋcmd, the recorded end-effector poses Xrec, the related robot’s joint configuration
Qrec, and the estimated robot’s joint configuration q̂. The output is the resulting
commanded joint configuration qcmd:

qcmd = q̂ + Ts · (J+ · ẋcmd + q̇LRN), (3)

which is a summation of the naive task space control joint command and a learned
joint velocity (q̇LRN). The learned joint velocity is calculated as the gradient of
an objective function (f(x, q)) projected into null space:

q̇LRN = N · ∇qf(x, q)
∣∣∣
x=x̂
q=q̂

, (4)

where x̂ is the estimated end-effector pose and N is the null space projection
matrix. The objective function is formulated such that it has a minimum at the
closest recorded pose and joint configuration:

f(x, q) = q̇max · w1

Φpos (x∗
rec,x) + w2

· (
(q∗

rec − q) � qrange

)2
, (5)

where, x∗
rec is the closest among all recorded end-effector poses as per the dis-

similarity metric Eq. (1) and q∗
rec is its corresponding joint configuration. The

weight, w1 = 0.07 m, is set manually to tune the effect of learned task space
control, and a damping term, w2 = 0.06 m, is used to ensure the function is
bounded. A maximum robot joint velocity q̇max = 30◦/s is used to limit the
learned joint velocity and not exceed the maximum allowed joint speeds. The
difference between the estimated and closest recorded joint configuration is nor-
malized by the joint ranges of the robot qrange, where the Hadamard division
symbol �, denotes element-wise division of the two vectors.

2.3 Participants

Six healthy volunteers (all male, age 25 to 45 years, mean age 29.5 years) partic-
ipated in the pilot study. The participants did not have prior experience with
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the user-interface to control a virtual robot, and they were all researchers at the
Department of Biomedical Engineering, University of Basel.

2.4 Experimental Protocol

The objective for the participant was to move the robot from a predefined initial
configuration to a goal pose (visualized as a cone) and configuration (no collision
with obstacles). The study consisted of three tasks:

Task P (planning). Naive task space control followed by null space control
was used to complete the objective, and the final robot configuration was
recorded.
Task N (naive). The objective was completed using naive task space control.
The controller was manually set to ignore the recorded poses.
Task L (learned). The objective was completed using learned task space
control, and the controller used the recorded poses from planning.

The trial began by allowing each participant to use the interface and move the
robot freely for five minutes to get acquainted with the system. The partici-
pants were instructed to complete the tasks as fast as possible. At the end of
each task, the participants were asked to fill a NASA Task Load Index (NASA-
TLX) questionnaire. With two task space control modes (N and L), the study
had a crossover design with one independent variable, leading to two conditions
per participant (N-L or L-N). The participants were randomly divided into two
groups. Group 1 performed the tasks in the order P-N-L, and Group 2 in the
order P-L-N. Each participant performed the three tasks once.

2.5 Evaluation Metrics

The effort for the user for each task was measured with two metrics; (1) The task
duration (s), i.e., the time taken by the participant to complete the task; (2) The
NASA-TLX scores between 0 and 100. A one-sided Wilcoxon signed-rank test
with a confidence level of 5% was performed independently on task duration and
task load. The null hypothesis was that the effort to perform the tasks with naive
task space control was greater than or equal to the effort for learned task space
control.

3 Results

Task duration (p < .03, W = 20, r = .95) and task load (p < .02, W = 21,
r = 1.0) were significantly reduced (Wcritical = 17) using learned task space
control compared to naive task space control (Fig. 5).
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Fig. 5. Task duration (top-left) and task load (top-right): participants are represented
by different markers that are connected by a dashed line across the three tasks. The
two lower plots show the difference in the task duration (bottom-left) and task load
(bottom-right) for each participant between using naive and learned task space control.
The * indicates a significant reduction in the one-sided Wilcoxon signed-rank test.

4 Discussion

The results showed a statistically significant reduction in the effort of partici-
pants using learned task space control compared to naive task space control as
evaluated quantitatively by a one sided Wilcoxon signed-rank test. Although the
study included only six participants, the pilot study shows that using learned
task space control for robot control holds potential to reduce medical personnel’s
effort during surgery and its utility needs to be investigated with a physical robot
in a surgical setting and medical personnel as participants.

We observed that the reduction in the task duration from using naive task
space control to learned task space control was smaller than the time taken to plan
and record poses. However, we expect that the robot is re-positioned multiple
times in a real intervention, thereby not scaling the time taken to plan the surgery
proportionally. Furthermore, the time duration was only used as a measure of
effort. Reducing the overall surgery duration was not a goal of this study.

A limitation of the study was the use of a virtual robot visualized on a
screen, which might have affected the performance of the users to control the
robot in task space. Whether the effort reduces with a physical robot needs to be
investigated. We believe that an interface directly mounted on the robot would
reduce the effort to control the robot in all modes and make all modes more
intuitive to the operator.
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5 Conclusion

In this work, we proposed learned task space control of a redundant robot. We
implemented the controller and assessed the reduction in the operator’s effort to
control a virtual robot. In the pilot user study with six participants, using learned
task space control significantly reduced the effort compared to naive task space
control.
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