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A B S T R A C T

Rotating-coil magnetometers are among the most common transducers for measuring local and integral
magnetic fields of accelerator magnets. The measurement uncertainty strongly depends on the mechanical
properties of the shafts, bearings, drive systems, and supports. This paper proposes an analytical mechanical
model for rotating-coil magnetometers, which allows a sensitivity analysis of mechanical phenomena affecting
magnetic measurements. Both static and dynamic effects are considered. The model is validated numerically
with a finite element model, and experimentally on an operational device.
. Introduction

Magnet production follow-up requires several field measurements at
arious states of completion, after collaring, yoking, and cryostat inte-
ration. Magnetic measurements are providing feedback to the magnet
esigner, guarantee the magnet-to-magnet reproducibility, and are used
or optimizing the accelerator performance. In most cases, however, the
easurement of the integrated field quality is sufficient [1] and local

ield maps are not required.
Rotating-coil magnetometers are the most common transducers for

easuring the field quality inside the bore of magnets for charged-
article accelerators. Rotating-coil measurements belong to the family
f induction-coil transducers that are based on Faraday’s law of induc-
ion, featuring one or more induction coils mounted on a mechanical
upport shaft that is aligned with the longitudinal axis of the magnet.
he induced voltage in each coil is proportional to the rate-of-change
f the flux linked with the coil surface. In general the shafts (or shaft
hains) are long enough to cover the entire length of the magnet,
ncluding its fringe-field regions.

Rigidly fixed onto the shaft, the induction coils undergo the typi-
al mechanical phenomena affecting a rotating beam, like static and
ynamic forces, and misalignment. The control of the mechanical prop-
rties in the shaft design [2] and mechanical vibrations during the
peration [3] are crucial for the measurement results. Typically, a shaft
nd its support are designed to have natural frequencies higher than
he operating frequencies [4]. Basic mechanical formulae are suited
nly for phenomena such as deformation under gravity. Transverse and
orsional vibrations were already taken into account for rotating-coil
odels in Ref. [5], although a mechanical description of the shaft body

s missing. However, mechanical phenomena have a dominating impact

∗ Corresponding author at: CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland.
E-mail address: stefano.sorti@cern.ch (S. Sorti).

on the measurement uncertainty compared to the electronic compo-
nents in the data-acquisition system [6]. A mitigation of the mechanical
effects is a signal-compensation technique known as bucking [7], which
strongly depends on the construction techniques of the coils. Coils made
in Printed Circuit Board (PCB) technology are far more reproducible
then hand-wound coils that are more appropriate for a large number
of turns. A model to quantify the mitigation effect of the bucking is
still missing and therefore the main goal of this work.

This paper provides a complete coupling model between mechanical
effects and magnetic measurement results. The model is appropriate for
both the design and the operation of rotating-coil magnetometers. In
particular, Section 2 addresses the mechanical model of the rotating-
coil shaft, consisting of an analytical model of a Timoshenko beam on
elastic supports. It also covers the geometrical description of the coil
and its coupling with the shaft. Section 3 introduces the description
of the magnetic flux density and figure of merit of the system design.
Section 4 covers the numerical and experimental validations of the
model. Finally, Section 5 is devoted to a general sensitivity analysis
of an operational coil magnetometer, based on the developed model.

2. The mechanics of the coil shaft

The mechanical model of rotating-coil magnetometers is based on
the following hypotheses:

• A magnetometer is a flexible shaft supported by two ideal bear-
ings, modelled as lumped elements.

• The shaft material is homogeneous and linear elastic.
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Fig. 1. Main coordinate systems to express rotating-coil axis misalignment, identified
by the segment connecting the bearing points P1 and P2. The coordinate systems
introduced are: the magnet frame (m), here shown with its origin already shifted into
P1, its rotation to align it with the bearings (b) and the local frame rotating with the
shaft (s). 𝜌 and 𝜙 express the misalignment of the bearing and magnet axes.

• Axial, torsional, and flexural vibrations are decoupled. Only flex-
ural vibrations are considered, being the most critical ones. Ax-
ial and torsional modes are computed using FEM to verify this
assumption.

• The rotation speed is slow enough (≤8 Hz) to neglect rotor-
dynamics phenomena, such as the gyroscopic effect. The rotation
speed is expected to be well below the first critical speed. Never-
theless, shaft eccentricity is introduced as an external force acting
on the shaft.

• The rotation speed is not constant, so that the angular displace-
ment, known a priori, becomes a function of time. This assump-
tion allows to include non-uniform velocities, particularly tran-
sients to start and stop rotation, to describe the shaft motion
during flip-coil measurements [8].

The Timoshenko theory, applied in this paper, is an appropriate model
for torsional dynamics, layered composite shafts, and multi-segment ro-
tating beams [9–12]. The main advantage with respect to the common
Euler–Bernoulli theory is the possibility to model beams with a short
length, compared to the cross-section width [13].

The misalignment of the rotation axis and shaft deformation are the
two main aspects for the mechanical characterization of rotating coils.
The rigid misalignment is expressed using a coordinate transformation,
and the shaft deformation through the application of the Timoshenko
theory.

2.1. Shaft misalignment

Coordinate-system transformations are used to express the misalign-
ment between the magnet and shaft axes. As shown in Fig. 1, the
coordinate systems are:

• (𝑥m, 𝑦m, 𝑧m) is the magnet coordinate frame, in which the field
distribution and all measurement results are expressed. Its origin
is located at the centre of the magnet axis (which is a parameter
of the magnet). To avoid overloading Fig. 1 this frame is shown

already translated into one of the shaft bearings; P1.

2

Fig. 2. Timoshenko beam for each of the two principal directions (pictured along 𝑦s).
It represents the variables to solve for, in order to obtain the deformation field (a) and
the boundary conditions to apply at bearings (b). Elements 𝑘 and 𝑚 are lumped spring
and mass elements.

• (𝑥b, 𝑦b, 𝑧b) is the bearing coordinate frame. It is identified by the
translation of (𝑥m, 𝑦m, 𝑧m) into P1, followed by a rotation to align
𝑧b with the shaft axis, that is, the segment from P1 to P2.

• (𝑥s, 𝑦s, 𝑧s) is the shaft coordinate frame. It is obtained by the
rotation of (𝑥b, 𝑦b, 𝑧b) around 𝑧b and thus solidly moves with the
shaft.

he bearing P1, is supposed to be on the axis of the magnet. The trans-
ormation from the magnet coordinate frame to the bearing coordinate
rame consists of a translation and two rotations about axes. The first
s performed around 𝑦m by an angle of 𝛼1, identifying the temporary
oordinates (𝑥t, 𝑦t, 𝑧t). The second rotation is performed around the 𝑥t
xis by an angle of 𝛼2, so that 𝑧t coincides with the direction of the
egment P1P2. Instead of using 𝛼1 and 𝛼2, it is proposed to express the
isalignment by a radial misalignment 𝜌 and its spatial phase 𝜙.

Finally, the shaft coordinate frame is identified through the angular
isplacement 𝜃(𝑡), as shown in Fig. 1. Therefore it is possible to write
he overall relationship accounting for shaft misalignment and rotation.
iven a generic point of coordinates 𝒙s, it results in

s = 𝑇 𝑅𝜃(𝑡) 𝑅(𝜌, 𝜙) 𝒙m, (1)

here 𝑅𝜃(𝑡) and 𝑅(𝜌, 𝜙) are rotation matrices for shaft motion and
isalignment and 𝑇 is the translation matrix.

.2. Shaft deformations

Shaft deformations are modelled in the shaft coordinate frame. In
his way, the principal directions of the shaft are identified as fixed
n space and can be modelled separately. The quantity of interest is
he three-dimensional deformation field of the shaft body 𝒖. This is a
unction of the displacement 𝑤 and rotation angle 𝜒 of the beam cross-
ection, as shown in Fig. 2a. Based on Timoshenko’s equations [13], it
s possible to write for small deformations:

(𝑥, 𝑦, 𝑧, 𝑡) =
⎡

⎢

⎢

⎣

𝑤𝑥(𝑧, 𝑡)
𝑤𝑦(𝑧, 𝑡)

𝑥𝜒𝑦(𝑧, 𝑡) − 𝑦𝜒𝑥(𝑧, 𝑡)

⎤

⎥

⎥

⎦

, (2)

here the subscripts denote the variables, solved independently in the
𝑧- and 𝑦𝑧-planes. To save on notation, the subscripts are omitted in
hat follows.

Each principal direction is analysed separately, reducing the three-
imensional problem to a pair of planar beams. This assumption is
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valid as long as rotor-dynamics can be neglected. Otherwise, coupling
between planes may arise from asymmetry, in which case the general
approach remains valid, but extra terms appear [14]. The proposed
analysis starts with the free motion of the system to identify the modes
of vibration.

2.3. Shaft deformations: free motion

A beam in the 𝑦s𝑧s-plane is now considered. The first step in the
ibration analysis is the free, undamped response of the system. It
llows for the characterization of the dynamic behaviour of the shaft,
s the baseline for a more complete study of damped, forced motion.
ith 𝒗(𝑧, 𝑡) = (𝑤(𝑧, 𝑡), 𝜒(𝑧, 𝑡)), the free motion of a Timoshenko beam

satisfies the one dimensional wave equation [9]

𝑀 𝜕2𝒗
𝜕𝑡2

(𝑧, 𝑡) +𝐾𝒗(𝑧, 𝑡) = 0, (3)

here

=

[

𝜌𝐴 0

0 𝜌𝐼

]

, 𝐾 = 𝐴𝐺𝜅
⎡

⎢

⎢

⎣

− 𝜕2

𝜕𝑧2
𝜕
𝜕𝑧

− 𝜕
𝜕𝑧 1 − 𝐸𝐼

𝐴𝐺𝜅
𝜕2

𝜕𝑧2

⎤

⎥

⎥

⎦

, (4)

𝐸 is the Young’s modulus, 𝐼 and 𝐴 are the momentum of inertia
and the area of the shaft cross-section, 𝐺 is the shear modulus, 𝜌 the
material density, and 𝜅 the shear constant. For a simple geometry,

ell-assessed formulas for 𝜅 exist [15]. For more complicated ones,
umerical methods are necessary [16].

A solution of Eq. (3) can be approached by a Fourier transformation.
onsider

(𝑧, 𝑡) = 𝑊 (𝑧)𝜂(𝑡), 𝜒(𝑧, 𝑡) = 𝑋(𝑧)𝜂(𝑡), (5)

where 𝑊 (𝑧) and 𝑋(𝑧) are modal shapes with physical unit [𝑊 (𝑧)] = 1
m and [𝑋(𝑧)] = 1 rad, and 𝜂(𝑡) are the modal coordinates, with [𝜂(𝑡)]

1U. The solution for 𝜂(𝑡) is imposed to be harmonic, with an angular
requency 𝜔. Eqs. (5) are substituted into Eq. (3) to obtain

𝑊 (2)(𝑧) +
𝜔2𝜌
𝜅𝐺

⏟⏟⏟
𝑎

𝑊 (𝑧) −𝑋′(𝑧) = 0 , (6a)

𝑋(2)(𝑧) +
(

𝜔2𝜌
𝐸

− 𝐴𝐺𝜅
𝐸𝐼

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏

𝑋(𝑧) + 𝐴𝐺𝜅
𝐸𝐼

⏟⏟⏟
𝑐

𝑊 ′(𝑧) = 0 , (6b)

�̈�(𝑡) + 𝜔2𝜂(𝑡) = 0 . (6c)

Rearranging and differentiating the first and the second equations, it
is possible to write

𝑊 (4)(𝑧) + (𝑎 + 𝑏 + 𝑐)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑑

𝑊 (2)(𝑧) + 𝑎𝑏
⏟⏟⏟

𝑒

𝑊 (𝑧) = 0 . (7)

Solutions for Eq. (7) can be written in the form 𝑊 (𝑧) =
∑4
𝑖=1 𝑃𝑖𝑒

𝜆𝑖𝑧. The
coefficients 𝜆𝑖 stem from the solution of the characteristic polynomial
and are functions of the angular frequency 𝜔. The coefficients 𝑃𝑖 of
the fourth-order equation are determined by the boundary conditions.
For each 𝜔, which is a natural frequency of the system, a modal-shape
function 𝑊 (𝑧) can be found.

Fig. 2b shows the boundary conditions for a generally-supported beam
model [13]. This support prescribes a transversal (𝑘𝑡) and a torsional
(𝑘𝑟) spring at the two ends, including two lumped masses (𝑚1, 𝑚2)
and inertias (𝐽1, 𝐽2). The boundary conditions impose the equilibrium
between the internal forces (shear 𝑇 and momentum 𝑀), the spring
forces, and the inertias at each end. In particular, at 𝑧 = 0,

𝑀 = 𝐸𝐼
𝜕𝜒
𝜕𝑧

= −𝑘𝑟
𝜕𝑤
𝜕𝑧

− 𝐽1
𝜕2𝜒
𝜕𝑡2

, (8a)

= 𝐴𝐺𝜅
( 𝜕𝑤
𝜕𝑧

− 𝜒
)

= 𝑘𝑡𝑤 + 𝑚1
𝜕2𝑤
𝜕𝑡2

. (8b)
3

At 𝑧 = 𝐿, where 𝐿 is the shaft length, the signs of the lumped elements
are reversed and the mass 𝑚1 substituted by 𝑚2. Fourier transformation
(Eq. (5)) is applied to Eqs. (8). Together with the boundary conditions
at 𝑧 = 𝐿, the ones at 𝑧 = 0 form a system of equations that can be

ritten as

𝐴(𝜔)
⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑃1
𝑃2
𝑃3
𝑃4

⎤

⎥

⎥

⎥

⎥

⎦

= 0 . (9)

on-trivial solutions for this linear equation system require that
et(𝐴(𝜔)) = 0. Let 𝜔𝑛 identify the solutions for the 𝑛th natural fre-
uency. For each 𝜔𝑛, the coefficients 𝑃𝑖,𝑛 can be computed to obtain
he expression of 𝑊𝑛(𝑧). To compute the modal shapes 𝑋𝑛(𝑧), Eq. (6a)
s differentiated in 𝑧 and inserted into Eq. (6b). Because 𝑊𝑛(𝑧) and
𝑛(𝑧) are the eigenvectors of the problem, their scaling is arbitrary.
herefore, the so-called mass normalization is performed [9]. The
efinition of the modal masses 𝑚𝜂,𝑛 for the 𝑛th mode is given as

𝜂,𝑛 = ∫

𝐿

0
𝑼T
𝑛𝑀𝑼 𝑛d𝑧, (10)

here 𝑼 𝑛 is the vector of modal shapes (𝑊𝑛(𝑧) and 𝑋𝑛(𝑧)). The modal
hapes are thus scaled to yield unitary modal masses. This is coherent
ith the formulation of Eq. (6c), where the mass is unitary and the

tiffness is equal to 𝜔2.

.4. Shaft deformations: forced motion

Considering damping and external forces, the one-dimensional wave
quation becomes

𝜕2𝒗
𝜕𝑡2

(𝑧, 𝑡) + 𝐶 𝜕𝒗
𝜕𝑡

(𝑧, 𝑡) +𝐾𝒗(𝑧, 𝑡) = 𝒇 (𝑧, 𝑡) . (11)

amping is introduced as Rayleigh damping [17] containing mass and
tiffness proportional, empirical parameters 𝛼 and 𝛽:

= 𝛼𝑀 + 𝛽𝐾. (12)

he forces and momenta are distributed and written as 𝑓 (𝑧, 𝑡) and
𝜇(𝑧, 𝑡), with physical units of [𝑓 (𝑧, 𝑡)] = 1 N/m−1 and [𝜇(𝑧, 𝑡)] = 1 N.
or each mode 𝑛, the so-called modal forces and momenta are

𝑓𝑛(𝑡) = ∫

𝐿

0
𝑊𝑛(𝑧)𝑓 (𝑧, 𝑡)d𝑧, (13a)

𝑛(𝑡) = ∫

𝐿

0
𝑋𝑛(𝑧)𝜇(𝑧, 𝑡)d𝑧 . (13b)

n this way, the most common excitation functions can be introduced
irectly as modal forces. For instance, a generic harmonic excitation of
mplitude 𝐹0, characterized by frequency 𝜔f and phase 𝜓f, at a certain
oint 𝑧f,1 is written as

𝑛(𝑡) = ∫

𝐿

0
𝐹0𝑊𝑛(𝑧)𝛿(𝑧 − 𝑧f) cos

(

𝜔f𝑡 + 𝜓f
)

d𝑧 =

= 𝐹0𝑊𝑛(𝑧f)
⏟⏞⏞⏟⏞⏞⏟

𝐹𝑛

cos
(

𝜔f𝑡 + 𝜓f
)

. (14)

ecause the modes are orthogonal, each modal coordinate function can
e solved separately by

̈𝑛(𝑡) + 𝑐𝑛�̇�𝑛(𝑡) + 𝜔2
𝑛𝜂𝑛(𝑡) = 𝐹𝑛 cos

(

𝜔f𝑡 + 𝜓f
)

, (15)

here 𝑐𝑛 is the modal damping. The solution is of the form

𝑛(𝑡) = 𝐴𝑛 cos
(

𝜔f𝑡 + 𝜓𝑛
)

, (16)

1 Subscript f denotes the force parameters.
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Fig. 3. Definition of the coil geometry and its parametric representation. Coil geometry
is a surface, taken as a sub-set of the shaft volume. In the figure, the full body of the
shaft is omitted for clarity. Moreover, despite coils are mostly flat surfaces, the one in
the figure is curved, to highlight that the model can accept any coil geometry.

where 𝐴𝑛 and 𝜓𝑛 are modal amplitude and phase. The deformation field
f Eq. (2) can then be written in modal form as:

=
𝑁
∑

𝑛=1

⎡

⎢

⎢

⎢

⎣

0 𝑊𝑥,𝑛

𝑊𝑦,𝑛 0

𝑥𝑋𝑦,𝑛 −𝑦𝑋𝑥,𝑛

⎤

⎥

⎥

⎥

⎦

[

𝐴𝑦,𝑛 cos(𝜔f𝑡 + 𝜓𝑦,𝑛)

𝐴𝑥,𝑛 sin(𝜔f𝑡 + 𝜓𝑥,𝑛)

]

, (17)

where the highest considered mode is 𝜔𝑁 chosen such that 𝜔𝑁 ≫ 𝜔f.
It is important to recall that the dynamics of the shaft is expressed

n the shaft coordinate frame. Therefore, also the excitations must be
xpressed in this frame.

.5. The coil geometry

The coil geometry is modelled as a surface in the shaft coordinate
rame. The vector 𝒄u describes the undeformed position of the mass
oints, expressed as a function of the two local parameters (𝑢, 𝑣), and
herefore written as 𝒄u(𝑢, 𝑣).

The deformation field of the shaft is linearly superimposed to the
lain coil geometry as

(𝑢, 𝑣) = 𝒄u(𝑢, 𝑣) + 𝒖(𝒄u(𝑢, 𝑣)) , (18)

here 𝒄 is the deformed coil geometry. Its surface element is

𝒂 = −
𝜕𝒄(𝑢, 𝑣)
𝜕𝑢

×
𝜕𝒄(𝑢, 𝑣)
𝜕𝑣

d𝑢d𝑣 , (19)

ee Fig. 3. Consider now a rectangular coil, parallel to the 𝑥s𝑧s-plane,
ith an elevation ℎ. The coil geometry is described by the position
ector 𝒄 = (𝑢, ℎ, 𝑧), mapped to a rectangle in the local coordinates (𝑢, 𝑣).

If, for example, the deformation field of the shaft is the one of Eq. (17),
the coil geometry can be described as

𝒄 =

⎡

⎢

⎢

⎢

⎣

𝑢

ℎ

𝑣

⎤

⎥

⎥

⎥

⎦

+
𝑁
∑

𝑛=1

⎡

⎢

⎢

⎢

⎣

0 𝑊𝑥,𝑛

𝑊𝑦,𝑛 0

ℎ𝑋𝑦,𝑛 −𝑢𝑋𝑥,𝑛

⎤

⎥

⎥

⎥

⎦

[

𝐴𝑦,𝑛 cos(𝜔f𝑡 + 𝜓𝑦,𝑛)

𝐴𝑥,𝑛 sin(𝜔f𝑡 + 𝜓𝑥,𝑛)

]

. (20)

3. Uncertainty of the measured magnetic-field components

The flux density in the aperture of a magnet, free of current sources
and magnetic material can be expressed by a 3D Fourier–Bessel se-
ries [18]. Assuming an ideal quadrupole field over 60% of the shaft
length, and a field roll-off that can be well described by the Enge
function over a length of 5 times the magnet aperture radius, the field
harmonics integrated over the entire length of the induction coil obeys
the two-dimensional Laplace equation. The harmonic content can thus
be written in the complex notation as 𝐶a

𝑛 (𝑟0) = 𝐵a
𝑛 (𝑟0)+𝑖𝐴

a
𝑛(𝑟0) expressed

at the reference radius 𝑟 .
0 a

4

3.1. The measurement procedure

The flux linkage in the coils is calculated with

𝛷 = ∫𝒜
𝑩 ⋅ d𝒂 , (21)

with d𝒂 from Eq. (19). The flux is computed for the geometry of the
deformed coil as determined by the mechanical dynamics. In a discrete
setting, the flux increments 𝛷𝑚 for the 𝑀 angular positions 𝜃𝑚 can be
eveloped into a discrete Fourier series

𝑛 =
𝑀−1
∑

𝑚=0
𝛷𝑚 𝑒

−𝑖2𝜋𝑚𝑛
𝑀 . (22)

This yields the harmonic content of the system response

𝐶a
𝑛 (𝑟0) = 𝑟0

𝑛−1 𝛹𝑛
𝑘𝑛
. (23)

The terms 𝑘𝑛 are the coil sensitivity factors for the 𝑛th field harmonic:

𝑘𝑛 =
𝑁𝐿
𝑛

(

𝑟𝑛2 − 𝑟
𝑛
1
)

, (24)

where 𝑁 is the number of coil turns, 𝐿 the total length of the coil
and the two radii are the position of the go and return wire of the
coil. The 𝑘𝑛 express the integral sensitivity of the coil with respect
to the multipole order 𝑛 and as therefore not a function of 𝑧. The
difference between the integrals over the imposed field harmonics and
the apparent 𝐴a

𝑛, 𝐵
a
𝑛 coefficients is the main figure of merit to evaluate

the geometrical deformations in the coil.
The sensitivity factors 𝑘𝑛 are computed from the nominal values

of the coil. In order to improve the accuracy of the measurement,
the sensitivity factors are usually calibrated in a homogeneous dipole
field and may thus include mechanical deformation. Using calibrated
sensitivity factors would, however, not be beneficial for our study.

4. Model validation

Because the mechanical model includes some hypotheses and empir-
ical parameters, an experimental validation of the mechanical model
is performed in two steps: first, the beam model is compared with
a production rotating-coil magnetometer, whose mechanics is exper-
imentally characterized. The beam model is then compared with a
finite-element model (FEM) of an existing shaft. The aim is to assess
if the resulting mechanical effects are consistent. So why not limiting
ourselves to the more complete FEM solution? The FEM model is
‘‘expensive’’ both in setup time as well as computation time com-
pared to the proposed beam model, which is thus also suitable for
a sensitivity analysis and optimization of the shaft design. Although
a final refinement of a rotating-coil design should always undergo a
proper FEM analysis, the aim of this paper is to identify the important
design and material parameters and to derive an analytical transfer
function between the shaft mechanics and the results of the magnetic
measurement.

The reference is the rotating-coil magnetometer shown in Fig. 4.
Table 1 lists its main properties. Material parameters are given by
the manufacturer, while the geometrical and inertial parameters are
calculated based on technical drawings. An equivalent mass density 𝜌
is calculated to include all the additional elements (like bars and joints)
in the shaft. The validity of this equivalent parameter is due to the
homogeneous distribution of these elements along the shaft. A shear
correction factor is obtained with a 2D numerical evaluation of the
cross-section using commercial software [16]. The results are 𝑘𝑥 = 0.69
and 𝑘𝑦 = 0.24. The shaft length is 𝐿 = 1.52m, the bearing supports add
masses of 𝑚1 = 0.58 kg, and inertias of 𝐽1 = 7.92 ⋅ 10−4 kgm2 in 𝑧s = 0,
and 𝑚2 = 0.68 kg and 𝐽2 = 7.42 ⋅ 10−4 kgm2 in 𝑧s = 𝐿. These parameters

re based on the design drawings.
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Fig. 4. The existing rotating-coil shaft of 𝐿 = 1.52m is used for the validation of the mechanical model. The shaft is made of two external half shells of diameter 𝐷 = 96mm,
n carbon fibre, fixing a Printed Circuit Board (PCB) of thickness 𝑡 = 3.7mm. The PCB board contains five induction coils for measuring quadrupoles (orange rectangles in the
ross-section view, identified by the letters A to E). Thirteen rigid bars are mounted inside the shaft in the direction of 𝑥s to prevent deformations in the cross-section plane. Their
ffect was computed in FEM to confirm the assumption of a rigid cross-section in the beam model.
Fig. 5. The vibrometer set-up, with its acquisition system (a) and detail of the elastic support of the shaft (b). The white ring next to the rubber bands is the bearing.
Table 1
Properties of the rotating-coil shaft LHCMMWEQ0489.

Param. 𝐸 𝐺 𝜌 𝐴 𝐼𝑥 𝐼𝑦 𝐼𝑡
Units GPa GPa kg/m3 cm2 cm4 cm4 cm4

CFRP 100 5 1550 3.55 33.7 33.7 67.3
FR4 20 9 1850 2.91 0.041 27.3 0.152
Av. 56 5.1 2892 6.46 60.1 69.8 120

(CFRP is Carbon fibre reinforced polymer, FR4 is the PCB resin, Av. denotes equivalent
shaft properties).

4.1. Experimental validation of the shaft mechanics

The validation of the mechanical model is performed in two steps,
involving both time-domain and frequency domain-signals for modal
5

Table 2
Coil parameters of LHCMMWEQ0489.

Coil n. Turns n. Coil start Coil end Spacing Coil width
𝑁𝑐 𝑁𝑡 𝑍1 𝑍2 𝑤𝑐 𝑊
5 10 0.1 m 1.416 m 0.02 m 0.0102 m

analysis [19,20]. In the first step, the shaft is suspended on rub-
ber bands that provide almost ideal elastic boundary conditions. The
second part of the test is performed with the shaft mounted on its
actual bearings, which aims at investigating the validity of the support
boundary conditions in the model.

As the shaft is not rotated during the tests, each plane is validated
independently by external excitation with an impact hammer (PCB
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Fig. 6. Transfer functions of two sample points due to hammer excitation, in +𝑥 and −𝑦 direction. The frequency range involves the two rigid body motions and the first three
bending modes. The driving point is 𝑧 = 1.50m (right).

Fig. 7. The shapes of the first four (damped) bending modes in 𝑦 direction. As the beam is almost symmetric, the modal shapes in 𝑥 direction are very similar. The bending
modes are shown for elastic (left) and bearing (right) supports. The deformation field is normalized for illustration purposes. The experimental values are in brackets.

6
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r

Fig. 8. Simulated flux measurement and spurious multipole content in an ideal quadrupole magnet, considering sag due to gravity. Rotating-coil shaft LHCMMWEQ0489. Top:
Absolute signals from the five coils. Middle: Error between quadrupole flux linkage and measurement in the main coil (A) affected by gravity. Bottom: Spurious normal and skew
multipole field errors. The coil sag mainly induces spurious skew dipole and sextupole components.
4
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086D20) using medium tips (−20 dB at 700 Hz) and hard tips (−20 dB
at 1050Hz). This ensures the presence of a low frequency input while
still exciting the first modes. In fact, for a field measurements, the most
critical spectrum is 0–30Hz.

The coil shaft is mounted on an optical table with a tuned mass-
damping system (Newport M-INT4). The measurement system is a 3D
vibrometer incorporating the acquisition system (Polytec PSV-400),
scanning 45 points on the shaft. Moreover, 4 points on the supports
are acquired to validate that its vibrations are negligible. At least six
correct2 impacts are taken per point and the coherence is calculated.
The focus is on bending modes, but the axial and torsional modes are
also recorded and may be of interest for further improvements of the
model.

For elastic supports, the experimental set-up is the one shown in
Fig. 5a, and b. The stiffness of the elastic support can be estimated
by rigid body modes, because the coil weight is known. This results
in 2 ⋅ 103 N∕m for 𝑘𝑡 and 2 ⋅ 102 N∕m for 𝑘𝑟. The transfer functions of
the sample points and modal shapes are obtained directly from the
vibrometer acquisition system and compared for both planes. Fig. 6
shows the responses of two points. Fig. 7 (left) shows the normalized
modal shapes for the first four bending modes in the 𝑦 direction. The
relative error on the natural frequencies for both directions is 0.013 ±
0.006.

The experimental set-up with the bearings is the same as for the
elastic supports. The shaft is now supported by its own bearings; the
white rings shown in Fig. 5b. The bearings are made from plastic and
their stiffness is estimated minimizing the error on the first natural
frequency. The stiffness are 5.5⋅106 N∕m for 𝑘𝑡,𝑥 and 4⋅106 N∕m for 𝑘𝑡,𝑦,
while the value of 𝑘𝑟 is negligible. The natural frequencies and modal
shapes are acquired and compared with the model. They are shown
in Fig. 7 (right). The relative error on the natural frequencies for both

2 Correct means that phenomena like double impacts are identified and the
elated measurements are excluded.
7

directions is 0.022 ± 0.028.

.2. Evaluating the effect on magnetic measurements

A numerical model in COMSOL Multiphysics 5.4 of the existing
haft is created using iso-perimetric, quadrilateral shell elements for
oth the carbon tube and the PCB. The choice of shell, rather than
olid elements, is motivated by the small thickness of the components.
umped masses and springs are added at the two ends, whose cross-
ection is assumed to be rigid. Moreover, the transversal bars are
odelled as rigid edges. The material properties are given in Table 1.

For the magnetic part of the model, the set of coil and shaft
arameters is given in Table 2. The model is validated assuming a
erfect quadrupole field described by the harmonic component 𝐵2(𝑟0).
ithout loss of generality, 𝑟0 is taken as the geometric centre of the
ain coil; 𝑟0 = 0.0403 m.

The shaft is assumed to be perfectly aligned inside the magnet,
ith no forces transmitted on the bearings. Eccentricity of the shaft

s negligible, thus only the gravity needs to be taken into account.
he voltage signals of all five coils are acquired independently. The
imulated results are shown in Fig. 8, a comparison between the
deal case, the analytical model, and the FEM simulation. The error
etween the non-perturbed measurement and the data extracted with
sagging shaft due to gravity is given for the main coil A. The small

ifferences between the analytical model and the FEM analysis are due
o micrometre deformations of the PCB, e.g., a small sag in the 𝑥𝑦
ross-section, that is not predicted by the analytical model. This effect
ould be modelled by superimposing the effect of a second beam, but a
roperly assembled rotating-coil can prevent this to happen. The FEM
odel includes the torsional dynamics and thus allows to verify the
ecoupling between the bending and torsion.

For the existing shaft, the main spurious harmonics by gravity
re the skew dipole and the skew sextupole. The main quadrupole
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Fig. 9. Simulated measurement of an ideal, prescribed quadrupole field, using a shaft under gravity and vibrations of the bearing at 𝑧 = 1.52. Top: Error between the ideal flux
and the measured flux linkage. A comparison with the numerical shell model is shown for the case of maximum vibration. Centre: Harmonic content of coil A, as function of
different vibration amplitudes 𝐴𝑣. Bottom: Harmonic content of coil A, as function of different vibration phases 𝜑.
Fig. 10. Simulated measurement of an ideal quadrupole field, using a shaft under gravity and vibrations of the bearing at 𝑧 = 1.52m of 50 μm at 𝜋∕4. Spurious field multipoles as
a function of the bucking ratio.
component is measured with a relative error of less than 10−4. This
is consistent with the observations published in [7].

5. Sensitivity analysis

The models can now be used with sufficient confidence for a sensi-
tivity analysis of the measurement uncertainty for the absolute signal
8

(coil A) and the multipole field errors in the compensated (bucked)
connection scheme of the coils.

5.1. Errors in single-coil measurements

The main effect, in addition to gravity, is the vibration of one
extremity, with a harmonic oscillation with an amplitude of up to
50 μm. It is introduced in the bearing coordinate frame at different
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spatial phases (0 for the 𝑥 axis and 𝜋∕2 for the 𝑦 axis). The results are
shown in Fig. 9 for the analytical beam model and the numerical FEM
shell model. The errors on the main field harmonics range between
−3 × 10−4 and 3 × 10−4 for 50 μm. The field harmonics most affected
by bearing vibration are the skew quadrupole and the octupole. These
two high order components arise from unequal spring constants in the
𝑥 and 𝑦 directions.

5.2. Effects of bucking

For the rotating-coil shaft LHCMMWEQ0489, the quadrupole buck-
ing scheme is 𝛷 = 𝛷𝐴 − 𝛷𝐵 − 𝛷𝐶 + 𝛷𝐷. This cancels out both the
dipole and quadrupole field components. The sensitivity analysis aims
at investigating the effects of a non-ideal bucking scheme (not exactly
identical coils and non-equidistant spacing). The effectiveness of the
compensation is expressed by the bucking factor:

𝐾𝑏 ∶=
𝐾𝑁,𝐴
𝐾𝑁,𝑏

, (25)

hich is the quotient of the sensitivity of coil A with respect to the main
ield component 𝑁 (𝑁 = 1 for the dipole, 𝑁 = 2 for the quadrupole,
tc.), by the sensitivity of the bucked combination of coils with respect
o the same component; for ideal bucking 𝐾𝑏 → ∞, while in practise,
actors around a few hundreds are an achievement. For a quadrupole,
or instance, 𝐾2,𝑏 = 𝐾2,𝐴−𝐾2,𝐵 −𝐾2,𝐶 +𝐾2,𝐷. To simulate the sensitivity
f the bucking scheme, a set of normally distributed deviations 𝛥𝑊 are
dded to the width 𝑊 of each coil. It is applied to the generic case of
ravity combined with a vibration of 50 μm at a spatial phase of 𝜋∕4.
ifferent bucking levels are evaluated, in particular 5, 50, 500, whose
𝑊 standard deviations are 2mm, 250 μm, 40 μm, respectively. Results
re given in Fig. 10, including the multipoles from the main coil A. The
esults show that bucking is effective in reducing the mechanical effects
n the measured, higher-order multipoles.

The sensitivity analysis proves that the rotating-coil performs well
n terms of mechanical effects. The mechanical dynamics introduces a
ew units in 10−4 of error in the measurements of the main component
sing coil A. The shaft is also suitable for the measurement of higher-
rder components with an uncertainty below one unit in 10−4 even
ith a low bucking ratio. This holds for the shaft under investigation,
hich is made of stiff materials and a large cross-section.

. Conclusions

Mechanical effects are the most critical source of measurement
ncertainty in the operation of a rotating-coil magnetometers. The
nalytical model presented in this paper describes the main dynamic
henomena related to rigid motion and bending, and allow the cal-
ulation of the affect on magnetic measurements. Experimental and
umerical validation proves the validity of the model in describing the
eal shaft mechanics, while the numerical validation proves the validity
f the simplifications.

The model allows to quantify parameters in the baseline construc-
ion techniques for rotating-coils. First, the model proofs the need for
chieving a good bucking ratio. The results confirm also the importance
f a good shaft support, in particular the bearings, in order to mitigate
ibrations on the shaft. Moreover, it is now possible to quantify how
he shaft geometry and materials impact the magnetic measurements,
nd to calculate the maximum level of vibrations still acceptable for
given measurement system. Because the model is solved in the time

omain, it is also possible to simulate transients and non-periodic loads.
The model is also relevant for the design of new shafts with stronger

emands on mechanical performance. For example, the model is now
dopted to the development of a rotating-coil system mounted on a
antilever frame that is fixed to a linear displacement stage. In this case

ven small vibrations will be amplified.
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