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Abstract—Mobile medical robots have been widely used in
various structured scenarios, such as hospital drug delivery,
public area disinfection, and medical examinations. Considering
the challenge of environment modeling and controller design, how
to achieve the information from the human demonstration in a
structured environment directly arouse our interests. Learning
skills is a powerful way that can reduce the complexity of
algorithm in searching space. This is especially true when
naturally acquiring new skills, as mobile medical robot must
learn from the interaction with a human being or the environment
with limited programming effort. In this paper, a learning scheme
with nonlinear model predictive control (NMPC) is proposed for
mobile robot path tracking. The learning-by-imitation system
consists of two levels of hierarchy: in the first level, a multi-virtual
spring-dampers system is presented for imitation of the mobile
robot’s trajectories; and in the second level, the NMPC method is
used in the motion control system. The NMPC strategy utilizes a
varying-parameter one-layer projection neural network to solve
an online quadratic programming optimization via iteration over
a limited receding horizon. The proposed algorithm is evaluated
on a mobile medical robot with an emulated trajectory in
simulation and three scenarios used in the experiment.

Index Terms—Imitation Learning, Multi Virtual Spring-
Dampers, Model Predictive Control, Varying-Parameter One-
Layer Projection Neural Network.

I. INTRODUCTION

Over the past decade, applications of mobile medical robots
have attracted attention in our daily life. It is a powerful
assistant platform that helps to reduce the workloads of op-
erators [1]. Besides, mobile medical robots have unparalleled
advantages regarding quarantine infectious disease scenarios,
such as SARS and COVID-19, and thus can significantly
reduce the infection rate [2]. How to control the mobile
medical robot in a structured environment with a simple way
and low computational complexity is a challenging issue [3].

Machine learning-based robotic system has been a popular
research theme. With limited programming effort and almost
no ad hoc modeling required, learning-by-imitation serves as
a promising paradigm by which an agent learns a control
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policy for a complex system via observing demonstration in
a dynamic environment. Learning-by-imitation consists of a
demonstrating expert that provides examples of the optimal
behaviors, and a learning agent reproduces similar behaviors
by imitating the expert [4]. This paradigm, because of its
promising prospect, has been widely used by a variety of
robots such as service robots and industrial robots in our
daily life [5], [6]. The development of learning methodology
has become an important tool in robotics [7]. In [8], the
authors proposed the Dynamic Movement Primitives (DMP)
algorithm fused with machine learning methods to learn de-
sired trajectories from the demonstration successfully. In [7],
a DMP-based reinforcement learning framework is proposed
for learning pick-and-place tasks to improve the robustness of
robot movements. These works demonstrate the power of the
motion encoding process on humanoid-like manipulators and
inspire our interests in combining a better encoding algorithm
with machine learning methods to further improve motor-
skills learning with a mobile robot. In this paper, a novel
multi virtual spring-dampers method (MVSD) consisting of
two VSD systems is proposed to learn motor skills, which
has an extra radial VSD system and better convergence ability
to the attraction factor point. Therefore, it not only inherits
the characteristics of DMP but also shows a stronger learning
ability with lower mean squared error (MSE).

In [9] and [10], the robot learning paradigm is utilized for
manipulators or human-like robots. However, none of these
works focus on the mobile robot. Motivated by [11] and [12],
we propose a novel motor-skills learning system involving
demonstration of imitation learning and the motion control
for mobile robots.

For a mobile robot control, the traditional nonlinear sliding
mode control is proposed for quickly switching to an inverted
pendulum mode with a small turning radius [13]. However,
physical constraints have not been considered when using
these traditional control methods, such as velocity limits and
velocity incremental limits, which hampers the full exhibition
of the imitation-learning power of mobile robots. In [14],
linear MPC is employed for the mobile robot model consid-
ering the obstacles. However, the linear model is inadequate
to describe the object model. Due to the properties of the
nonlinear model predictive control (NMPC) algorithm such
as input-output non-linearity along a limited horizon [15],
NMPC is widely applied to path tracking of the mobile robot
under kinematic constraints [16], [17]. Moreover, it makes
sure that the control sequences are limited physically, which
is important for the motion control of a mobile robot [18].
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However, NMPC suffers from computational complexity as it
highly relies on numerical optimization. In [19], a proposed
neural-dynamic MPC method prevented some major pitfalls
drew by conventional numerical optimization of NMPC, with
advantages of global convergence and computational sim-
plicity. Actually, neural network methods can solve real-
time optimization problem better than numerical methods
under physical conditions [20], [21]. In [18] and [22], a
projection neural network (PNN) method and a primal-dual
neural network (PDNN) were presented, respectively. Both
methods have achieved good performance in solving quadratic
programming (QP) problems. However, the convergence rate
cannot be further improved for some special cases.

Inspired by the aforementioned works, a novel neural net-
work method called the varying-parameter one-layer projec-
tion neural network (VP-OneLPNN) method is proposed to
solve QP problems of MPC in this paper. Compared with the
PNN and PDNN methods, the proposed VP-OneLPNN model
has only one layer, the least number of neurons, and the fastest
convergence rate which can ensure optimal solutions for real-
time QP problems.

The main objective of this paper is to find a simple and
effective method for the robot’s repetitive movement, espe-
cially passing through a structured environment like a human.
Therefore, a learning-control based scheme is designed for a
medical mobile robot, which can imitate the motor skills from
human demonstration. Thus, it can reduce the complexity of
the control algorithm in searching space and guarantees that
a mobile robot can run in a structured environment without
complicated path planning, such as moving in a hospital. The
whole framework that integrates the proposed demonstration
learning component and motion control method, consists of
two phases: the learning phase and the motion control phase.

In the former phase, MVSD is employed to model and
recreate complicated trajectories, with the nonlinear term of
MVSD. In the latter phase, VP-OneLPNN based MPC method
is applied to manipulate the mobile robot in line with the
reproduced trajectory. The scheme of learning-based MPC for
mobile robot from human demonstrations is shown in Fig. 1.

In summary, our main contribution is to develop an inte-
grated learning-by-imitation system that includes:
1) A novel MVSD approach is proposed for trajectory learn-

ing of a mobile robot. This method has good learning
performance to ensure high precision of imitation.

2) A new VP-OneLPNN algorithm is presented for QP op-
timization in MPC, in which all state variables can con-
verge rapidly to the optimal one with physical constraints.
Compared with the traditional methods, the proposed VP-
OneLPNN model has only one layer, the least number of
neurons, and the fastest convergence rate.

3) The learning system is applied to mobile robots for com-
plex motor skills learning from demonstration, and it’s
suitable for human-machine interaction in the environment,
such as delivering food or medicine to patients.

The remainder of this paper is organized as follows. The
imitation learning scheme with our proposed MVSD model is
presented in Section II. The kinematic model of the mobile
robot and the NMPC system are demonstrated in Section III.

Fig. 1. The scheme of learning-based MPC for the mobile robot from human
demonstrations.

Fig. 2. The model of Multi Virtual Spring-Dampers.

The VP-OneLPNN method aims at real-time QP problem-
solving in MPC is introduced in Section IV. Simulation and
experimental results are conducted and discussed in Section V
and Section VI, respectively. Finally, Section VII concludes
this paper.

II. IMITATION LEARNING WITH MULTI-VIRTUAL
SPRING-DAMPERS SCHEME

MVSD is a novel second-order dynamical system involving
two virtual spring-dampers (VSD) modules, defined as vsd1,
vsd2. A complex dynamical system can be represented by
MVSD fusion with a nonlinear forcing term. Hence, the
dynamical system of MVSD is modeled as,

ÿt = Kp1 (g − yt)−Kv1ẏt+K
p2(y⊥−yt)−Kv2ẏt+Ft (1)

where Kp1, Kp2 and Kv1, Kv2 are the corresponding stiffness
matrices, damping matrices for vsd1 and vsd2; Ft is the
nonlinear forcing term of a dynamical system which can
be approximated with supervised learning, such as locally
weighted regression (LWR); yt, ẏt, ÿt denote the position,
velocity, and acceleration generated by MVSD, respectively;
g is the attractor point; y⊥ represents the minimum distance
from the end-effector to the reference path. The structure of
MVSD is shown in Fig. 2.

Ft = stft (2)
ṡt = αsst (3)

The equation (2), as the nonlinear item, can be employed to
model complicated trajectories. The equation (3) represents
the canonical system of DMP, where αs is the constant value
and st is the asymptotic decay from the initial value to zero.
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(a) Kp2 = 10 for MVSD imitation.
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Fig. 3. Imitation results of different Kp2 for MVSD.

Fig. 4. Comparison between DMP and MVSD.

By multiply the canonical system, Ft will converge to zero
ultimately, which indicates that the MVSD model will degrade
into a linear multi spring-dampers system. To evaluate the
performance of the trajectory estimation, the index called
Mean Squared Error (MSE) is adopted, which is denoted as:

MSE =
1

Nlen

Nlen∑
i=1

(
yilearn − yidemon

)2
.

where ylearn denotes the reproduction trajectory by learning;
ydemon is the collection trajectory from human demonstration;
Nlen is the length of ydemon. The imitation results with
different Kp of MVSD are shown in Fig. 3. In Fig. 4, MSE
of Example-1 for MVSD and DMP are 0.0071 and 0.013,
respectively, and MSE of Example-2 for MVSD and DMP
are 0.0038 and 0.0636, respectively, which indicates MVSD
achieves better performance than DMP. Moreover, trajectories
with MVSD can converge to the end attractor g even with the
different initial positions are shown in Fig. 5.

Remark 1. MVSD is a novel second-order dynamical system
involving two virtual spring dampers modules which has an
extra radial VSD modules. There exist two forces acting on
the moving object: one acting towards the goal point and the
other towards the immediate trajectory point. However, DMP
has only one virtual spring dampers. The learning results are
shown in Fig. 4, which shows that MVSD has a lower MSE.
Therefore, MVSD has a better convergence performance to the
desired trajectory than DMP.

III. MODEL PREDICTIVE CONTROL SCHEME

In this part, a neural network-based MPC control scheme is
presented. The proposed neural network methods can optimize
the MPC problem on line for the mobile-robot system with
physical constraints.

Fig. 5. Imitation learning from random initial position. The trajectory can
converge to the goal g from the different initial positions.

A. Mobile Robot Control System
The kinematic model of the two-wheeled mobile robot is

depicted in Fig. 6. Considering the relation between the robot
velocity v and the two-driving-wheel velocity (vl, vr), we
describe the robot velocity v = (vl + vr)/2 and the angle
velocity ω = (vl−vr)/B respectively, where B is the distance
between the wheels. The kinematic model of the mobile robot
is described as follows:

Ẋ =

 ẋ
ẏ

θ̇

 =

 v cos θ
v sin θ
ω

 =

 cos θ 0
sin θ 0

0 1

u (4)

where (x, y) is the Cartesian coordinates of the mobile robot,
and θ donates the orientation angle; u = (v, ω)T represents
the control input, with the state vector X . Based on the
representation of (4), the kinematic model of the reference
trajectory can be acquired with state vector Xr = (xr, yr, θr)

T

and control input ur = (vr, ωr)
T , which is expressed as:

Ẋr =

 ẋr
ẏr
θ̇r

 =

 vr cos θr
vr sin θr
ωr

 =

 cos θr 0
sin θr 0

0 1

ur (5)

Consequently, the kinematic errors of the mobile robot can be
computed as:

Xe =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 xr − x
yr − y
θr − θ

 (6)

where Xe = [xe, ye, θe]
T . According to the error state in (6),

the derivative of Xe can be expressed as follows:
ẋe = ωye − v + vr cos θe
ẏe = −ωxe + vr sin θe
θ̇e = ωr − ω

(7)

Then, the control input is reformulated as:

ue =

[
u1
u2

]
=

[
vr cos θe − v
ωr − ω

]
(8)

Substituting (8) into (7), one can rewrite the kinematic model
for Xe as

Ẋe =

 ẋe
ẏe
θ̇e

 =

 0 ω 0
−ω 0 0
0 0 0

 xe
ye
θe

+

 u1

vr sin θe
u2

 (9)
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Fig. 6. The kinematic scheme of the two-wheeled mobile robot.

Reshaping the equation (9), one may obtain:

˙̄Xe =

 0 ω 0

−ω 0 vr
sin θe
θe

0 0 0

 X̄e +

 1 0
0 0
0 1

ue. (10)

where X̄e = [xe, ye, θe]
T . Ultimately, a stabilization issue in

the nonlinear affine system of (10) is transformed from the
motion control issue with the mobile robot in (4).

B. Nonlinear Model Predictive Control

Considered a closed-loop optimal control matter along with
the finite-time domain, the kinematic equation can be defined
as the following nonlinear affine system:

X (j + 1) = ψ1 (X(j)) + ψ2 (X(j))u(j) (11)

where ψ1(·) and ψ2(·) are the continuous functions with the
input vector u and the state vector X as follows:

X(j) ∈ RX , j = 1, 2, . . . , N,
u(j) ∈ RU , j = 1, 2, . . . , Nu.

For the nonlinear affine system (11), both ψ1(.) and ψ2(.)
symbolize nonlinear continuous functions [23], [24], with
initial constraints as ψ1(0) = 0 and 1 ≤ N ≤ Nu, which
marks the estimation horizon.

For each sampling interval, the solution of the optimal input
vector can be obtained via online optimization using a cost
function, and the NMPC method will accordingly be formed
through the iterative solution to the optimal control problem.
Therefore, the cost function is defined as:

S(X,u) =

j+N−1∑
i=j

L1 (X(i), u(i)) + L2 (X(j +N)) (12)

where L1(X,u) is the immediate cost which satisfies the
L1(0, 0) = 0; L2(X(j+N)) is the terminal cost. Besides, the
cost function S(X,u) can also be expressed in the following
quadratic form:

S(j) =
N∑
i=1

‖X (j + i|j)‖2Q +

Nu−1∑
i=0

‖∆u (j + i|j)‖2R (13)

where X(j + i|j) is the following horizontal state to be
estimated; the increment of the input vector is formulated as
∆u(j + i|j) = u(j + i|j)− u(j − 1 + i|j); both the constant
parameters R and Q represent the designed weight matrices;
‖X‖ =

√
XTX denotes as its Euclidean norm based on the

related vector. Then, we reshape the formulation (11):

X̄e (j + 1) = ψ1

(
X̄e(j)

)
+ ψ2

(
X̄e(j)

)
ue(j) (14)

s.t. u− ≤ ue(j) ≤ u+ (15)
∆u− ≤ ∆u(j) ≤ ∆u+ (16)
X− ≤ X̄e(j) ≤ X+ (17)

with

ψ1

(
X̄e

)
=

 1 ωT 0
−ωT 1 vr

sin x3

x3
T

0 0 1

 x1
x2
x3


ψ2

(
X̄e

)
= T

 1 0
0 0
0 1


where X̄e = [x1, x2, x3]

T
= [xe, ye, θe]

T denotes the state
vector with the sampling interval T ; the input vector is
described as ue = [u1, u2]

T with u1 = vrcosθe − v and
u2 = ωr − ω; (u−, u+), (∆u−,∆u+) and (x−, x+) are
respectively corresponding to the lower and upper boundaries
of the input variable, the input increment variable, and the
state variable.

Some vectors are introduced for a compact presentation of
the QP problem in online optimization:

X̄ =
[
X̄e(j + 1|j), ..., X̄e(j +N − 1|j)

]T
(18)

ū(j) = [ue(j|j), ..., ue(j +Nu − 1|j)]T (19)

∆ū(j) = [∆ue(j|j), ...,∆ue(j +Nu − 1|j)]T (20)

Based on (14) and (18)–(20), the output is estimated as:

X̄(j) = A∆ū(j) + ψ̂1 + ψ̂2 (21)

where
A =

ψ2

(
X̄e(j|j − 1)

)
· · · 0

ψ2

(
X̄e(j + 1|j − 1)

)
· · · 0

...
. . .

...
ψ2

(
X̄e(j +N − 1|j − 1)

)
· · · ψ2

(
X̄e(j +N − 1|j − 1)

)


ψ̂1 =


ψ1

(
X̄e(j|j − 1)

)
ψ1

(
X̄e(j + 1|j − 1)

)
...

ψ1

(
X̄e(j +N − 1|j − 1)

)


ψ̂2 =


ψ2

(
X̄e(j|j − 1)u(j − 1)

)
ψ2

(
X̄e(j + 1|j − 1)u(j − 1)

)
...

ψ2

(
X̄e(j +N − 1|j − 1)u(j − 1)

)
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Fig. 7. Structure of VP-OneLPNN, where pi = (c+ ξ∇G (d))i.

with A ∈ R3N×2Nu , ψ̂1 ∈ R3N and ψ̂2 ∈ R3N . Afterwards,
one can redescribe the optimization problem of (13) as:

min
∥∥∥A∆ū(j) + ψ̂1 + ψ̂2

∥∥∥2
Q

+ ‖∆u(j)‖2R (22)

s.t. ∆ū− ≤ ∆ū(j + 1) ≤ ∆ū+ (23)
ū− ≤ ū(j − 1) ≤ ū+ (24)

ū− ≤ ū(j − 1) +H∆ū(j) ≤ ū+ (25)

X− ≤ ψ̂1 + ψ̂2 +A∆ū(j) ≤ X+ (26)

where H =


I 0 0 0
I I · · · 0
...

...
. . .

...
I I · · · I

 ∈ R2Nu×2Nu .

Furthermore, a QP problem can be reformulated from the
optimization issue of the equations (22)-(26):

min 1
2∆ūTM∆ū+ cT∆ū (27)

s.t. E∆ū ≤ r (28)

with
M = 2(ATQA+R) ∈ R2Nu×2Nu

c = −2ATQ(ψ̂2 + ψ̂1) ∈ R2Nu

E =


−H
H
−A
A
I
−I

 ∈ R
n1 , r =



−u− + u(j − 1)
u+ − u(j − 1)

−X− + ψ̂1 + ψ̂2

X+ − ψ̂1 − ψ̂2

∆ū+

∆ū−

 ∈ R
n2

where n1 = (6Nu + 6N)× 2Nu and n2 = 6Nu + 6N .

IV. VARYING-PARAMETER ONE-LAYER PROJECTION
NEURAL NETWORK (VP-ONELPNN)

In this section, the QP problem is supposed to be rewritten
as:

min 1
2d
TMd+ cT d (29)

s.t. g (d) = Ed− r ≤ 0 (30)

with d = ∆ū. Considering the Lagrangian function:

L (d, l) =
1

2
∆ūTM∆ū+ cT∆ū+ lT g (d) (31)

According to Karush-Kuhn-Tucker (KKT) conditions in [25],
if d∗ is a solution to (29)–(30), then there exists l∗ ∈ Rm such
that (d∗, l∗)T satisfies the following conditions:

Md∗ + c+
∑6Nu+6N

i=1
l∗i∇gi (d∗) = 0 (32)

l∗ ≥ 0 (33)
l∗i gi (d∗) = 0 (34)

The equivalent equation of (32)–(33) is expressed as [26]:

Md+ c+∇G (d) l = 0 (35)

G (d) =
∑6Nu+6N

i=1
max {0, gi (d)}

Similar to [27], a penalty function is defined for the problem
(29)–(30) as follows:

E (d) =
1

2
dTMd+ cT d+ ξG (d) (36)

where ξ > 0 is a penalty parameter. We can further obtain the
gradient of (36):

∂E (d) = Md+ c+ ξ∇G (d) (37)

Actually, the residual errors in (37) exist in practice, so we
define the following error function:

e (t) = Md+ c+ ξ∇G (d) (38)

To ensure that the error converges to zero, a negative time
derivative of (38) is defined as:

ė (t) = −γ exp (κ · t) Φ (e (t)) (39)

where Φ (e (t)) is the active function; κ and γ are positive
parameters that are employed to scale the convergence speed.
The error in (39) is converged to zero. The active function is
defined as:

Φ (ei(t)) =
(1 + exp(−β)) (1− exp(−βei(t)))
(1− exp(−β)) (1 + exp(−βei(t)))

where β ≥ 2 which makes 0 ≤ |ei(t)| ≤ 1.
The extended form of the (39) is expressed as:

Ṁd+Mḋ+ ċ+ ξ∇Ġ (d)

= −γ exp (κ · t) Φ {Md+ c+ ξ∇G (d)} (40)

Then, a new neural network called VP-OneLPNN is proposed
to solve the QP problem in (29)–(30) as follows:

Mḋ = −
(
Ṁd+ ċ+ ξ∇Ġ (d)

)
− γ exp (κ · t) Φ {Md+ c+ ξ∇G (d)} (41)

The equation can be further reformulated in the following
form:

ḋ = (I −M) ḋ−
(
Ṁd+ ċ+ ξ∇Ġ (d)

)
−γ exp (κ · t) Φ {Md+ c+ ξ∇G (d)} (42)

The structure of VP-OneLPNN for the QP problem in MPC
is shown in Fig. 7. For comparison purposes, the traditional
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TABLE 1
COMPARISON OF DIFFERENT NEURAL NETWORK MODELS

Neural network type number of layers number of neurons number of connections objective function
RNN [18] 2 n+m n2 + 2mn strictly convex
PDNN [22] 2 n+m 3n2 + 3mn convex
The proposed 1 n 2n2 convex

gradient descent-based recurrent neural network is denoted as
[28],

ḋ = −γ {Md+ c+ ξ∇G (d)} (43)

Compared with other neural network models, the VP-
OneLPNN has the fastest convergence rate and involves the
least neurons and layers in the structure shown in Table.1.

Remark 2. The proposed VP-OneLPNN has the simplest
network structure and least neurons and layers among other
models in Table.1. However, the proposed method has slower
computational efficiency, because the equation in (41) involves
more matrix operations, including Ṁ , l̇, etc. Noted that, the
proposed method only involves matrix operations, which still
satisfy the requirements of computational efficiency.

V. SIMULATION

In this part, the proposed VP-OneLPNN based MPC scheme
is demonstrated in simulation. To demonstrate the validity
of the proposed algorithm, two different neural networks are
also tested and the experimental results are compared with
the proposed one. One kind of scenario is built based on a
periodic-moving mobile robot with constant linear and angular
velocity for the circle-shape movement. In the simulation
experiment, we design the initial position and orientation of the
mobile robot that is different from the desired trajectory, which
is convenient for us to observe the convergence performance
of the proposed method. The robot is supposed to track the
trajectories with the VP-OneLPNN based MPC method in the
scenario. We analyze the result in terms of tracking errors and
convergence. The sampling period is ∆t = 0.1s. The details
of the parameters refer to Table.2.

A. Circle-Shape Movements with Constant Velocity for Robot

To track the circle-shape trajectory within the periodic mo-
tion, as the task for the mobile robot, in this case, is supposed
to be executed with constant linear and angular velocities.
The initial position and orientation of the mobile robot are
randomly chosen but different from the ideal trajectory.

The linear and angular velocities are respectively set to
v = 0.2m/s,w = 0.2rad/s as reference values. As for
the initial position of the reference trajectory, it refers to
Xr(0) = [1.2; 0; 0], while that of the mobile robot denotes
as X(0) = [1; 0; 0].

As shown in Fig. 8(a), it’s clear that the trajectories of the
mobile robot rapidly converge to the reference one, despite
the mobile-robot’s initial positions. The optimization result of
the circle-shape trajectory is shown in Fig. 8(b), where all the
state variables quickly reach optimal solutions. As displayed
in Figs. 8(c)–8(d), the linear and angular velocities of the

(a) The tracking result of the cir-
cle shape trajectory for the periodic
movements.

(b) The optimization result of the
circle shape trajectory with VP-
OneLPNN.

(c) The tracking result of the mobile
robot velocity v.

(d) The tracking result of the angular
velocity ω.

(e) The tracking error Xe. (f) The tracking error Ye.

(g) The tracking error θe.

Fig. 8. The simulation result of the circle shape trajectory using NMPC based
on VP-OneLPNN.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on April 11,2021 at 08:04:35 UTC from IEEE Xplore.  Restrictions apply. 



0278-0046 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2020.3044776, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 7

TABLE 2
PARAMETERS OF THE LEARNING-CONTROL SYSTEM

Name Parameters
MVSD Kp1 = diag[50, 50],Kv1 = diag[10, 10],Kp2 = diag[10, 10],Kv2 = diag[

√
20,

√
20]

MPC N = 3, Nu = 2, Q = I, R = 2I
VP-OneLPNN κ = 0.1, γ = 102

Dimension of the robot movements D = 2

mobile robot can approach the respective reference ones quite
well. The comparison results of the recurrent neural network,
the primal-dual neural network, and our proposed method are
shown in Figs. 8(e)–8(g), where all the tracking errors of the
mobile robot can converge to zero, but the proposed method
has the fastest convergence rate.

B. Discussion

Successful trajectory-tracking execution of the mobile robot
is guaranteed for the circle-shape trajectory scenario. The rapid
convergence of the proposed method is quite significant for a
mobile robot, especially for the real-time optimization of the
mobile robot. The optimal solution to the trajectory-learning
problem can be performed by the mobile robot regardless
of variable position and orientation initializations. Besides,
the effect and speed of the tracking-errors convergence are
satisfactory. The effectiveness and robustness of our proposed
technique can be demonstrated by the aforementioned results.
Furthermore, from the comparison results, it is observed that
the proposed VP-OneLPNN based MPC control scheme has
an overall promising performance for real-time robot running,
in terms of convergence speed, and tracking errors.

VI. EXPERIMENTAL DEMONSTRATION

In this section, the proposed learning-by-imitation scheme
is tested using real-world trajectories that are collected by the
Xsens mti-310 sensor. We build three scenarios to explore the
mobile-robot learning skills abilities including the trajectory
generation from a demonstration by human and trajectory
tracking with VP-OneLPNN based MPC. The parameter set-
tings of MVSD and VP-OneLPNN based MPC can refer to
Table.2. The experimental procedures are listed as:
• The human holds the Xsens mti-310 sensor and walk

through the structured environment, where the trajectories
are collected.

• Then, the motor skills are modeled and learned by
MVSD.

• Finally, the robot is driven to perform the learning skills
in a structured environment using neuro-dynamic opti-
mization.

In our experiments, the tasks in different scenarios vary from
simple to complex, involving to learn the straight line-shape,
’S’-shape, and ’U’-shape trajectories from human demonstra-
tion, which are shown in Fig. 9.

A. Learning the Straight Path Tracking

In the first experiment, the mobile robot is expected to
learn a simple task of a straight line-shape path tracking from

demonstration, which is shown in Fig. 10. In this scenario,
a human subject walks along a straight path. There are no
obstacles placed on any side along the path. The human subject
walks along the path repeatedly and the trajectory of the
human subject is collected with an Xsens mti-310 sensor. This
scenario is quite simple since the mobile robot only needs to
learn how to move in the forward direction.

B. Learning the ’S’-Shape Path Tracking

Then in the second experiment, it’s supposed for the mobile
robot to learn a relatively complicated task of an ’S’-shape path
tracking, as Fig. 11 exhibits. In this scenario, a human subject
walks along an ’S’-shape path. We randomly set obstacles on
the two sides along with the ’S’-shape path (’♦’ denotes the
obstacle). The human subject is instructed to follow the path
without any collision with obstacles and repeats walking along
the path to obtain several trajectories. The robot’s task in this
scenario is more difficult than Scenario VI-A as the mobile
robot needs to learn to go forward, turn left and right.

C. Learning the ’U’-Turn Path Tracking

As for the last experiment, it is essential for the mobile
robot to learn the more complicated task of a ’U’-shape path
tracking based on demonstrations, as Fig. 12 shows. In this
scenario, a human subject walks along with a ’U’-turn path.
We randomly drop obstacles on the two sides along with
the ’U’-turn path again(’♦’ denotes the obstacle). The human
subject is instructed to follow the path without any collision
with obstacles. The robot’s task in this scenario is much more
difficult than Scenario VI-B as the mobile robot needs to learn
to make a ’U’-shape turn within quite confined space.

D. Discussion

In Scenario VI-A, the learning results are shown in Fig. 10.
The trajectory reproduced is plotted with a green line, while
the tracking trajectory acquired with the proposed method
is in red. It can be seen that both the linear and angular
velocities coincide with the desired ones in Figs. 10(b) and
10(c). Moreover, the proposed method proves to be capable
to quickly converge to the global optimal solution. Fig. 10(d)
displays the trajectory tracking errors in Cartesian space. It
shows that all the errors are limited to a small scope.

It is not surprising that we get similar results from Scenarios
VI-B even the task is more challenging, and the experimental
results are recorded in Fig. 11. In Scenario VI-B, the trajectory
and the mobile robot’s skills are very complex. The results of
the learning-based MPC system for an ’S’-shape path tracking
are shown in Figs. 11(a)–11(d). At the motion control stage,
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(a) Experiment-1: the line shape. (b) Experiment-2: the ’s’ shape. (c) Experiment-3: the ’u’ shape.

Fig. 9. Experiment demonstration: from simple to complex scenarios.

(a) The tracking result of the straight
line shape trajectory.

(b) The tracking result of the robot
velocity v.

(c) The tracking result of the angular
velocity ω.

(d) The tracking errors Xe, Ye and
θe.

Fig. 10. The tracking result of the straight line-shape trajectory using NMPC
based on VP-OneLPNN. The red ’*’ indicates the initial position, while the
black ’*’ denotes the end attractor.

the mobile robot succeeds in crossing the path without any
obstacle collision.

In Scenario VI-C, there is no obvious degradation of the
overall performance compared with other scenarios. The re-
sults of the learning-based MPC system for the ’U’-turn path
tracking are shown in Figs. 12(a)-12(d). Experimental results
show that our learning-by-imitation system is independent of
any specific scenes, and it is a powerful way to provide a
mobile robot with motor skills in a natural way.

VII. CONCLUSION

In this paper, the Multi-Virtual Spring-Dampers method is
presented to reproduce the trajectory from the demonstration.
The proposed imitation learning strategy with MVSD can pro-
mote motor-skills learning for the mobile robots by imitation
learning.

For trajectory tracking, the NMPC is used to control the
mobile robot along with the finite-time domain under input

(a) The tracking result of the ’S’-
shape trajectory from human demon-
stration. The ’♦’ denotes the obstacle.

(b) The tracking result of the mobile
robot velocity v.

(c) The tracking result of the angular
velocity ω.

(d) The tracking errors Xe, Ye and
θe.

Fig. 11. The tracking result of the ’S’-shape trajectory using NMPC based
on VP-OneLPNN. The red ’*’ indicates the initial position, while the black
’*’ denotes the end attractor.

and state limitations. The new network of VP-OneLPNN is
also applied to the online QP optimization in the MPC. So, the
mobile robot can cross obstacles from human demonstration
and complete more complex tasks by using our method, which
reduces the complexity of motion planning in a structured
environment.

To test the proposed learning-by-imitation system of mobile
robots, we build one challenging scenario in simulation and
two real-world scenarios. The tasks of these scenarios are
designed to examine the aforementioned learning abilities of
motor skills. The results confirm that the mobile robot can
learn the motor-skills from human demonstration with our
method. To sum up, the mobile robot can successfully cross
the path with no obstacle collision in all the test scenarios.
Besides, small tracking errors and quick convergence to the
global optimal solution emerge with the VP-OneLPNN based
MPC. With the above characteristics, the proposed method is
guaranteed to be a mighty and efficient solution to complex
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(a) The tracking result of the ’U’-
shape trajectory.

(b) The tracking result of the mobile
robot velocity v.

(c) The tracking result of the angular
velocity ω.

(d) The tracking errors Xe, Ye and
θe.

Fig. 12. The tracking result of the ’U’-shape trajectory using NMPC based
on VP-OneLPNN from human demonstration. The red ’*’ indicates the initial
position, while the black ’*’ denotes the end attractor.

motion planning and control tasks.
Future works will involve different imitation learning meth-

ods, such as kernelized movement primitives (KMP) for dy-
namic obstacle avoidance. Additionally, we will explore the
more complex model and reinforcement learning in MPC.
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