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Abstract We prove existence and uniqueness of strong solutions, as well as con-
tinuous dependence on the initial datum, for a class of fully nonlinear second-order
stochastic PDEs with drift in divergence form. Due to rather general assumptions on
the growth of the nonlinearity in the drift, which, in particular, is allowed to grow faster
than polynomially, existing techniques are not applicable. A well-posedness result is
obtained through a combination of a priori estimates on regularized equations, inter-
preted both as stochastic equations as well as deterministic equations with random
coefficients, and weak compactness arguments. The result is essentially sharp, in the
sense that no extra hypotheses are needed, bar continuity of the nonlinear function in
the drift, with respect to the deterministic theory.
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1 Introduction

Let us consider the nonlinear stochastic partial differential equation

du(t) − div γ (∇u(t)) dt = B(t, u(t)) dW (t), u(0) = u0, (1.1)
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on L2(D), where D ⊂ R
n is a bounded domain with smooth boundary. Here γ is the

gradient of a continuously differentiable convex function on R
n growing faster than

linearly at infinity, the divergence is interpreted in the usual variational sense, W is a
cylindricalWiener process, and B is amapwith values in the space of Hilbert–Schmidt
operators satisfying suitable Lipschitz continuity hypotheses. Precise assumptions on
the data of the problem are given in Sect. 2 below.

Our main result is the well-posedness of (1.1), in the strong probabilistic sense,
without any polynomial growth condition on γ nor any boundedness assumption on
the noise (see Theorem 2.2 below). The lack of growth and coercivity assumptions
on γ makes it impossible to apply the variational approach by Pardoux and Krylov–
Rozovskiı̆ (see [7,12]), which is the only known general technique to solve nonlinear
stochastic PDEs without linear terms in the drift such as (1.1), with the possible
exception of viscosity solutions, a theory of which, however, does not seem to be
available for such equations. On the other hand, we recall that, if γ is coercive and has
polynomial growth, the results in op. cit. provide a fully satisfactory well-posedness
result for (1.1).

The available literature dealing with stochastic equations in divergence form such
as (1.1) is very limited and, to the best of our knowledge, entirely focused on the case
where γ satisfies the above-mentioned coercivity and growth assumptions: see, e.g.,
[8] and the bibliography of [9] for results on the p-Laplace equation, which corre-
sponds to the case γ (x) = |x |p−1x , and [13] on stochastic equations in divergence
form with doubly nonlinear drift. The main novelty of this paper is thus to provide a
satisfactory well-posedness result in the strong sense for such divergence-form equa-
tions under neither coercivity nor growth assumptions on γ . On the other hand, it is
worth recalling that well-posedness results are available for other classes of mono-
tone SPDEs with nonlinearities satisfying no coercivity and growth conditions, most
notably the stochastic porous media equation: see, e.g., [3]. However, the structure
of divergence-form equations such as (1.1) is radically different. Indeed, as is well-
known, the porous media operator is quasilinear, while the divergence-type operator
in (1.1) is fully nonlinear. Moreover, the monotonicity properties (hence the dynamics
associated to the the solutions) are different: the porous media operator is monotone
in H−1, whereas the divergence-form operator is monotone in L2.

As is often the case in the treatment of evolution equations ofmonotone type, thefirst
step consists in the regularization of (1.1), replacing γ with its Yosida approximation
(a monotone Lipschitz-continuous function), thus obtaining a family of equations for
which well-posedness is known to hold (in our case, we also need to add a “small”
elliptic term in the drift as well as to smooth the diffusion coefficient B). In a second
step, one proves that the solutions to the regularized equations are compact in suitable
topologies, so that, by passage to the limit in the regularization parameters (roughly
speaking), a process can be constructed that, in a final step, is shown to actually be
the unique solution to (1.1) and to depend continuously on the initial datum. It is well
known that the last two steps are the more challenging ones, and our problem is no
exception.

The approach we follow combines elements of the variational method and ad hoc
arguments, most notably a priori estimates on the solutions to regularized equations,
weak compactness techniques, and a generalized version of Itô’s formula for the square
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of the norm under minimal integrability assumptions. A crucial role is played by a
mix of pathwise and “averaged”1 a priori estimates. Even though the approach is
reminiscent of that in [11], the problem we consider here is of a completely different
nature, and, correspondingly, new ideas are needed. In particular, the absence of a linear
term in the drift precludes the possibility of applying a wealth of techniques available
for semi-linear problems. For instance, the strong pathwise compactness criteria used
in op. cit. are no longer available, so that we have to rely on weak compactness
arguments only. This way one can construct a limit process, but its identification as a
solution expectedly presents major new issues with respect to the case where stronger
compactness is available. Moreover, a rather subtle measurability problem arises from
the fact that the divergence is not injective, which is the reason for assuming γ to be
a continuous monotone map, and not just a maximal monotone graph on R

n × R
n .

A (less regular) solution to the more general problem when γ satisfies only the latter
condition will appear elsewhere. We remark that the results obtained here hold under
hypotheses that are as general as those of the deterministic theory, except for the
continuity assumption on γ (see, e.g., [2, pp. 207–ff.]).

2 Main result

Given a positive real number T , let (�,F , (Ft )t∈[0,T ], P) be a filtered probability
space, fixed throughout, satisfying the so-called “usual conditions”. We shall denote
a cylindrical Wiener process on a separable Hilbert space H by W .

For any two Hilbert spaces U and V , the space of Hilbert–Schmidt operators from
U to V will be denoted byL 2(U, V ). Let D be a smooth bounded domain of R

n , and
assume that a map

B : � × [0, T ] × L2(D) −→ L 2(H, L2(D))

is given such that, for a constant C > 0,

∥
∥B(ω, t, x) − B(ω, t, y)

∥
∥
L 2(H,L2(D))

≤ C
∥
∥x − y

∥
∥
L2(D)

for all ω ∈ �, t ∈ [0, T ], x, y ∈ L2(D). To avoid trivial situations, we also assume
that, for an x0 ∈ L2(D), B(ω, t, x0) < C for all ω and t . This implies that B grows at
most linearly in x , uniformly overω and t . Furthermore, themap (ω, t) �→ B(ω, t, x)h
is assumed to be measurable and adapted for all x ∈ L2(D) and h ∈ H .

We assume that γ is the subdifferential of a continuously differentiable convex
function k : R

n → R+ such that k(0) = 0,

lim|x |→∞
k(x)

|x | = +∞

1 That is, in expectation.
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(i.e. k is superlinear at infinity), and

lim sup
|x |→∞

k(−x)

k(x)
< ∞.

Then γ : R
n → R

n is a continuous maximal monotone map, i.e.

(γ (x) − γ (y)) · (x − y) ≥ 0 ∀x, y ∈ R
n

(the centered dot stands for the Euclidean scalar product in R
n), and (the graph of)

γ is maximal with respect to the order by inclusion. Moreover, the convex conjugate
function k∗ : R

n → R+ of k, defined as

k∗(y) = sup
r∈Rn

(y · r − k(r)) ,

is itself convex and superlinear at infinity. For these facts of convex analysis, as well
as those used in the sequel, we refer to, e.g., [6].

All assumptions on B and γ (hence also on k) are assumed to be in force from now
on.

Definition 2.1 Let u0 be an L2-valued F0-measurable random variable. A strong
solution to Eq. (1.1) is a process u : � × [0, T ] → L2(D) satisfying the following
properties:

(i) u is measurable, adapted and

u ∈ L1(0, T ;W 1,1
0 (D))

(ii) B(·, u)h is measurable and adapted for all h ∈ H and

B(·, u) ∈ L2(0, T ;L 2(H, L2(D))) P-a.s.;

(iii) γ (∇u) is an L1(D)n-valued measurable adapted process with

γ (∇u) ∈ L1(0, T ; L1(D)n) P-a.s.;

(iv) one has, as an equality in L2(D),

u(t) −
∫ t

0
div γ (∇u(s)) ds = u0 +

∫ t

0
B(s, u(s)) dW (s) P-a.s. (2.1)

for all t ∈ [0, T ].
Since γ (∇u) is only assumed to take values in L1(D)n , the second term on the

left-hand side of (2.1) does not belong, a priori, to L2(D). The identity (2.1) has to
be interpreted to hold in the sense of distributions, so that the term containing γ (∇u)
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takes values in L2(D) by difference. In fact, the conditions on B in (i) imply that the
stochastic integral in (2.1) is an L2(D)-valued local martingale.

LetK be the set of measurable adapted processes φ : � × [0, T ] → L2(D) such
that

E sup
t≤T

∥
∥φ(t)

∥
∥2
L2(D)

+ E

∫ T

0

∥
∥φ(t)

∥
∥
W 1,1

0 (D)
dt < ∞,

E

∫ T

0

∫

D

∣
∣γ (∇φ(t, x))

∣
∣ dx dt < ∞,

E

∫ T

0

∫

D

(

k(∇φ(t, x)) + k∗(γ (∇φ(t, x)))
)

dx dt < ∞.

Our main result is the following.

Theorem 2.2 Let u0 ∈ L2(�; L2(D)) beF0-measurable. Then (1.1) admits a strong
solution u, which is unique within K . Moreover, u has weakly continuous paths in
L2(D) and the solution map u0 �→ u is Lipschitz-continuous from L2(�; L2(D)) to
L2(�; L∞(0, T ; L2(D))).

We do not know whether well-posedness continues to hold also without the condi-
tion that the solution belongs to K . This assumption, in fact, plays a crucial role in
the proof of uniqueness.

Abbreviated notation for function spaces will be used from now on: Lebesgue and
Sobolev spaces on D will be denoted without explicit mention of D itself; for any
p ∈ [1,∞], L p(�) will be denoted by Lp, L p(0, T ) by L p

t , and L p(D) sometimes
by L p

x . Mixed-norm spaces will be denoted just by juxtaposition, e.g. LpLq
t L

r
x to

mean L p(�; Lq(0, T ; Lr (D))) and L1
t,x to mean L1([0, T ] × D).

3 An Itô formula for the square of the norm

We prove an Itô formula for the square of the L2-norm of a class of processes with
minimal integrability conditions. This is an essential tool to prove uniqueness of strong
solutions and their continuous dependence on the initial datum in Sects. 5 and 6 below,
and it is interesting in its own right.

Proposition 3.1 Assume that

y(t) + α

∫ t

0
y(s) ds −

∫ t

0
div ζ(s) ds = y0 +

∫ t

0
C(s) dW (s)

holds in L2 for all t ∈ [0, T ] P-a.s., where α ≥ 0 is a constant,

y : � × [0, T ] → L2, ζ : � × [0, T ] → L1, C : � × [0, T ] → L 2(H, L2)

are measurable adapted processes such that

y ∈ L2L∞
t L2

x ∩ L1L1
t W

1,1
0 , ζ ∈ L1L1

t,x , C ∈ L2L2
t L

2(H, L2),
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and y0 is an F0-measurable L2-valued random variable with E‖y0‖2 < ∞. If there
exists a constant c > 0 such that

E

∫ T

0

∫

D

(

k(c∇ y) + k∗(cζ )
)

< ∞,

then

1

2
‖y(t)‖2 + α

∫ t

0
‖y(s)‖2 ds +

∫ t

0

∫

D
ζ(s, x) · ∇ y(s, x) dx ds

= 1

2
‖y0‖2 + 1

2

∫ t

0

∥
∥C(s)

∥
∥
2
L 2(H,L2)

ds +
∫ t

0
y(s)C(s) dW (s)

for all t ∈ [0, T ] P-almost surely.

Proof Note that div ζ ∈ (W 1,∞
0 )′, hence, by Sobolev embedding theorems and dual-

ity, there exists a positive integer r such that div ζ ∈ H−r . Therefore, denoting the
Dirichlet Laplacian on L2(D) by �, there also exists a positive integer m such that
(I − δ�)−m , δ > 0, maps H−r and (a fortiori) L2 to H1

0 ∩ W 1,∞. Using the notation
hδ := (I − δ�)−mh, it is readily seen that

yδ(t) + α

∫ t

0
yδ(s) ds −

∫ t

0
div ζ δ(s) ds = yδ

0 +
∫ t

0
T δ(s) dW (s)

for all t ∈ [0, T ] P-a.s. as an identity in L2, for which Itô’s formula yields

1

2

∥
∥yδ(t)

∥
∥2 + α

∫ t

0

∥
∥yδ(s)

∥
∥2 ds +

∫ t

0

∫

D
ζ δ · ∇ yδ

= 1

2

∥
∥yδ

0

∥
∥
2 + 1

2

∫ t

0

∥
∥Cδ(s)

∥
∥
2
L 2(H,L2)

ds +
∫ t

0
yδ(s)Cδ(s) dW (s)

for all t ∈ [0, T ] P-almost surely. We are going to pass to the limit as δ → 0 in this
identity. The dominated convergence theorem immediately implies that, P-a.s.,

∥
∥yδ(t)

∥
∥
2 −→ ∥

∥y(t)
∥
∥2,

∫ t

0

∥
∥yδ(s)

∥
∥
2
ds −→

∫ t

0

∥
∥y(s)

∥
∥2 ds,

∫ t

0

∥
∥Cδ(s)

∥
∥2
L 2(H,L2)

ds −→
∫ t

0

∥
∥C(s)

∥
∥2
L 2(H,L2)

ds

for all t ∈ [0, T ], and ‖yδ
0‖2 → ‖y0‖2, as δ → 0. Defining the real local martingales

Mδ := (yδCδ) · W, M := (yC) · W,
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we are going to show that

E sup
t≤T

∣
∣Mδ(t) − M(t)

∣
∣ −→ 0

as δ → 0. In fact, Davis’ inequality for local martingales (see, e.g., [10]) yields

E sup
t≤T

∣
∣Mδ(t) − M(t)

∣
∣ � E

[

Mδ − M, Mδ − M
]1/2
T

= E

(∫ T

0

∥
∥yδ(t)Cδ(t) − y(t)C(t)

∥
∥
2
L 2(H,R)

dt

)1/2

,

and one has, identifyingL 2(H, R)with H and recalling that (I−δ�)−m is contractive
in L2,

∥
∥yδCδ − yC

∥
∥
H ≤ ∥

∥yδCδ − yδC
∥
∥
H + ∥

∥yδC − yC
∥
∥
H

≤
(

sup
t≤T

‖y(t)‖
)

∥
∥Cδ − C

∥
∥
L 2(H,L2)

+ ∥
∥yδC − yC

∥
∥
H ,

so that

E

(∫ T

0

∥
∥yδ(t)Cδ(t) − y(t)C(t)

∥
∥2
H dt

)1/2

� E sup
t≤T

‖y(t)‖
(∫ T

0

∥
∥Cδ(t) − C(t)

∥
∥2
L 2(H,L2)

dt

)1/2

+ E

(∫ T

0

∥
∥(yδ(t) − y(t))C(t)

∥
∥2
H dt

)1/2

.

It follows by the Cauchy–Schwarz inequality that the first term on the right-hand side
is dominated by

(

E sup
t≤T

‖y(t)‖2
)1/2 (

E

∫ T

0

∥
∥Cδ(t) − C(t)

∥
∥2
L 2(H,L2)

dt

)1/2

,

which converges to zero by properties of Hilbert–Schmidt operators and the dominated
convergence theorem. Moreover,

∥
∥(yδ(t) − y(t))C(t)

∥
∥2
H �

∥
∥y(t)

∥
∥2

∥
∥C(t)

∥
∥2
L 2(H,L2)

and y ∈ L∞
t L2

x , C ∈ L2
t L (H, L2

x ) P-a.s. imply, by dominated convergence, that

∫ T

0

∥
∥(yδ(t) − y(t))C(t)

∥
∥
2
H dt −→ 0
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P-a.s. as δ → 0. Since

(∫ T

0

∥
∥(yδ(t) − y(t))C(t)

∥
∥2
H dt

)1/2

� sup
t≤T

‖y(t)‖
(∫ T

0

∥
∥C(t)

∥
∥2
L 2(H,L2)

dt

)1/2

and, by the Cauchy–Schwarz inequality,

E sup
t≤T

‖y(t)‖
(∫ T

0

∥
∥C(t)

∥
∥2
L 2(H,L2)

dt

)1/2

≤
(

E sup
t≤T

‖y(t)‖2
)1/2 (

E

∫ T

0

∥
∥C(t)

∥
∥2
L 2(H,L2)

dt

)1/2

< ∞,

again by dominated convergence it follows that

E

(∫ T

0

∥
∥(yδ(t) − y(t))C(t)

∥
∥
2
H dt

)1/2

−→ 0

as δ → 0. We have thus shown that E supt≤T

∣
∣Mδ(t) − M(t)

∣
∣ → as δ → 0, hence, in

particular, that

∫ t

0
yδ(s)Cδ(s) dW (s) −→

∫ t

0
y(s)C(s) dW (s)

in probability as δ → 0 for all t ∈ [0, T ].
To complete the proof, we are going to show that ∇Y δ · ζ δ → ∇Y · ζ in L1L1

t,x ,
which readily implies that

∫ t

0

∫

D
∇ yδ(s, x) · ζ δ(s, x) dx ds −→

∫ t

0

∫

D
∇ y(s, x) · ζ(s, x) dx ds

in probability for all t ∈ [0, T ]. Since ∇ yδ → ∇ y and ζ δ → ζ in measure in
� × (0, T ) × D, in view of Vitali’s theorem, it suffices to prove that the sequence
(∇ yδ · ζ δ) is uniformly integrable in � × (0, T ) × D. One has

c2
(∇ yδ · ζ δ

) ≤ k
(

c∇ yδ
) + k∗ (

cζ δ
)

,

− c2
(∇ yδ · ζ δ

) ≤ k
(

c(−∇ yδ)
) + k∗ (

cζ δ
)

hence

c2
∣
∣∇ yδ · ζ δ

∣
∣ � k

(

c∇ yδ
) + k

(

c(−∇ yδ)
) + k∗ (

cζ δ
)

� 1 + k
(

c∇ yδ
) + k∗ (

cζ δ
)

,
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where the second inequality follows by the hypothesis lim sup|x |→∞ k(−x)/k(x) <

∞. By Jensen’s inequality for sub-Markovian operators (see [5, Theorem 3.4]) we
also have

k
(

c∇ yδ
) = k

(

(I − δ�)−mc∇ y
) ≤ (I − δ�)−mk (c∇ y) ,

k∗ (

cζ δ
) = k∗ (

(I − δ�)−mcζ
) ≤ (I − δ�)−mk∗ (cζ ) ,

hence

c2
∣
∣∇ yδ · ζ δ

∣
∣ � 1 + (I − δ�)−m (

k(c∇ y) + k∗(cζ )
)

,

where the right-hand side is uniformly integrable because it converges in L1L1
t,x as

δ → 0. This yields that (∇ yδ · ζ δ) is uniformly integrable as well, thus concluding
the proof. ��

4 Well-posedness for an auxiliary SPDE

Let V0 be a separable Hilbert space, densely and continuously embedded2 in H1
0 , and

continuously embedded inW 1,∞. The Sobolev embedding theorem easily implies that
such a space exists indeed.

We are going to prove that the auxiliary equation

du(t) − div γ (∇u(t)) dt = G(t) dW (t), u(0) = u0, (4.1)

where G is an L 2(U, V0)-valued process, is well posed.

Proposition 4.1 Assume that u0 ∈ L2(L2) is F0-measurable and that G : � ×
[0, T ] → L 2(U, V0) is measurable and adapted, with

E

∫ T

0

∥
∥G(t)

∥
∥2
L 2(U,V0)

dt < ∞.

Then Eq. (4.1) admits a unique strong solution u such that

E sup
t≤T

‖u(t)‖2 + E

∫ T

0

∥
∥u(t)

∥
∥
W 1,1

0
dt < ∞,

E

∫ T

0

∥
∥γ (∇u(t))

∥
∥
L1 dt < ∞,

∫ T

0

(∥
∥k(∇u(t))

∥
∥
L1 + ∥

∥k∗(γ (∇u(t)))
∥
∥
L1 dt

)

< ∞ P − almost surely.

Moreover, the paths of u are P-a.s. weakly continuous with values in L2.

2 Continuous embedding of a Banach space E in a Banach space F will be denoted by E ↪→ F .
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The assumptions of Proposition 4.1 are (tacitly) assumed to hold throughout the
section.

Let γλ : R
n → R

n , λ > 0, be the Yosida regularization of γ , i.e.

γλ := 1

λ

(

I − (I + λγ )−1
)

, λ > 0,

and consider the regularized equation

duλ(t) − div γλ(∇uλ(t)) dt − λ�uλ(t) dt = G(t) dW (t), uλ(0) = u0.

Since γλ is monotone and Lipschitz-continuous, it is not difficult to check that the
operator

v �−→ − (div γλ(∇v) + λ�v)

satisfies the conditions of the classical variational approach by Pardoux, Krylov and
Rozovskiĭ [7,12] on the Gelfand triple H1

0 ↪→ L2 ↪→ H−1, hence there exists a
unique adapted process uλ with values in H1

0 such that

E
∥
∥uλ

∥
∥
2
Ct L2

x
+ E

∫ T

0

∥
∥uλ(t)

∥
∥
2
H1
0
dt < ∞

and

uλ(t) −
∫ t

0
div γλ(∇uλ(s)) ds − λ

∫ t

0
�uλ(s) ds = u0 +

∫ t

0
G(s) dW (s) (4.2)

in H−1 for all t ∈ [0, T ].

4.1 A priori estimates

We are now going to establish several a priori estimates for uλ and related processes,
both pathwise and in expectation.

We begin with a simple maximal estimate for stochastic integrals that will be used
several times in the sequel.

Lemma 4.2 Let U, H, K be separable Hilbert spaces. If

F : � × [0, T ] → L (H, K ), G : � × [0, T ] → L 2(U, H)

are measurable and adapted processes such that

E sup
t≤T

∥
∥F(t)

∥
∥2
L (H,K )

+ E

∫ T

0

∥
∥G(t)

∥
∥2
L 2(U,H)

dt < ∞,
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then, for any ε > 0,

E sup
t≤T

∥
∥
∥
∥

∫ t

0
F(s)G(s) dW (s)

∥
∥
∥
∥
K

≤ ε E sup
t≤T

∥
∥F(t)

∥
∥
2
L (H,K )

+ N (ε) E

∫ T

0

∥
∥G(t)

∥
∥
2
L 2(U,H)

dt.

Proof By the ideal property of Hilbert–Schmidt operators (see, e.g., [4, p. V.52]), one
has

∥
∥F(s)G(s)

∥
∥
L 2(U,K )

≤ ∥
∥F(s)

∥
∥
L (H,K )

∥
∥G(s)

∥
∥
L 2(U,H)

≤ sup
s≤T

∥
∥F(s)

∥
∥
L (H,K )

∥
∥G(s)

∥
∥
L 2(U,H)

for all s ∈ [0, T ], hence
∫ T

0

∥
∥F(s)G(s)

∥
∥2
L 2(U,K )

ds ≤ sup
s≤T

∥
∥F(s)

∥
∥2
L (H,K )

∫ T

0

∥
∥G(s)

∥
∥2
L 2(U,H)

ds,

where the right-hand side is finite P-a.s. thanks to the assumptions on F and G. Then
(FG) · W is a K -valued local martingale, for which Davis’ inequality yields

E sup
t≤T

∥
∥
∥
∥

∫ t

0
F(s)G(s) dW (s)

∥
∥
∥
∥
K

� E [(FG) · W, (FG) · W ]1/2T

= E

(∫ T

0

∥
∥F(s)G(s)

∥
∥2
L 2(U,K )

ds

)1/2

≤ E sup
s≤T

∥
∥F

∥
∥
L (H,K )

(∫ T

0

∥
∥G(s)

∥
∥
2
L 2(U,H)

ds

)1/2

.

The proof is finished invoking the elementary inequality

ab ≤ 1

2

(

εa2 + 1

ε
b2

)

∀a, b ∈ R, ε > 0,

and choosing ε properly. ��
The estimate in the previous lemma will be used only in the case K = R. The more

general proof we have given is not more complicated than in the simpler case actually
needed.

Lemma 4.3 There exists a constant N such that

∥
∥uλ

∥
∥
L2Ct L2

x
+ λ1/2

∥
∥∇uλ

∥
∥
L2L2

t,x
+ ∥

∥γλ(∇uλ) · ∇uλ

∥
∥
L1L1

t,x

< N
(∥
∥u0

∥
∥
L2L2

x
+ ∥

∥G
∥
∥
L2L2

t L
2(H,L2

x )

)

.
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Proof Itô’s formula yields

∥
∥uλ(t)

∥
∥2 + 2

∫ t

0

∫

D
γ (∇uλ(s)) · ∇uλ(s) dx ds + 2λ

∫ t

0

∥
∥∇uλ(s)

∥
∥2 ds

= ∥
∥u0

∥
∥
2 + 2

∫ t

0
uλ(s)G(s) dW (s) + 1

2

∫ t

0

∥
∥G(s)

∥
∥
2
L 2(H,L2)

ds,

where uλ in the stochastic integral on the right-hand side has to be interpreted as taking
values inL (L2, R) � L2. Taking supremum in time and expectation we get

E
∥
∥uλ

∥
∥
2
Ct L2

x
+ E

∫ T

0

∫

D
γλ(∇uλ(s)) · ∇uλ(s) dx ds + λ E

∥
∥∇uλ

∥
∥
2
L2
t,x

� E
∥
∥u0

∥
∥2 + E

∥
∥G

∥
∥2
L2
t L

2(H,L2))
+ E sup

t∈[0,T ]

∣
∣
∣
∣

∫ t

0
uλ(s)G(s) dW (s)

∣
∣
∣
∣
,

where, by Lemma 4.2,

E sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
uλ(s)G(s) dW (s)

∣
∣
∣
∣
≤ ε E

∥
∥uλ

∥
∥2
Ct L2

x
+ N (ε) E

∫ T

0

∥
∥G(s)

∥
∥2
L 2(H,L2)

ds

for any ε > 0. The proof is completed choosing ε small enough and recalling that γλ

is monotone. ��
Lemma 4.4 The families (∇uλ) and (γλ(∇uλ)) are relatively weakly compact in
L1L1

t,x .

Proof Recall that, for any y, r ∈ R
n , ones has k(y) + k∗(r) = r · y if and only if

r ∈ ∂k(y) = γ (y). Therefore, since

γλ(x) ∈ ∂k
(

(I + λγ )−1x
)

= γ
(

(I + λγ )−1x
)

∀x ∈ R
n,

we deduce, by the definition of γλ, that

k
(

(I + λγ )−1x
)

+ k∗ (γλ(x)) = γλ(x) · (I + λγ )−1x

= γλ(x) · x − λ
∣
∣γλ(x)

∣
∣2 ≤ γλ(x) · x ∀x ∈ R

n .

(4.3)

By Lemma 4.3 we infer that there exists a constant N , independent of λ, such that

E

∫ T

0

∫

D
k∗ (γλ(∇uλ)) ≤ E

∫ T

0

∫

D
γλ(∇uλ) · ∇uλ < N .

Since k∗ is superlinear at infinity, the family (γλ(∇uλ)) is uniformly integrable on
� × (0, T ) × D by the de la Vallée Poussin criterion (see the “Appendix”), hence
relatively weakly compact inL1L1

t,x by a well-known theorem of Dunford and Pettis.
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Similarly, Lemma 4.3 and (4.3) imply that there exists a constant N , independent
of λ, such that

E

∫ T

0

∫

D
k

(

(I + λγ )−1∇uλ

)

≤ E

∫ T

0

∫

D
γλ(∇uλ) · ∇uλ < N .

Since k is superlinear at infinity, the criteria by de la Vallée Poussin andDunford-Pettis
imply that the sequence (I + λγ )−1∇uλ is uniformly integrable on � × (0, T ) × D,
hence relatively weakly compact in L1L1

t,x . Moreover, since

∇uλ = (I + λγ )−1∇uλ + λγλ(∇uλ),

the relative weak compactness of (∇uλ) immediately follows by the same property of
(γλ(∇uλ)) proved above. ��

We shall need below the following classical absolute continuity result, whose proof
can be found, for instance, in [2, p. 25].

Lemma 4.5 Let V and H be Hilbert spaces with V ↪→ H ↪→ V ′. Assume that
u ∈ L2(a, b; V ) and u′ ∈ L2(a, b; V ′), where u′ is the derivative of u in the sense of
V ′-valued distributions. Then there exists ũ ∈ C([a, b]; H) such that u(t) = ũ(t) for
almost all t ∈ [a, b]. Moreover, for any v satisfying the same hypotheses of u, 〈u, v〉
is absolutely continuous on [a, b] and

d

dt

〈

u(t), v(t)
〉 = 〈

u′(t), v(t)
〉 + 〈

u(t), v′(t)
〉

.

As customary, both the duality pairing between V and V ′ as well as the scalar product
of H have been denoted by the same symbol.

From now on we shall assume, without loss of generality, that λ ∈ ]0, 1].
Lemma 4.6 There exists �′ ⊆ � with P(�′) = 1 and M : �′ → R such that

∥
∥uλ(ω)

∥
∥
L∞
t L2

x
+ √

λ
∥
∥∇uλ(ω)

∥
∥
L2
t,x

+ ∥
∥kλ(∇uλ(ω))

∥
∥
L1
t,x

< M(ω)

for all ω ∈ �′.

Proof Setting vλ := uλ − G · W , Eq. (4.2) can be written as

vλ(t) −
∫ t

0
div (γλ(∇uλ(s)) + λ∇uλ(s)) ds = u0,

or, equivalently, as

v′
λ − div (γλ(∇uλ) + λ∇uλ) = 0, vλ(0) = u0. (4.4)
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By Itô’s isometry and Doob’s inequality, one has

E sup
t≤T

∥
∥
∥
∥

∫ t

0
G(s) dW (s)

∥
∥
∥
∥

2

V0

� E

∫ T

0

∥
∥G(s)

∥
∥2
L (H,V0)

ds < ∞,

hence G · W ∈ L2L∞
t H1

0 , because V0 ↪→ H1
0 . In particular, since uλ ∈ L2L∞

t H1
0 ,

it follows that vλ ∈ L2L∞
t H1

0 . Moreover, since div γλ(∇uλ) and �uλ belong to
L2L2

t H
−1, by the previous identity we also deduce that v′

λ(ω) ∈ L2
t H

−1 for P-a.a.
ω ∈ �. In particular, taking into account the hypotheses on u0 and G, there exists
�′ ⊂ �, with P(�′) = 1, such that

u0(ω) ∈ L2
x , G · W (ω, ·) ∈ L∞

t V0,

vλ(ω) ∈ L2
t H

1
0 , v′

λ(ω) ∈ L2
t H

−1

for all ω ∈ �′. Let us consider from now on a fixed but arbitrary ω ∈ �′. Taking the
duality pairing of (4.4) by vλ and integrating (more precisely, applying Lemma 4.5)
implies that, for all t ∈ [0, T ],

1

2
‖vλ(t)‖2 +

∫ t

0

∫

D
γλ(∇uλ(s)) · ∇vλ(s) dx ds

+ λ

∫ t

0

∫

D
∇uλ(s) · ∇vλ(s) dx ds = 1

2
‖u0‖2,

where ‖uλ‖ ≤ ‖vλ‖ + ‖G · W‖, hence ‖uλ‖2 ≤ 2
(‖vλ‖2 + ‖G · W‖2), as well as

‖vλ‖2 ≥ 1

2
‖uλ‖2 − ‖G · W‖2.

Moreover, Young’s inequality yields

∫

D
∇uλ · ∇vλ = ∥

∥∇uλ

∥
∥2 −

∫

D
∇uλ · ∇(G · W )

≥ 1

2

∥
∥∇uλ

∥
∥
2 − 1

2

∥
∥∇(G · W )

∥
∥
2
,

hence also, taking into account the previous estimate,

1

2

∥
∥uλ(t)

∥
∥
2 + 2

∫ t

0

∫

D
γλ(∇uλ(s)) · ∇vλ(s) dx ds + λ

∫ t

0

∥
∥∇uλ(s)

∥
∥
2
ds

≤ ∥
∥u0

∥
∥2 + ∥

∥G · W (t)
∥
∥2 + λ

∫ t

0

∥
∥∇(G · W (s))

∥
∥2 ds.

(4.5)

Let kλ be the Moreau–Yosida regularization of k, i.e.

kλ(x) := inf
y∈Rn

(

k(y) + |x − y|2
2λ

)

, λ > 0.
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As is well known, kλ is a proper convex function that converges pointwise to k from
below, and ∂kλ = γλ. Therefore, it follows from

γλ(x) · (x − y) ≥ kλ(x) − kλ(y) ≥ kλ(x) − k(y) ∀x, y ∈ R
n

that

∫ t

0

∫

D
γλ(∇uλ(s)) · ∇vλ(s) dx ds

=
∫ t

0

∫

D
γλ(∇uλ(s, x))(∇uλ(s, x) − ∇(G · W (s, x))) dx ds

≥
∫ t

0

∫

D
kλ(∇uλ(s, x)) dx ds −

∫ t

0

∫

D
k(∇(G · W (s, x))) dx ds,

hence also

1

2

∥
∥uλ(t)

∥
∥
2 + 2

∫ t

0

∫

D
kλ(∇uλ(s, x)) dx ds + λ

∫ t

0

∥
∥∇uλ(s)

∥
∥
2
ds

≤ ∥
∥u0

∥
∥2 + ∥

∥G · W (t)
∥
∥2 + λ

∫ t

0

∥
∥∇(G · W (s))

∥
∥2 ds

+ 2
∫ t

0

∫

D
k(∇(G · W (s, x))) dx ds.

Taking the supremum with respect to t yields

∥
∥uλ

∥
∥
2
Ct L2

x
+ ∥

∥kλ(∇uλ)
∥
∥
L1
t,x

+ λ
∥
∥∇uλ

∥
∥
2
L2
t,x

�
∥
∥u0

∥
∥2
L2
x
+ ∥

∥G · W∥
∥2
L∞
t L2

x
+ ∥

∥G · W∥
∥2
L2
t H

1
0

+ ∥
∥k(∇(G · W ))

∥
∥
L1
t,x

.

As already observed above, the first three terms on the right-hand side are clearly
finite. Moreover, since V0 ↪→ W 1,∞, one has

∥
∥k(∇(G · W ))

∥
∥
L1
t,x

�T,D
∥
∥k(∇(G · W ))

∥
∥
L∞
t,x

< ∞

by the continuity of k. Since ω was chosen arbitrarily in �′, the proof is completed. ��

Lemma 4.7 There exists a set �′, with P(�′) = 1, such that, for all ω ∈ �′, the
families (γλ(∇uλ)) and (∇uλ) are relatively weakly compact in L1

t,x .

Proof Let �′ be defined as in the proof of Lemma 4.6, and fix an arbitrary ω ∈ �′.
By (4.5), since vλ = uλ − G · W , it follows that
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∫ t

0

∫

D
γλ(∇uλ(s)) · ∇uλ(s) dx ds

≤ 1

2
‖u0‖2 + 1

2
‖G · W (t)‖2 + 1

2

∫ t

0
‖G · W (s)‖2

H1
0
ds

+
∫ t

0

∫

D
γλ(∇uλ(s)) · ∇(G · W (s)) dx ds

for all t ≤ T . Thanks to Young’s inequality, convexity of k∗, and k∗(0) = 0, one has

γλ(∇uλ) · ∇(G · W ) = 1

2
γλ(∇uλ) · 2∇(G · W )

≤ 1

2
k∗ (γλ(∇uλ)) + k(2∇(G · W )).

Recalling that k∗(γλ(x)) ≤ γλ(x) · x for all x ∈ R
n , rearranging terms one gets

∫ T

0

∫

D
k∗(∇uλ(s)) dx ds � ‖u0‖2 + ‖G · W (T )‖2 +

∫ T

0
‖G · W (t)‖2

H1
0
ds

+
∫ T

0

∫

D
k (2∇(G · W (s))) dx ds,

where all terms on the right-hand side are finite, as already established in the proof of
Lemma 4.6. Appealing again to the criteria by de la Vallée Poussin andDunford-Pettis,
we immediately infer that (γλ(∇uλ(ω, ·))) is relatively weakly compact in L1

t,x .
Denoting by M (a constant depending on ω) the right-hand side of the previous

inequality, the above estimates also yield

∥
∥γλ(∇uλ) · ∇uλ

∥
∥
L1
t,x

� M,

hence also, recalling that k((I + λγ )−1x) ≤ γλ(x) · x ,
∥
∥k

(

(I + λγ )−1∇uλ

)∥
∥
L1
t,x

� M.

This implies, in complete analogy to the previous case, that
(

(I + λγ )−1∇uλ

)

is
relatively weakly compact in L1

t,x . Since

∇uλ = λγλ(∇uλ) + (I + λγ )−1∇uλ,

the relative weak compactness of (∇uλ(ω, ·)) in L1
t,x follows immediately. ��

4.2 Proof of Proposition 4.1

Let ω ∈ �′ be arbitrary but fixed, where �′ is a subset of � with probability one,
chosen as in the proof of Lemma 4.6. The relative weak compactness of (γλ(∇uλ)) in
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L1
t,x , proved in Lemma 4.7, implies that there exists η ∈ L1

t,x such that γμ(∇uμ) → η

weakly in L1
t,x , where μ is a subsequence of λ. This in turn implies that

∫ t

0
div γμ(∇uμ(s)) ds −→

∫ t

0
div η(s) ds weakly in V ′

0

for all t ∈ [0, T ]. In fact, for any φ0 ∈ V0, setting φ := s �→ 1[0,t](s)φ0 ∈ L∞
t V0,

recalling that V0 ↪→ W 1,∞, we have

∫ t

0

〈− div γμ(∇uμ(s)), φ0
〉

V0
ds =

∫ T

0

〈− div γμ(∇uμ(s)), φ(s)
〉

V0
ds

=
∫ T

0

∫

D
γμ(∇uμ(s)) · ∇φ(s) ds

−→
∫ T

0

∫

D
η(s) · ∇φ(s) ds =

∫ t

0

〈− div η(s), φ0
〉

ds

asμ → 0.Moreover,
√

λuλ is bounded in L2
t H

1
0 thanks toLemma4.6, hence, recalling

that � is an isomorphism of H1
0 and H−1, λ�uλ → 0 in L2

t H
−1 as λ → 0, in

particular

λ

∫ t

0
�uλ(s) ds −→ 0 in H−1

for all t ∈ [0, T ] as λ → 0. Therefore, considering the regularized equation

uμ(t) −
∫ t

0
div γμ(∇uμ(s)) ds − μ

∫ t

0
�uμ(s) ds = u0 + G · W (t)

and passing to the limit as μ → 0, we infer that uμ(t) → u(t) weakly in V ′
0 for all

t ∈ [0, T ], hence one can write

u(t) −
∫ t

0
div η(s) ds = u0 + G · W (t) in V ′

0 (4.6)

for all t ∈ [0, T ]. Since div η ∈ L1
t V

′
0 and G ·W ∈ L∞

t V0, it immediately follows that
u ∈ CtV ′

0. Moreover, since, thanks to Lemma 4.6, (uμ(t)) is bounded in L2, we also
have uμ(t) → u(t) weakly in L2. In fact, let ε > 0 and ψ ∈ L2 be arbitrary. Since V0
is dense in L2, there exists φ ∈ V0 with

∥
∥ψ − φ

∥
∥ < ε, and one can write

∣
∣
〈

uμ(t) − uν(t), ψ
〉∣
∣ ≤ ∣

∣
〈

uμ(t) − uν(t), ψ − φ
〉∣
∣ + ∣

∣
〈

uμ(t) − uν(t), φ
〉∣
∣,

where the second term on the right-hand side converges to zero as μ, ν → 0, and

∣
∣
〈

uμ(t) − uν(t), ψ − φ
〉∣
∣ ≤ ∥

∥uμ(t) − uν(t)
∥
∥

∥
∥ψ − φ

∥
∥ < Nε,
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so that, recalling thatHilbert spaces areweakly sequentially complete, uμ(t) converges
weakly in L2, necessarily to u(t), for all t ∈ [0, T ]. This also immediately implies
that u ∈ L∞

t L2
x . From this, together with u ∈ CtV ′

0, it follows in turn that u ∈
Cw([0, T ]; L2) by a criterion due to Strauss (see [14, Theorem 2.1]—here and below
Cw([0, T ]; E) stands for the space of space of weakly continuous functions from
[0, T ] to a Banach space E). Furthermore, since all terms in (4.6) except the second
one on the left-hand side take values in L2, it follows that (4.6) is satisfied also as an
identity in L2.

Let us show that u ∈ L1
t W

1,1
0 : the relative weak compactness of (∇uλ) in L1

t,x ,
proved in Lemma 4.7, implies that there exists v ∈ L1

t,x such that, along a subsequence
of λ which can be assumed to coincide with μ, ∇uμ → v weakly in L1

t,x . Taking into
account that uμ ∈ H1

0 for all μ and that uμ → u weakly* in L∞
t L2

x , it easily follows

that v = ∇u a.e. in [0, T ] × D and that u ∈ L1
t W

1,1
0 .

As a next step, we are going to show that η = γ (∇u) a.e. in (0, T ) × D. For this
we shall need the “energy” identity proved in the following lemma.

Lemma 4.8 Assume that

y(t) −
∫ t

0
div ζ(s) ds = y0 + f (t) in L2 ∀t ∈ [0, T ],

where y0 ∈ L2
x , y ∈ L∞

t L2
x ∩ L1

t W
1,1
0 , ζ ∈ L1

t,x , and f ∈ L2
t V0 with f (0) = 0.

Furthermore, assume that there exists c > 0 such that

k(c∇ y) + k∗(cζ ) ∈ L1
t,x .

Then

∥
∥y(t)− f (t)

∥
∥2+2

∫ t

0

∫

D
ζ(s, x) · ∇ (y(s, x) − f (s, x)) dx ds=∥

∥y0
∥
∥
2 ∀t ∈ [0, T ].

Proof The proof if analogous to that of Proposition 3.1, of which we borrow the
notation and the setup. In particular, let m ∈ N be such that

yδ(t) −
∫ t

0
div ζ δ(s) ds = yδ

0 + f δ(t) in L2 ∀t ∈ [0, T ],

hence, by Lemma 4.5,

∥
∥yδ(t) − f δ(t)

∥
∥
2 + 2

∫ t

0

∫

D
ζ δ · ∇ (

yδ − f δ
) = ∥

∥yδ
0

∥
∥
2 ∀t ∈ [0, T ],

where, as δ → 0,
∥
∥yδ(t)− f δ(t)

∥
∥
2 → ∥

∥y(t)− f (t)
∥
∥2 for all t ∈]0, T ] and ∥

∥yδ
0

∥
∥
2 →

∥
∥y0

∥
∥2. Moreover, since yδ − f δ → y − f in L1

t W
1,1
0 and ζ δ → ζ in L1

t,x , we have
that, up to selecting a subsequence,
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ζ δ · ∇ (

yδ − f δ
) −→ ζ · ∇ (y − f )

almost everywhere in [0, T ]× D. Therefore, taking Vitali’s theorem into account, the
lemma is proved if we show that ζ δ · ∇(yδ − f δ) is uniformly integrable: one has, by
Young’s inequality and convexity,

c2

2
ζ δ · ∇(yδ − f δ) ≤ k

(

c/2(∇ yδ − ∇ f δ)
) + k∗ (

cζ δ
)

≤ 1

2
k

(

c∇ yδ
) + 1

2
k

(

c(−∇ f δ)
) + k∗ (

cζ δ
)

,

as well as

−c2

2
ζ δ · ∇(yδ − f δ) ≤ k

(

c/2(−∇ yδ + ∇ f δ)
) + k∗ (

cζ δ
)

≤ 1

2
k

(

c(−∇ yδ)
) + 1

2
k

(

c∇ f δ
) + k∗ (

cζ δ
)

,

hence

c2
∣
∣ζ δ · ∇(yδ − f δ)

∣
∣ ≤ k

(

c∇ yδ
) + k

(

c(−∇ yδ)
)

+ k
(

c∇ f δ
) + k

(

c(−∇ f δ)
) + 4k∗ (

cζ δ
)

.

It follows by Jensen’s inequality for sub-Markovian operators, recalling that (I −
δ�)−m and ∇ commute, that

c2
∣
∣ζ δ · ∇(yδ − f δ)

∣
∣ ≤ (I − δ�)−m

(

k(c∇ y) + k (c(−∇ y))

+ k(c∇ f ) + k (c(−∇ f )) + 4k∗(cζ )
)

,

where k(c∇ y) and k∗(cζ ) belong to L1
t,x by assumption, and the same holds for

k(c∇ f ) + k(c(−∇ f )) because f ∈ W 1,∞. Moreover, the hypothesis
lim sup|x |→∞ k(−x)/k(x) < ∞ implies that

∫ T

0

∫

D
k(c(−∇ y)) � 1 +

∫ T

0

∫

D
k(∇ y) < ∞,

therefore, taking into account that (I − δ�)−m is a contraction in L1, we obtain
that c2|ζ δ · ∇(yδ − f δ)| is dominated by a sequence that converges in L1

t,x , which
immediately implies that ζ δ · ∇(yδ − f δ) is uniformly integrable in [0, T ] × D. ��

123



Stoch PDE: Anal Comp (2018) 6:364–396 383

As in the proof of Lemma 4.6, it follows from (4.4) and Lemma 4.5 that

1

2
‖vλ(t)‖2 +

∫ t

0

∫

D
γλ(∇uλ(s)) · ∇vλ(s) dx ds

+ λ

∫ t

0

∫

D
∇uλ(s) · ∇vλ(s) dx ds = 1

2
‖u0‖2

for all t ∈ [0, T ], where vλ = uλ − G · W . This immediately implies

1

2
‖vλ(t)‖2 +

∫ t

0

∫

D
γλ(∇uλ(s)) · ∇uλ(s) dx ds

≤ 1

2
‖u0‖2 +

∫ t

0

∫

D
γλ(∇uλ(s)) · ∇(G · W (s)) dx ds

+ λ

∫ t

0

∫

D
∇uλ(s) · ∇(G · W (s)) dx ds,

(4.7)

where

lim inf
μ→0

∥
∥vμ(t)

∥
∥ ≥ ∥

∥u(t) − G · W (t)
∥
∥ ∀t ∈ [0, T ]

by the weak lower semicontinuity of the norm and the weak convergence of uμ(t) to
u(t) in L2. Moreover, recalling that γμ(∇uμ) → η weakly in L1

t,x and ∇(G · W ) ∈
L∞
t,x , as V0 ↪→ W 1,∞, we have

∫ t

0

∫

D
γμ(∇uμ(s)) · ∇(G · W (s)) dx ds −→

∫ t

0

∫

D
η(s) · ∇(G · W (s)) dx ds.

The last term on the right-hand side of (4.7) converges to zero as μ → 0 because
(∇uμ) is bounded in L1

t,x and ∇(G · W ) ∈ L∞
t,x . We have thus obtained

lim sup
μ→0

∫ T

0

∫

D
γμ(∇uμ(s)) · ∇uμ(s) dx ds

≤ 1

2

∥
∥u0

∥
∥
2 − 1

2

∥
∥u(T ) − G · W (T )

∥
∥
2 +

∫ t

0

∫

D
η(s) · ∇(G · W (s)) dx ds.

By Lemma 4.8 we have

1

2

∥
∥u0

∥
∥2 − 1

2

∥
∥u(T ) − G · W (T )

∥
∥2 +

∫ T

0

∫

D
η(s) · ∇(G · W (s)) dx ds

=
∫ T

0

∫

D
η(s) · ∇u(s) dx ds,
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which implies that

lim sup
μ→0

∫ T

0

∫

D
γμ(∇uμ) · ∇uμ dx ds ≤

∫ T

0

∫

D
η · ∇u dx ds.

Moreover, since

γμ(x) · (I + μγ )−1x = γμ(x) · x − μ|γμ(x)|2 ≤ γμ(x) · x

for all x ∈ R
n , we obtain

lim sup
μ→0

∫ T

0

∫

D
γμ(∇uμ) · (I + μγ )−1∇uμ dx ds ≤

∫ T

0

∫

D
η · ∇u dx ds,

where (I + μγ )−1∇uμ → ∇u and γμ(∇uμ) → η weakly in L1
t,x . In particular, the

weak lower semicontinuity of convex integrals yields

∫ T

0

∫

D

(

k(∇u) + k∗(η)
)

≤ lim inf
μ→0

∫ T

0

∫

D

(

k((I + μγ )−1∇uμ) + k∗(γμ(∇uμ))
)

dx dt

= lim inf
μ→0

∫ T

0

∫

D
γμ(∇uμ) · (I + μγ )−1∇uμ dx dt < N ,

where N = N (ω) is a constant. Recalling that γμ ∈ γ ((I + μγ )−1) and γ = ∂k, we
have

k((I + μγ )−1∇uμ) + γμ(∇uμ) · (z − (I + μγ )−1∇uμ) ≤ k(z) ∀z ∈ R
n .

From this it follows, again by the weak lower semicontinuity of convex integrals, that

∫ T

0

∫

D
k(∇u) +

∫ T

0

∫

D
η · (ζ − ∇u) ≤

∫ T

0

∫

D
k(ζ ) ∀ζ ∈ L∞

t,x .

Let A be an arbitrary Borel subset of (0, T ) × D, z0 ∈ R
n , R > 0 a constant, and

ζR := z01A + TR(∇u)1Ac ,

where TR : R
n → R

n , is the truncation operator

TR : x �−→
{

x, |x | ≤ R,

Rx/|x |, |x | > R.
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Then ζR ∈ L∞
t,x , and

∫

A
k(∇u) +

∫

A
η · (z0 − ∇u) ≤

∫

A
k(z0)

+
∫

Ac
(k(TR(∇u)) − k(∇u)) +

∫

Ac
η · (TR(∇u) − ∇u) ,

where TR(∇u) → ∇u and k(TR(∇u)) → k(∇u) a.e. in (0, T ) × D as R → ∞, as
well as

∣
∣TR(∇u) − ∇u

∣
∣ ≤ 2

∣
∣∇u

∣
∣,

∣
∣k(TR(∇u)) − k(∇u)

∣
∣ � 1 + k(∇u)

(the latter inequality follows by the assumptions on the behavior of k at infinity). Since
k(∇u), k∗(η) ∈ L1

t,x , the dominated convergence theorem implies that

∫

A
k(∇u) +

∫

A
η · (z0 − ∇u) ≤

∫

A
k(z0)

for arbitrary z0 and A, hence also that

k(∇u) + η · (z0 − ∇u) ≤ k(z0)

a.e. in (0, T )×D for all z0 ∈ R
n . Bydefinition of subdifferential it follows immediately

that η = γ (∇u) a.e. in (0, T ) × D.
Let us now show, still keeping ω fixed, that the limit u constructed above is unique.

In particular, since η = γ (∇u), it is also unique. Assume that there exist u1, u2 such
that

ui (t) −
∫ t

0
div γ (∇ui (s)) ds = u0 + G · W (t), i = 1, 2,

in L2 for all t ∈ [0, T ]. Setting v = u1 − u2 and ζ = γ (∇u1) − γ (∇u2), it is enough
to show that

v(t) −
∫ t

0
div ζ(s) ds = 0

in L2 for all t ∈ [0, T ] implies v = 0. To this aim, it suffices to note that, by Lemma
4.8,

1

2

∥
∥v(t)

∥
∥
2 +

∫ t

0

∫

D
ζ · ∇v = 0

for all t ∈ [0, T ]. The monotonicity of γ immediately implies v = 0, i.e. u1 = u2, so
that uniqueness of u is proved.
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The process u has been constructed for eachω in a set of probability one via limiting
procedures along sequences that depend on ω itself. Of course such a construction, in
general, does not produce a measurable process. In our situation, however, uniqueness
of u allows us to even prove that u is predictable. The following simple observation
is crucial: we have proved that from any subsequence of λ one can extract a further
subsequence μ, depending on ω, such that uμ converges to u as μ → 0, in several
topologies, and that the limit u is unique. This implies, by a classical criterion, that the
same convergences hold along the original sequence λ, which does not depend on ω.
In particular, uλ(ω, t) → u(ω, t) weakly in L2 for all t ∈ [0, T ] and for P-a.s. ω. Let
us show that uλ → u weakly in L1L1

t L
2
x : for an arbitrary φ ∈ L∞L∞

t L2
x , we have

〈

uλ(ω, t), φ(ω, t)
〉 −→ 〈

u(ω, t), φ(ω, t)
〉

a.e. in � × [0, T ], as well as

E

∫ T

0

〈

uλ(ω, t), φ(ω, t)
〉2
dt ≤ E

∫ T

0

∥
∥uλ(ω, t)

∥
∥2

∥
∥φ(ω, t)

∥
∥2 dt

≤ ∥
∥φ

∥
∥2
L∞L∞

t L2
x
E

∫ T

0

∥
∥uλ(ω, t)

∥
∥
2
dt < N

for a constant N independent of λ, because (uλ) is bounded in L2L2
t,x by Lemma 4.3.

Then 〈uλ, φ〉 is uniformly integrable in � × [0, T ] by the criterion of de la Vallée
Poussin, hence 〈uλ, φ〉 → 〈u, φ〉 in L1L1

t by Vitali’s theorem. Since φ ∈ L∞L∞
t L2

x
is arbitrary, it follows that uλ → u weakly in L1L1

t L
2
x . Mazur’s lemma (see, e.g., [4,

p. 360]) implies that there exists a sequence (ζn) of convex combinations of uλ such
that ζn(ω, t) → u(ω, t) in L2 in P ⊗ dt-measure, hence a.e. in � × [0, T ] along a
subsequence. Since (uλ) is a collection of L2-valued predictable processes, the same
holds for (ζn), so that the P ⊗ dt-a.e. pointwise limit u of (a subsequence of) ζn is an
L2-valued predictable process as well. We also have that u ∈ L2L∞

t L2
x , as it follows

by uλ → u in L1L1
t L

2
x and the boundedness of (uλ) in L2L∞

t L2
x .

Moreover, recalling that ∇uλ → ∇u and γλ(∇uλ) → η weakly in L1
t,x P-a.s.,

and that, by Lemma 4.4, (∇uλ) and (γλ(∇uλ)) are bounded in L1L1
t,x , an entirely

analogous argument shows that ∇uλ → ∇u and γλ(∇uλ) → η = γ (∇u) weakly in
L1L1

t,x . This implies that η is a measurable adapted process, as well as, by weak lower
semicontinuity of the norm,

E
∥
∥∇u

∥
∥
L1
t,x

≤ lim inf
λ→0

E
∥
∥∇uλ

∥
∥
L1
t,x

< ∞,

E
∥
∥η

∥
∥
L1
t,x

≤ lim inf
λ→0

E
∥
∥γλ(∇uλ)

∥
∥
L1
t,x

< ∞.

We can hence conclude that

u ∈ L2L∞
t L2

x ∩ L1L1
t W

1,1
0 ,

η = γ (∇u) ∈ L1L1
t,x .
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Finally, Lemma 4.3 and (4.3) yield

E

∫ T

0

∫

D

(

k((I + λγ )−1∇uλ) + k∗(γλ(∇uλ))
)

< N

(

E
∥
∥u0

∥
∥
2 + E

∫ T

0

∥
∥G(s)

∥
∥
2
L (H,L2)

ds

)

,

where, by the weak lower semicontinuity of convex integrals and (I + λγ )−1∇uλ →
∇u, γλ(∇uλ) → η weakly in L1

t,x P-a.s., one has

∫ T

0

∫

D

(

k(∇u) + k∗(η)
) ≤ lim inf

λ→0

∫ T

0

∫

D

(

k((I + λγ )−1∇uλ) + k∗(γλ(∇uλ))
)

P-a.s., hence, by Fatou’s lemma,

E

∫ T

0

∫

D

(

k(∇u) + k∗(η)
) ≤ lim inf

λ→0
E

∫ T

0

∫

D

(

k((I + λγ )−1∇uλ) + k∗(γλ(∇uλ))
)

< N

(

E
∥
∥u0

∥
∥
2 + E

∫ T

0

∥
∥G(s)

∥
∥2
L (H,L2)

ds

)

< ∞.

(4.8)

Remark 4.9 The proof of uniqueness of u does not depend on γ being single-valued.
In particular, all results on u obtained thus far, including the predictability of u, can be
obtained under the more general assumption that γ is an everywhere defined maximal
monotone graph on R

n ×R
n , with γ = ∂k. However, in this more general framework,

the uniqueness of η does not follow, because the divergence is not injective. This
implies that we would not be able even to prove that η is a measurable process (with
respect to the product σ -algebra ofF and the Borel σ -algebra of [0, T ]).

5 Well-posedness with additive noise

We are now going to prove well-posedness for the equation

du(t) − div γ (∇u(t)) dt = G(t) dW (t), u(0) = u0, (5.1)

whereG is no longer supposed to take values inL 2(H, V0), as in the previous section,
but just inL 2(H, L2). In otherwords,we are consideringEq. (1.1)with additive noise.

Proposition 5.1 Assume that u0 ∈ L2L2
x is F0-measurable and that G : � ×

[0, T ] → L 2(H, L2) is measurable and adapted. Then Eq. (4.1) is well posed in
K . Moreover, its solution is pathwise weakly continuous with values in L2.

Proof Since one has (I − ε�)−m : L2 → H2m ∩ H1
0 for any m ∈ N, choosing

m > 1/2 + n/4, the Sobolev embedding theorem yields H2m ↪→ W 1,∞, hence
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V0 := H2m ∩ H1
0 satisfies all hypotheses stated at the beginning of the previous

section. In particular, setting

Gε := (I − ε�)−mG,

the ideal property of Hilbert–Schmidt operators implies that Gε is an L 2(H, V0)-
valued measurable and adapted process such that

E

∫ T

0

∥
∥Gε(s)

∥
∥2
L 2(H,V0)

ds � E

∫ T

0

∥
∥G(s)

∥
∥2
L 2(H,L2)

ds < ∞.

It follows by Proposition 4.1 that, for any ε > 0, there exists a unique predictable
process

uε ∈ L2L∞
t L2

x ∩ L1L1
t W

1,1
0

such that

ηε = γ (uε) ∈ L1L1
t,x ,

k(∇uε) + k∗(ηε) ∈ L1
t,x P-a.s.,

uε ∈ Cw([0, T ]; L2) P-a.s.,

satisfying

uε(t) −
∫ t

0
div ηε(s) ds = u0 +

∫ t

0
Gε(s) dW (s) (5.2)

in L2 for all t ∈ [0, T ].
In complete analogy to the previous section, the equation in H−1

uε
λ(t) −

∫ t

0
div γλ(∇uε

λ(s)) ds − λ

∫

0
�uε

λ(s) ds = u0 +
∫ t

0
Gε(s) dW (s)

admits a unique (variational) strong solution uε
λ for any ε > 0 and λ > 0. Taking into

account the monotonicity of γλ, Itô’s formula yields, for any δ > 0,

∥
∥uε

λ(t) − uδ
λ(t)

∥
∥
2 + λ

∫ t

0

∥
∥∇(uε

λ(s) − uδ
λ(s))

∥
∥
2
ds

�
∫ t

0

(

uε
λ(s) − uδ

λ(s)
) (

Gε(s) − Gδ(s)
)

dW (s) +
∫ t

0

∥
∥Gε(s) − Gδ(s)

∥
∥
2
L 2(H,L2)

ds.

Taking supremum in time and expectation, it easily follows from Lemma 4.2 that

E sup
t≤T

∥
∥uε

λ(t) − uδ
λ(t)

∥
∥2 � E

∫ T

0

∥
∥Gε(t) − Gδ(t)

∥
∥2
L 2(H,L2)

.
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For arbitrary fixed ε, δ > 0, the proof of Proposition 4.1 shows that

uε
λ −→ uε weakly* in L∞

t L2
x ,

∇uε
λ −→ ∇uε weakly in L1

t,x ,

γλ(∇uε
λ) −→ ηε weakly in L1

t,x

P-a.s. as λ → 0, and the same holds replacing ε with δ. In particular, on a set of
probability one, uε

λ − uδ
λ → uε − uδ weakly* in L∞

t L2
x as λ → 0, hence the weak*

lower semicontinuity of the norm and Fatou’s lemma imply

E
∥
∥uε − uδ

∥
∥2
L∞
t L2

x
≤ lim inf

λ→0
E

∥
∥uε

λ − uδ
λ

∥
∥2
L∞
t L2

x

� E

∫ T

0

∥
∥Gε(s) − Gδ(s)

∥
∥2
L 2(H,L2))

ds.

It follows by the ideal property of Hilbert–Schmidt operators, the contractivity of
(I − ε�)−m , and the dominated convergence theorem, that

E

∫ T

0

∥
∥Gε(s) − G(s)

∥
∥
2
L 2(H,L2))

ds −→ 0

as ε → 0. This implies that (uε) is a Cauchy sequence inL2L∞
t L2

x , hence there exists
a predictable L2-valued process u such that uε converges (strongly) to u in L2L∞

t L2
x

as ε → 0. Moreover, by (4.8) there exists a constant N , independent of ε, such that

E

∫ T

0

∫

D

(

k(∇uε) + k∗(ηε)
)

dx ds

< N

(

E
∥
∥u0

∥
∥2 + E

∫ T

0

∥
∥Gε(s)

∥
∥2
L (H,L2)

ds

)

≤ N

(

E
∥
∥u0

∥
∥2 + E

∫ T

0

∥
∥G(s)

∥
∥2
L (H,L2)

ds

)

,

(5.3)

where we have used again the ideal property of Hilbert–Schmidt operators and the
contractivity of (I − ε�)−m in the last step. The sequences (∇uε) and (γ (∇uε))

are hence uniformly integrable on � × [0, T ] × D by the criterion of de la Vallée
Poussin, hence relatively weakly compact inL1(L1

t,x ) by the Dunford-Pettis theorem.
Therefore, passing to a subsequence of ε, denoted by the same symbol, there exist v

and η such that ∇uε → v and γ (∇uε) → η weakly in L1L1
t,x as ε → 0. It is then

straightforward to check that v = ∇u and

u ∈ L1L1
t W

1,1
0 .

An argument based onMazur’s lemma, entirely analogous to the one used in the proof
of Proposition 4.1, shows that η is an L1-valued adapted process.

123



390 Stoch PDE: Anal Comp (2018) 6:364–396

We can now pass to the limit as ε → 0 in (5.2). The strong convergence of uε to u
in L2L∞

t L2
x implies that

ess sup
t∈[0,T ]

∥
∥uε(t) − u(t)

∥
∥ → 0

in probability as ε → 0. Let φ0 ∈ V0 be arbitrary. Since V0 ↪→ L∞, one has

〈

uε(t), φ0
〉 → 〈

u(t), φ0
〉

in probability for almost all t ∈ [0, T ]. Let us set, for an arbitrary but fixed t ∈ [0, T ],
φ : s �→ 1[0,t](s)φ0 ∈ L∞

t V0. Recalling that ηε = γ (∇uε) → η weakly in L1L1
t,x , it

follows immediately that

−
∫ t

0
〈div ηε, φ0〉 ds =

∫ T

0

∫

D
ηε(s) · φ(s) ds

→
∫ T

0

∫

D
η(s) · ∇φ(s) ds = −

∫ t

0
〈div η(s), φ0〉 ds

weakly in L1 as ε → 0. Doob’s maximal inequality and the convergence

E

∫ T

0

∥
∥Gε(t) − G(t)

∥
∥
L 2(H,L2)

−→ 0

as ε → 0 readily yield also that Gε · W (t) → G · W (t) in L2 in probability for all
t ∈ [0, T ]. In particular, since φ0 ∈ V0 and t ∈ [0, T ] are arbitrary, we infer that

u(t) −
∫ t

0
div η(s) ds = u0 +

∫ t

0
B(s) dW (s)

holds in V ′
0 for almost all t . Recalling that η ∈ L1

t,x , which implies in turn that div η ∈
L1
t V

′
0, it follows that all terms except the first on the left-hand side have trajectories

in CtV ′
0, hence that the identity holds for all t ∈ [0, T ]. Moreover, thanks to Strauss’

weak continuity criterion, u ∈ CtV ′
0 and u ∈ L∞

t L2
x imply u ∈ Cw([0, T ]; L2). Note

also that all terms bar the second one on the left-hand side are L2-valued, hence the
identity holds also in L2 for all t ∈ [0, T ].

The weak convergences ∇uε → ∇u and ηε → η in L1L1
t,x and the weak lower

semicontinuity of convex integrals yield, taking (5.3) into account,

E

∫ T

0

∫

D

(

k(∇u) + k∗(η)
)

< N

(

E
∥
∥u0

∥
∥2 + E

∫ T

0

∥
∥G(s)

∥
∥2
L 2(H,L2)

ds

)

.
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To complete the proof of existence, we only need to show that η = γ (∇u) a.e. in
� × (0, T ) × D. Note that, by Proposition 3.1, we have

1

2

∥
∥uε(T )

∥
∥2 +

∫ T

0

∫

D
ηε · ∇uε

= 1

2

∥
∥u0

∥
∥
2 + 1

2

∫ T

0

∥
∥Gε(s)

∥
∥
2
L 2(H,L2)

ds +
∫ T

0
uε(s)Gε(s) dW (s)

and

1

2

∥
∥u(T )

∥
∥2 +

∫ T

0

∫

D
η · ∇u

= 1

2

∥
∥u0

∥
∥
2 + 1

2

∫ T

0

∥
∥G(s)

∥
∥
2
L 2(H,L2)

ds +
∫ T

0
u(s)G(s) dW (s),

where, as ε → 0, ‖uε(T )‖ → ‖u(T )‖ in L2, thanks to the strong convergence of uε

to u in L2L∞
t L2

x ;

∫ T

0

∥
∥Gε(s)

∥
∥2
L 2(H,L2)

ds −→
∫ T

0

∥
∥G(s)

∥
∥2
L 2(H,L2)

ds

in L2 by an (already seen) argument involving the ideal property of Hilbert–Schmidt
operators;

∫ T

0
uε(s)Gε(s) dW (s) −→

∫ T

0
u(s)G(s) dW (s)

in L1 as it follows by Lemma 4.2. In particular, we infer

lim sup
ε→0

∫ T

0

∫

D
γ (∇uε) · ∇uε

≤ 1

2

∥
∥u0

∥
∥2 − 1

2

∥
∥u(T )

∥
∥2 + 1

2

∫ t

0

∥
∥G(s)

∥
∥2
L 2(H,L2)

ds +
∫ t

0
u(s)G(s) dW (s)

=
∫ t

0

∫

D
η · ∇u,

hence also, by Fatou’s lemma,

lim sup
ε→0

E

∫ T

0

∫

D
γ (∇uε) · ∇uε ≤ E

∫ t

0

∫

D
η · ∇u.

Since ∇uε → ∇u and γ (∇uε) → η weakly in L1L1
t,x , recalling that γ is maximal

monotone, it follows that η ∈ γ (∇u) a.e. in �× (0, T )× D (see, e.g., [2, Lemma 2.3,
p. 38]).
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Let u01, u02 ∈ L2L2
x beF0-measurable, and G1, G2 : � × [0, T ] → L 2(H, L2)

be measurable adapted processes such that

E

∫ T

0

∥
∥Gi (s)

∥
∥2
L 2(H,L2)

ds < ∞, i = 1, 2.

If ui ∈ K , i = 1, 2, are solutions to

dui − div γ (∇ui ) dt = Gi dW, ui (0) = u0i ,

we are going to show that

E sup
t≤T

∥
∥u1(t) − u2(t)

∥
∥
2 � E

∥
∥u01 − u02

∥
∥
2 + E

∫ T

0

∥
∥G1(s) − G2(s)

∥
∥
2
L 2(H,L2)

ds,

(5.4)

from which uniqueness and Lipschitz-continuous dependence on the initial datum
follow immediately. We shall actually obtain this estimate as a special case of a more
general one that will be useful in the next section: setting

y(t) := u1(t) − u2(t), y0 := u01 − u02, F(t) := G1(t) − G2(t),

one has

y(t) −
∫ t

0
div ζ(s) ds = y0 +

∫ t

0
F(s) dW (s),

where ζ = γ (∇u1) − γ (∇u2). Setting, for any α ≥ 0,

yα(t) := e−αt y(t), ζ(t) := e−αtζ(t), Fα(t) := e−αt F(t),

the integration by parts formula yields

yα(t) +
∫ t

0

(

αyα(s) − div ζ α(s)
)

ds = y0 +
∫ t

0
Fα(s) dW (s),

from which, by Proposition 3.1, we deduce

∥
∥yα(t)

∥
∥2 + 2α

∫ t

0

∥
∥yα(s)

∥
∥2 ds + 2

∫ t

0

∫

D
ζ α(s) · ∇ yα(s) ds

≤ ∥
∥y0

∥
∥
2 + 2

∫ t

0
yα(s)Fα(s) dW (s) +

∫ t

0

∥
∥Fα(s)

∥
∥
2
L 2(H,L2)

ds,

123



Stoch PDE: Anal Comp (2018) 6:364–396 393

where, by monotonicity of γ , ζ α ·∇ yα = e−2α· (γ (∇u1) − γ (∇u2)) ·(∇u1−∇u2) ≥
0. Therefore, taking the supremum in t and expectation on both sides, one has

E sup
t≤T

∥
∥yα(t)

∥
∥2 + α E

∫ T

0

∥
∥yα(s)

∥
∥2 ds

� E
∥
∥y0

∥
∥2 + E sup

t≤T

∣
∣
∣
∣

∫ t

0
yα(s)Fα(s) dW (s)

∣
∣
∣
∣
+ E

∫ T

0

∥
∥Fα(s)

∥
∥2
L 2(H,L2)

ds

� E
∥
∥y0

∥
∥
2 + E

∫ T

0

∥
∥Fα(s)

∥
∥
2
L 2(H,L2)

ds, (5.5)

where the second inequality follows by an application of Lemma 4.2. Estimate (5.4)
is just the special case α = 0. ��

6 Proof of the main result

Thanks to the results established thus far, we are now in the position to prove Theo-
rem 2.2. Let v : � × [0, T ] → L2 be a measurable adapted process such that

E

∫ T

0

∥
∥v(s)

∥
∥2 ds < ∞,

and consider the equation

du(t) − div γ (∇u(t)) dt = B(t, v(t)) dW (t), u(0) = u0,

where u0 is anF0-measurable L2-valued random variable with finite second moment.
The assumptions on B imply that B(·, v) is measurable, adapted, and such that

E

∫ T

0

∥
∥B(s, v(s))

∥
∥2
L 2(H,L2)

ds < ∞,

hence the above equation is well-posed inK by Proposition 5.1, which allows one to
define a map � : (u0, v) �→ u. Let ui = �(u0i , vi ), i = 1, 2, where u0i and vi satisfy
the same measurability and integrability assumptions on u0 and v, respectively. For
any α ≥ 0, (5.5) and the Lipschitz continuity of B yield

E sup
t≤T

(

e−2αt
∥
∥u1(t) − u2(t)

∥
∥
2
)

+ E

∫ T

0
e−2αs

∥
∥u1(s) − u2(s)

∥
∥
2
ds

� 1

α
E

∥
∥u01 − u02

∥
∥2 + 1

α
E

∫ T

0
e−2αs

∥
∥B(s, v1(s)) − B(s, v2(s))

∥
∥2
L 2(H,L2)

ds

� 1

α
E

∥
∥u01 − u02

∥
∥
2 + 1

α
E

∫ T

0
e−2αs

∥
∥v1(s) − v2(s)

∥
∥
2
ds.
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Choosing α large enough, it follows that, for any u0 as above, the map v �→ �(u0, v)

is strictly contractive in the Banach space Eα of measurable adapted processes v such
that

‖v‖Eα
:=

(

E

∫ T

0
e−2αs‖v(s)‖2 ds

)1/2

.

By the Banach fixed point theorem, the map v �→ �(u0, v) admits a unique fixed point
u in Eα . Since all Eα-norms are equivalent for different values of α, u belongs to E0
and, by definition of �, u also belongs to K and solves (1.1). Taking into account
that any solution to (1.1) is necessarily a fixed point of v �→ �(u0, v), it immediately
follows that u is the unique solution to (1.1) inK . Lipschitz continuity of the solution
map follows from the above estimate, which manifestly implies

E

∫ T

0

∥
∥u1(s) − u2(s)

∥
∥2 ds � E

∫ T

0
e−2αs

∥
∥u1(s) − u2(s)

∥
∥2 ds � E

∥
∥u01 − u02

∥
∥2.

and

E sup
t≤T

∥
∥u1(t) − u2(t)

∥
∥2 � E sup

t≤T

(

e−2αt
∥
∥u1(t) − u2(t)

∥
∥2

)

� E

∫ T

0
e−2αs

∥
∥u1(s) − u2(s)

∥
∥2 ds,

thus completing the proof.
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Appendix A: A remark on uniform integrability

The classical characterization of uniform integrability by de la Vallée Poussin states
that, in the setting of a measure space (X,A) endowed with a finite measure μ,
a bounded subset G of L1(X, μ; R

n) is uniformly integrable if and only if there
exists a continuous increasing convex function ϕ : R+ → R+, with ϕ(0) = 0 and
limx→∞ ϕ(x)/x = ∞, such that

∫

A
ϕ(|g|) dμ < 1 ∀g ∈ G

(see, e.g., [1, p. 12]).
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The following criterion for uniform integrability can be proved in the same way
(the proof is included for completeness).

Lemma A.1 Let F : R
n → R+ be a continuous convex function such that F(0) = 0

and

lim|x |→∞
F(x)

|x | = ∞.

Let G be a subset of L0(X, μ; R
n) such that F(G ) is bounded in L1(X, μ). Then G

is uniformly integrable.

Proof We have to prove that G is bounded in L1(X, μ) and that for any ε > 0 there
exists δ > 0 such that, for any A ∈ A with μ(A) < δ,

∫

A
|g| dμ < ε ∀g ∈ G .

By definition of limit, for any M > 0 there exists R (depending on M) such that
|x | < F(x)/M for all x ∈ R

n such that |x | > R. Then

∫

A
|g| dμ =

∫

A∩{|g|≤R}
|g| dμ +

∫

A∩{|g|>R}
|g| dμ

≤ Rμ(A) + 1

M

∫

X
F(g) dμ

for all g ∈ G . Choosing A = X , this proves that G is bounded in L1(X, μ). Let ε > 0
be arbitrary, and choose M such that the second-term on the right-hand side of the last
inequality is smaller than ε/2. Then δ := ε/(2R) satisfies the required condition. ��
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