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Abstract Given a p-dimensional nonnegative, integral vector α, this paper char-
acterizes the convex hull of the set S of nonnegative, integral vectors x that is
lexicographically less than or equal to α. To obtain a finite number of elements in
S, the vectors x are restricted to be component-wise upper-bounded by an inte-
gral vector u. We show that a linear number of facets is sufficient to describe the
convex hull. For the special case in which every entry of u takes the same value
(n− 1) for some integer n ≥ 2, the convex hull of the set of n-ary vectors results.
Our facets generalize the known family of cover inequalities for the n = 2 binary
case. They allow for advances relative to both the modeling of integer variables us-
ing base-n expansions, and the solving of n-ary knapsack problems having weakly
super-decreasing coefficients.

Keywords convex hull, facets, knapsack problem

1 Introduction

Given two vectors α,u ∈ Z
p
≥0

, this paper computes the convex hull of the set of

vectors x ∈ Z
p
≥0

having x ≤ u and x lexicographically less than or equal to α.

Recalling that x is lexicographically less than or equal to α, denoted by x � α, if
either x = α or the first nonzero entry of x − α is negative, this paper provides
an explicit characterization of the convex hull of the set S, denoted by conv(S),
where

S ≡ {x ∈ Z
p
≥0

: x ≤ u, x � α}. (1)
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We make three assumptions, without loss of generality, followed by two remarks
relative to the form of (1). First, we assume that α ≤ u since, otherwise, if some
αj > uj , the problem reduces to finding lexicographic orderings over the first j− 1
entries only, as fixing xk = uk for all k ≥ j does not affect feasibility to (1). In
this case, feasibility relative to the last n− (j − 1) integral entries of x is achieved
by enforcing 0 ≤ xk ≤ uk for all k ≥ j. Second, we assume that u ∈ Z

p
>0

since
uj = 0 for some j fixes xj = 0 in all solutions. Third, we assume that α1 = u1

since every solution to (1) must have x1 ≤ α1. Relative to remarks, we first note
that the x ∈ Z

p
≥0

restrictions of (1) can be generalized to x ∈ Z
p,x ≥ ℓ for some

lower bounds ℓ ∈ Z
p. Here, a substitution of variables x′ = x − ℓ with u and α

adjusted to u′ = u − ℓ and α′ = α − ℓ, respectively, affords the convex hull via
x = x′ + ℓ. The first three assumptions are applicable to this transformed case so
that α ≤ u, u > ℓ, and α1 = u1. In addition, we need only consider those cases for
which ℓ ≤ α since if some ℓj > αj , the problem reduces to finding lexicographic
orderings over the first j − 1 entries of x. Our second remark is that the case
where x is required to be lexicographically greater than or equal to a given η, as
opposed to x � α, can be reduced to the one in the present study by noticing that
x � η ⇔ u− x � u− η. In this case, the first and third assumptions translate to
η ≥ 0 and η1 = 0, respectively, while the second assumption remains that u ∈ Z

p
≥0

.

Observe that for the special case in which each entry uj of u has uj = n − 1
for some integer n, the problem is that of computing the convex hull of the set of
n-ary vectors that is lexicographically less than or equal to α. Such sets S of (1)
have relevance in computing base-n expansions of integer variables. To see this,
suppose that we have a nonnegative integer variable y that is bounded above by
some scalar β, where np−1 ≤ β < np. Further suppose that the vector α ∈ Z

p
≥0

with

αj ≤ n−1 for all j is subsequently defined in terms of β so that β =
∑p

j=1 n
p−jαj ,

with u given by uj = n − 1 for all j (and u1 = α1 due to the third assumption
above). Then the n-ary expansion of y computed by the set:

T ≡







(x, y) ∈ Z
p
≥0

× R
1 : x ≤ u, y =

p
∑

j=1

np−jxj , y ≤ β







,

is equivalently expressed by the set:

W ≡







(x, y) ∈ R
p × R

1 : y =
p

∑

j=1

np−jxj , x ∈ S







.

Consequently, an explicit representation of conv(S) gives conv(T ), as:

conv(T ) = conv(W ) =







(x, y) ∈ R
p × R

1 : y =
p

∑

j=1

np−jxj , x ∈ conv(S)







.

Now, given α ∈ Z
p
≥0

and u ∈ Z
p
>0

with α ≤ u and α1 = u1, a vector x ∈ Z
p
≥0

with x ≤ u will have x ∈ S if and only if the following condition is satisfied:
for each i ∈ {2, . . . , p} with xi > αi, there must exist a j < i so that xj < αj .

Equivalently, we must have:

i−1
∑

j=1

(max{0, αj − xj}) ≥ 1 for all i ∈ {2, . . . , p} such that xi > αi. (2)
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Of course, inequality (2) is not needed for any i having αi = ui. Furthermore, for
the special case in which u = 1 and α is binary-valued so that each xi is restricted
to be binary, (2) simplifies to the minimal cover inequalities:

∑

j<i: αj=1

(1− xj) ≥ xi for all i ∈ {2, . . . , p} such that αi = 0. (3)

This special case of S having u = 1 and α binary-valued has been extensively
studied relative to both lexicographic orderings and specially-structured 0-1 knap-
sack polytopes having weakly super-decreasing coefficients. The works [2,3,5,8]
collectively characterize the set S, showing that the minimal cover inequalities of
(3), together with the bounding restrictions 0 ≤ x ≤ 1, are sufficient to define the
convex hull. A key observation is that inequalities (3) possess the “interval matrix”
(consecutive ones) property (see [7, page 544, Definition 2.2] or [10]). Moreover,
[1,6] describe the convex hull of the set of binary vectors that is lexicographically
lower and upper bounded by binary vectors.

This paper, which is an update of preliminary work found in [9], extends earlier
contributions relative to lexicographic upper bounds by allowing nonnegative in-
teger variables with general upper bounds. A recent paper [4] also considers these
more general bounds, and independently offers an alternate convex hull argument.
Our approach differs from this related work in that we identify and exploit a char-
acterization of the constraint matrix to obtain nonsingular linear transformations
between our spaces and known integral polytopes. As will be shown, the inequal-
ities and arguments needed to characterize conv(S), and consequently conv(W ),
are different from (3), but reduce to this simpler form when α ≤ u = 1.

2 Characterization of Valid Inequalities

Given α ∈ Z
p
≥0

and u ∈ Z
p
>0

with α ≤ u and α1 = u1, we begin by establishing

properties of inequalities of the form
∑p

j=1 γjxj ≤ β that are valid for S.

Lemma 1 Given any inequality of the form
∑p

j=1 γjxj ≤ β that is valid for S, the

inequality
∑p

j=1 max{0, γj}xj ≤ β is also valid for S.

Proof Consider any inequality of the form
∑p

j=1 γjxj ≤ β that is valid for S, and
having an index t with γt < 0. For each x̄ ∈ S, the vector x̂ defined in terms of x̄ by
x̂j = x̄j for all j 6= t and x̂t = 0 has x̂ ∈ S so that 0x̄t+

∑

j 6=t γj x̄j =
∑p

j=1 γj x̂j ≤ β.

⊓⊔

By virtue of the above Lemma, and since x ≥ 0, we henceforth assume that
γj ≥ 0 for all j. Notably, every valid inequality

∑p
j=1 γjxj ≤ β for S must have

β ≥
∑p

j=1 γjαj since α ∈ S. We direct attention to those inequalities with β =
∑p

j=1 γjαj . In fact, we will show that a family of p such inequalities, together with

the 0 ≤ x ≤ u restrictions, provides conv(S). Accordingly, consider Theorem 1
below.
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Theorem 1 Given α ∈ Z
p
≥0

and u ∈ Z
p
>0

with α ≤ u and α1 = u1, an inequality of

the form:

p
∑

j=1

γj(αj − xj) ≥ 0 (4)

with γj ≥ 0 for all j ∈ {1, . . . , p} is valid for S if and only if:

γj ≥

p
∑

k=j+1

γk(uk − αk) ∀ j ∈ {1, . . . , p− 1} such that αj 6= 0. (5)

Proof (Only if) Consider any inequality of the form (4) with γj ≥ 0 for all j ∈

{1, . . . , p} that is valid for S, and select any t ∈ {1, . . . , p − 1} having αt 6= 0. The
vector x̄ ∈ S given by x̄j = αj for j < t, x̄t = αt − 1, and x̄j = uj for j > t has:

γt +
p

∑

j=t+1

γj(αj − uj) ≥ 0

when inserted into (4), verifying (5).
(If) Consider any inequality of the form (4) with γj ≥ 0 for all j ∈ {1, . . . , p}

that satisfies (5). Arbitrarily select x̄ ∈ S. The proof is to show that x̄ satisfies
(4). If x̄ = α, then (4) is trivially satisfied. Otherwise, let t be the first entry of x̄
having x̄j 6= αj , so that x̄t < αt 6= 0 as x̄ ∈ S. Then:

p
∑

j=1

γj(αj − x̄j) = γt(αt − x̄t) +
∑

j>t

γj(αj − x̄j) ≥ γt +
∑

j>t

γj(αj − uj) ≥ 0,

where the equality results from x̄j = αj for all j < t, the left inequality follows
from the nonnegativity of γ, together with x̄t ≤ αt − 1 and x̄j ≤ uj for all j > t,

and the right inequality follows from (5). This completes the proof. ⊓⊔

Now consider a particular family of p inequalities of (4) that is defined relative
to (5) in the following manner. For each i ∈ {1, . . . , p} and each j ≤ i, let γij denote
that coefficient in inequality i associated with the expression (αj −xj), and set all
coefficients on expressions (αj − xj) with j > i to 0. Then, for each i, set γii = 1,
and recursively define the (i − 1) coefficients γij having j < i, proceeding from
j = i − 1 to j = 1, so that (5) is satisfied with equality when αj 6= 0 and γij = 0
when αj = 0. Summarizing, we have:

γij =























1 if j = i

0 if j < i, αj = 0
i

∑

k=j+1

γik(uk − αk) if j < i, αj 6= 0

∀ (i, j), i ≥ j. (6)

Construct a new set F by replacing the x � α restrictions in S of (1) by these
p inequalities to obtain:

F ≡







x ∈ Z
p
≥0

: x ≤ u,
∑

j≤i

γij(αj − xj) ≥ 0 for all i ∈ {1, . . . , p}







. (7)

Then we have the following result.
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Lemma 2 The sets S and F found in (1) and (7), respectively, have S = F.

Proof The containment S ⊆ F holds true since the p inequalities found within (7)
but not (1) are valid for S by Theorem 1. To show that F ⊆ S, consider any x̄ ∈ F.

If x̄ = α, then x̄ ∈ S. Otherwise, let t be the first entry of x̄ having x̄j 6= αj . Then:

αt − x̄t = γtt(αt − x̄t) =
∑

j≤t

γtj(αj − x̄j) ≥ 0,

where the first equality is due to the definition of γtt = 1 in (6), the second equality
results from αj = x̄j for all j < t, and the inequality follows from (7) with i = t.

Thus, x̄t < αt, and the proof is complete. ⊓⊔

Remark 1 Within (7), for each i such that αi = ui, we have γij = 0 for all j < i so
that the associated inequality reduces to the upper bounding restriction ui−xi ≥ 0.
This simplification is consistent with the observation that (2) is not needed when
αi = ui (provided that xi ≤ ui is enforced). As a consequence, each such inequality
∑

j≤i γij(αj − xj) ≥ 0, by assumption including that inequality having i = 1,
implies the associated upper bounding restriction on xi.

The below example illustrates the relationship between the sets S and F de-
scribed in Lemma 2 and Remark 1.

Example 1 Let p = 5 and α and u be defined so that αT = (3, 4, 1, 0, 2) and

uT = (3, 4, 5, 3, 4). The lower-triangular 5× 5 matrix







1 0 0 0 0
0 1 0 0 0
4 4 1 0 0
15 15 3 1 0
10 10 2 0 1






has the (i, j)th

entry recording γij from (6) for each (i, j), i ≥ j. The set F of (7) becomes, in
matrix notation:

F ≡











x ∈ Z
5
≥0 : x ≤ u,







1 0 0 0 0
0 1 0 0 0
4 4 1 0 0
15 15 3 1 0
10 10 2 0 1













(3 − x1)
(4 − x2)
(1 − x3)
(0 − x4)
(2 − x5)






≥







0
0
0
0
0

















,

which defines the same set of integral points x as S of (1). Since α1 = u1 = 3
and α2 = u2 = 4, the first and second inequalities enforce that 3 − x1 ≥ 0 and
4− x2 ≥ 0, respectively, as noted in Remark 1.

Because Lemma 2 established that S = F, it immediately follows that conv(S) =
conv(F ). We show in the next section that the polytope obtained by relaxing the
x ∈ Z

p
≥0

restrictions in F of (7) to x ∈ R
p
≥0

to obtain:

F ≡







x ∈ R
p
≥0

: x ≤ u,
∑

j≤i

γij(αj − xj) ≥ 0 for all i ∈ {1, . . . , p}







(8)

has all integer extreme points, giving us that F = conv(F ) so that F = conv(S).
Before concluding this section, we provide in Lemma 3 below an alternate

description of the coefficients γij defined in (6). This description will allow us to
characterize inverses of matrices whose entries consist of special subsets of the
scalars γij ; these inverses are a key ingredient to our convex hull argument found
in the proof of the upcoming Theorem 2.
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Lemma 3 The coefficients γij defined in (6) are equivalent to:

γij =































1 if j = i

0 if j < i, αj = 0

(ui − αi)
i−1
∏

k=j+1:
αk 6=0

(1 + uk − αk) if j < i, αj 6= 0
∀ (i, j), i ≥ j, (9)

where

i−1
∏

k=j+1:
αk 6=0

(1 + uk − αk) = 1 for products over null sets.

Proof The proof is to show for each (i, j), j < i, αj 6= 0, that the values of γik for
k ∈ {j + 1, · · · , i} defined in (6) have:

i
∑

k=j+1

γik(uk − αk) = (ui − αi)
i−1
∏

k=j+1:
αk 6=0

(1 + uk − αk), (10)

as the left expression is γij by (6). Arbitrarily select an i ≥ 2 and accordingly define
J ≡ {j : j ≤ i− 1 and αj 6= 0} to denote the set of indices less than i with positive
αj . (By assumption, α1 6= 0 so J 6= ∅.) Arrange the elements of J = {j1, · · · , j|J|}

in increasing order so that 1 = j1 < · · · < j|J|. When j = j|J|, we have:

i
∑

k=j|J|+1

γik(uk − αk) = ui − αi = (ui − αi)
i−1
∏

k=j|J|+1:

αk 6=0

(1 + uk − αk),

where the first equation follows from (6) since γik = 0 for all k ∈ {j|J| + 1, · · · , i−
1} and since γii = 1, and where the second equation trivially follows from the
definition within Lemma 3 that products over null sets equal to 1. Then (10)
holds for the chosen i when j = j|J|, with γij|J|

= (ui−αi), and so we consider the
case where i has |J | ≥ 2.

When |J | ≥ 2, then (6) enforces:

γijp − γijp+1
= γijp+1

(ujp+1
− αjp+1

) for each jp ∈ J, p 6= |J |,

or, equivalently, that:

γijp = γijp+1
(1 + ujp+1

− αjp+1
) for each jp ∈ J, p 6= |J |. (11)

Then we obtain from (11), via induction on p with γij|J|
= (ui − αi), that (6)

enforces:

γijp = (ui − αi)

|J|
∏

k=p+1

(1 + ujk − αjk) for each jp ∈ J, p 6= |J |. (12)
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Consequently,

i
∑

k=jp+1

γik(uk − αk) = γijp = (ui − αi)
i−1
∏

k=jp+1:
αk 6=0

(1 + uk − αk) for each jp ∈ J, p 6= |J |,

(13)

with the first equation following from (6), and with the second equation following
from (12) since αk = 0 for all k ∈ {jp + 1, · · · , i − 1} with k /∈ J. Thus, for every
i ≥ 2, equation (10) holds for each j > i with αj 6= 0, as every such j has j = jp
for some p ∈ {1, · · · , |J |}. This completes the proof. ⊓⊔

3 Convex Hull Representation

To establish that F = conv(S), we begin with Lemma 4 below that identifies the
inverse of a specially-structured n × n lower-triangular matrix. The form of this
inverse will coincide with a subset of the coefficients γij found in the inequalities
of (8) in such a manner that each row corresponds to a select inequality. As will
be seen in the proof of upcoming Theorem 2, we need not consider the trivial case
where n = 1.

Lemma 4 Consider any n×n lower-triangular matrix A, n ≥ 2, having ones along the

diagonal, and any n− 1 scalars r2, · · · , rn such that the (i, j)th entry aij has aij = ri
for all (i, j), j < i. Then the inverse of A, denoted by A−1, is that lower-triangular

matrix whose (i, j)th entry a−1
ij is given by:

a−1
ij =



































0 if j > i

1 if j = i

−ri if j = i− 1

−ri

i−1
∏

k=j+1

(1− rk) if j ≤ i− 2

∀ (i, j). (14)

Proof The matrix A−1 is trivially lower-triangular with ones along the diagonal.
The proof is to show, for all (i, j), j < i, that the dot product of row i of A with
column j of A−1 equals 0; that is, that:

i
∑

k=j

aika
−1
kj = 0 ∀ (i, j), j < i. (15)

From the definition of A and (14), we have that:

i
∑

k=j

aika
−1
kj = ri(1) + (1)(−ri) = 0 ∀ (i, j), j = i− 1,

so that (15) holds true for all (i, j), j = i− 1. To show that (15) holds true for all
(i, j), j ≤ i− 2, and complete the proof, it is sufficient to show that:

p
∑

k=j

a−1
kj =

p
∏

k=j+1

(1− rk) ∀ (p, j), j ≤ p− 1. (16)
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Then we will have:

i
∑

k=j

aika
−1
kj =

i−1
∑

k=j

aika
−1
kj + aiia

−1
ij = ri

i−1
∑

k=j

a−1
kj + a−1

ij

= ri

i−1
∏

k=j+1

(1− rk)− ri

i−1
∏

k=j+1

(1− rk) = 0 ∀ (i, j), j ≤ i− 2,

where the first and fourth equations are algebra, the second is by definition of A,

and the third is by (14) and by (16) with p = i−1. To establish (16), observe that
these equations hold true for all (p, j), j = p − 1, because a−1

(p−1)(p−1)
+ a−1

p(p−1)
=

1 − rp from (14). Using induction, assume that (16) holds true for all (p, j), j ∈

{p − 1, · · · , p − t}, for some t ∈ {1, · · · , p − 2}, and consider (16) for j = p − t − 1.
We have:

p
∑

k=j

a−1
kj =

p−1
∑

k=j

a−1
kj + a−1

pj =
p−1
∏

k=j+1

(1− rk) + [−rp

p−1
∏

k=j+1

(1− rk)] =
p
∏

k=j+1

(1− rk),

where the first and third equations are algebra and the second equation is due to
the inductive hypothesis and the definition of a−1

pj in (14) with j ≤ p − 2. This
completes the proof. ⊓⊔

The example below illustrates this Lemma.

Example 2 Let n = 4 and (r2, r3, r4) = (0,−4,−2). Then the lower-triangular ma-

trices A and A−1 are given by: A =





1 0 0 0
0 1 0 0
−4 −4 1 0
−2 −2 −2 1



 and A−1 =





1 0 0 0
0 1 0 0
4 4 1 0
10 10 2 1



.

Remark 2 below relates the matrix A−1 of Lemma 4 to the set F of (8).

Remark 2 Given any k ∈ {2, · · · , p}, the inequalities:

∑

j≤i:
αj>0

γij(αj − xj) ≥ 0 for all i ∈ {1, · · · , k − 1} such that αi > 0, and

∑

j<k:
αj>0

γkj(αj − xj) + (αk − xk) ≥ 0,

found within F of (8), and expressible in matrix notation as:

Γ (α′ − x
′) ≥ 0, (17)

have, by (9) of Lemma 3, the matrix Γ of the form A−1 of Lemma 4, where the
inequality associated with each i has ri = (αi−ui). Here, the notation α′ and x′ is
used to denote those reduced versions of α and x, respectively, that include only
the components αj and xj for which j < k and αj > 0, or for which j = k. Such a
representation is possible since, for each i ≤ k, we have that γij = 0 for all j < i

with αj = 0 by (9) (and equivalently by (6)).
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Example 3 Reconsider Example 1, and let k = 5. Since α4 = 0, we have (α′)T =
(α1, α2, α3, α5) = (3, 4, 1, 2) and (x′)T = (x1, x2, x3, x5), so that (17) takes the
form:





1 0 0 0
0 1 0 0
4 4 1 0
10 10 2 1









(3 − x1)
(4 − x2)
(1 − x3)
(2 − x5)



 ≥





0
0
0
0



 ,

with:

Γ
−1 =





1 0 0 0
(α2 − u2) 1 0 0
(α3 − u3) (α3 − u3) 1 0
(α5 − u5) (α5 − u5) (α5 − u5) 1



 =





1 0 0 0
0 1 0 0
−4 −4 1 0
−2 −2 −2 1



 ,

as in Example 2.

We now present our main result.

Theorem 2 Given any p ≥ 1, and any α ∈ Z
p
≥0

and u ∈ Z
p
>0

with α ≤ u and

α1 = u1, the sets F and F defined in (7) and (8), respectively, have conv(F ) = F .

Proof The proof is to show that an arbitrarily-selected extreme point x̂ of the
polytope F is integral. Let K ⊆ {1, · · · , p} denote the set of indices k having
αk = uk and

∑

j≤k γkj(αj − x̂j) = 0. Remark 1 gives us that x̂k = uk for all
k ∈ K. Consequently, if

∑

j≤k γkj(αj − x̂j) > 0 for all k /∈ K, so that none of
the remaining p − |K| structural inequalities in (8) are binding, we have that
every entry of x̂ realizes a value at either its lower or upper bound, establishing
the result. Otherwise, select that index t /∈ K having

∑

j≤t γtj(αj − x̂j) = 0 and
∑

j≤k γkj(αj − x̂j) > 0 for all k /∈ K, k > t, so that:

αt < ut and
∑

j≤t

γtj(αj − x̂j) = 0. (18)

In other words, t is the largest index i not in the set K such that the inequality
∑

j≤i γij(αj − xj) ≥ 0 of (8) is satisfied with equality at x̂. Observe that t ≥ 2
because α1 = u1 (which will prove consistent with n ≥ 2 in Lemma 4). Form a
reduced version of F by removing the last (p− t) inequalities of (8), and by setting
inequality t to equality as in (18), to obtain:







(x, s) ∈ R
p
≥0

× R
t−1
≥0

: x ≤ u,
∑

j≤i

γij(αj − xj) = si, i < t,
∑

j≤t

γtj(αj − xj) = 0







,

(19)

where we have introduced a vector of slack variables s ∈ R
t−1
≥0

. Because the only

possible constraints in the removed (p − t) inequalities of (8) that are binding at
x̂ are also enforced by x ≤ u of (19), we have that x̂ is an extreme point of (19).
Thus, the proof reduces to showing that the polytope (19) has all integral extreme
points. Now, since no variable xi, i > t, appears in any of the equality restrictions
of (19), every extreme point to (19) must have every such xi at one of its bounds.
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Thus, we can eliminate all such xi from (19), so the proof is to show (with the
truncated vector x) that:







(x, s) ∈ R
t
≥0 × R

t−1
≥0

: x ≤ u,
∑

j≤i

γij(αj − xj) = si, i < t,
∑

j≤t

γtj(αj − xj) = 0







(20)

has all integral extreme points.

Permute the rows and columns of the equations of (20) so that the equations
having αi = 0 appear at the bottom, and so that the variables xi having αi = 0
appear at the right. Upon so doing, the equations of (20) take the matrix form:





L 0 0

γ′
t 1 0

B 0 I









(α′ − x′)
(αt − xt)

−x′′



 =





s′

0
s′′



 , (21)

using the following notation. Let τ ≥ 1 denote the number of indices i having
αi > 0, i < t. The first column of the partitioned matrix of (21) corresponds to
the τ variables xi having αi > 0, i < t, so that L is the τ × τ lower-triangular
matrix with ones along the diagonal associated with the equations having αi >

0, i < t, γ′
t is the 1 × τ row vector associated with equation t, and B is the

t − (τ + 1) × τ matrix associated with the equations having αi = 0, i < t. In
this manner, the vector (α′ − x′) is associated with the first τ entries of (α − x)
having αi > 0, i < t. The second and third columns of the partitioned matrix are
associated with the expression (αt−xt) and the t−(τ+1) entries of (α−x) having
αi = 0, i < t, respectively, so that the vector −x′′ represents these last t− (τ + 1)
expressions. Then the vectors s′ and s′′ represent the nonnegative slack variables
on the first and last families of constraints, respectively. The matrix I and the
matrices 0 denote the suitably-dimensioned identity matrix and matrices of all
zeroes, respectively.

Remark 2 with k = t gives us that the (τ+1)×(τ+1) submatrix

[

L 0

γ′
t 1

]

of (21)

takes the form A−1 of Lemma 4, with ri = αi − ui for all i < t having αi > 0, and
with rt = αt − ut. Consequently, we can equivalently rewrite the first τ + 1 rows
of (21) by left-multiplying the corresponding lower-triangular matrix A by these
rows. Moreover, given any row q of the matrix B, say bq, corresponding to some
q < t with αq = 0, we have by (6) that only the first nq entries of bq have nonzero
values, where nq is the number of indices i having αi > 0 and i < q. Construct the

(nq + 1) × (nq + 1) submatrix of (21) given by

[

Lq 0
b′q 1

]

, where Lq consists of the

first nq rows and nq columns of L, and where b′q consists of the first nq entries of
bq. Then, for each such bq, Remark 2 with k = nq + 1 gives us that this matrix
is invertible, with Lemma 4 establishing that the last row of the inverse matrix
consists of [−uq, · · · ,−uq, 1]. Thus, for any such bq, we can add the scalar multiple
−uq of the first nq rows of L to the associated row bq within B of (21) to reduce
bq to a row of zeroes (as every entry in these nq rows of L that is not found within
Lq must be 0 by (6)). Upon performing these two sets of operations, the below
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three families of equations result:

xi =αi + (ui − αi)









∑

j<i:
αj>0

sj









− si for all i = 1, · · · , t− 1 such that αi > 0, (22)

xt =αt + (ut − αt)









∑

j<t:
αj>0

sj









, and (23)

xi =ui









∑

j<i:
αj>0

sj









− si for all i = 2, · · · , t− 1 such that αi = 0. (24)

Then (20) becomes:
{

(x, s) ∈ R
t
≥0 × R

t−1
≥0

: x ≤ u, (22), (23), (24)
}

. (25)

Since αt < ut by (18), equation (23) in (25) is equivalent to:

∑

j<t:
αj>0

sj +
ut − xt
ut − αt

= 1. (26)

To show that (25) has all integral extreme points and complete the proof, we
first show that the set (27) below obtained from (25) by removing (22) and all
associated variables x′, and by replacing (23) by (26), has all integral extreme
points.

{

(xt,x
′′, s) ∈ R

1 × R
t−(τ+1)
≥0

× R
t−1
≥0

: αt ≤ xt ≤ ut, x
′′ ≤ u

′′, (24), (26)
}

(27)

Here, we have used in (27) that αt ≤ xt for (xt, s
′) satisfying s′ ≥ 0 and (26).

Toward this end, let:

yi =

{

xi

ui
if αi = 0

xt−αt

ut−αt
if i = t

for all i such that αi = 0 or i = t, (28)

so that the inverse transformation is given by:

xi =

{

uiyi if αi = 0

yt(ut − αt) + αt if i = t
for all i such that αi = 0 or i = t. (29)

Then the substitution (28) transforms (27) to:














































(y, s′) ∈ R
t−τ
≥0

× R
τ
≥0

: y ≤ 1,

yi ≤
∑

j<i:
αj>0

sj for all i = 2, · · · , t− 1 such that αi = 0,

yt =
∑

j<t:
αj>0

sj















































, (30)
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where we have removed the nonnegative slack variables s′′ by writing (24) as
inequality restrictions. As each variable within s′ of (30) satisfies the “consecutive
ones” property ([7, page 544, Definition 2.2] or [10]) mentioned in Section 1, and
as each variable within y appears exactly once, exclusive of the bounds 0 ≤ y ≤ 1,

the polytope (30) has all binary extreme points. The inverse transformation (29)
then gives us that (27) has all integral extreme points. Finally, consider (25) and
observe that equations (22) of (25) uniquely define each variable xi of x

′ in terms
of s′, and these xi values satisfy 0 ≤ x′ ≤ u′ for every s such that (xt,x

′′, s) is
feasible to (27), as every such xi realizes one of the three values (αi − 1), αi, or
ui at each extreme point. This conclusion follows because the yt =

∑

j<t:
αj>0

sj , y

binary, s′ ≥ 0, extreme point characterization of (27) permits at most one entry
of s′ to equal to 1, and forces the remaining entries to equal to 0. The proof is
complete. ⊓⊔

In addition to characterizing the set F of (8) as having all integral extreme
points, the above proof provides insights into the polyhedral structure of (20) and
(25), as well as F itself. First, the bounds 0 ≤ x′ ≤ u′ can be deleted in both (20)
and (25), as demonstrated at the conclusion of the proof. Second, when α > 0,

there are no equations present within (24), so that t = τ + 1 and (30) reduces to:















(yt, s
′) ∈ R

1
≥0 × R

t−1
≥0

: yt ≤ 1, yt =
∑

j<t:
αj>0

sj















,

which has the t extreme points:











s′1
s′2
.
.
.
s′τ
yt











=





























1
0

.

.

.
0
1











,











0
1

.

.

.
0
1











, · · · ,











0
0

.

.

.
1
1











,











0
0

.

.

.
0
0





























. (31)

Then the yt =
xt−αt

ut−αt
transformation of (28), together with equations (22) of (25),

define (20) and (25) as the (t − 1)-dimensional simplex in R
t whose t extreme

points are given by:











x1

x2

x3

.

.

.
xt











=





























α1 − 1
u2

u3

.

.

.
ut











,











α1

α2 − 1
u3

.

.

.
ut











, · · · ,











α1

α2

.

.

.
αt−1 − 1

ut











,











α1

α2

.

.

.
αt−1

αt





























.

These extreme points are consistent with the result in the proof that, at every
extreme point to (25), each variable xi of x′ must realize one of the three values
(αi − 1), αi, or ui. Third, when αi = 0 for some i, the associated xi must have
xi = 0 or xi = ui at every extreme point to F . For the case in which i > t, the
initial part of the proof establishes this result via (19), while for the case in which
i < t, the transformation (29) gives this same result due to the binary nature of
the extreme points to (30).

Theorem 2 and its proof are demonstrated in Example 4 below.
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Example 4 As in Example 1, let p = 5, αT = (3, 4, 1, 0, 2), and uT = (3, 4, 5, 3, 4).
The corresponding set F of (8) is given by:

F =











x ∈ R
5
≥0 : x ≤ u,







1 0 0 0 0
0 1 0 0 0
4 4 1 0 0
15 15 3 1 0
10 10 2 0 1













(3 − x1)
(4 − x2)
(1 − x3)
(0 − x4)
(2 − x5)






≥







0
0
0
0
0

















.

Suppose that the fifth inequality is satisfied with equality at some extreme point x̂
so that t = 5 as found in (18), with τ = 3, consistent with the proof of Theorem 2.
The resulting system (20), upon including the slack variables s ∈ R

4
≥0

as in (20),
can be expressed in matrix notation, as in (21), by:











(x, s) ∈ R
5
≥0 × R

4
≥0 : x ≤ u,







1 0 0 0 0
0 1 0 0 0
4 4 1 0 0
10 10 2 1 0
15 15 3 0 1













(3 − x1)
(4 − x2)
(1 − x3)
(2 − x5)
−x4






=







s1
s2
s3
0
s4

















. (32)

Adding −u4 = −3 times the sum of the first three equations to the fifth, and
then multiplying the first four equations by the inverse matrix Γ−1 of Example 3,
transforms (32) to the form of (25) given below:











(x, s) ∈ R
5
≥0 × R

4
≥0 : x ≤ u,







x1

x2

x3

x5

x4






=







3
4
1
2
0






+







−1 0 0 0 0
0 −1 0 0 0
4 4 −1 0 0
2 2 2 −1 0
3 3 3 0 −1













s1
s2
s3
0
s4

















. (33)

The system (27) with x′′ = x4 takes the form:

{

(x5, x4, s) ∈ R
1 × R

1
≥0

× R
4
≥0

: 2 ≤ x5 ≤ 4, x4 ≤ 3,

x4 = 3(s1 + s2 + s3)− s4,

s1 + s2 + s3 +
4−x5

2 = 1
}

.

(34)

The transformation y4 = x4

3 and y5 = x5−2
2 of (28) changes (34), upon removing

the nonnegative slack variable s4, to the form:
{

(y, s′) ∈ R
2
≥0 × R

3
≥0 : y4 ≤ 1, y5 ≤ 1, y4 ≤ s1 + s2 + s3, y5 = s1 + s2 + s3

}

,

(35)

as found in (30). This last set has the “consecutive ones” property, so that it has
all binary extreme points. The extreme points are readily verified to be:







y4

y5

s1
s2
s3






=

















0
0
0
0
0






,







0
1
1
0
0






,







1
1
1
0
0






,







0
1
0
1
0






,







1
1
0
1
0






,







0
1
0
0
1






,







1
1
0
0
1

















,

which, via the inverse transformation x4 = 3y4 and x5 = 2y5 +2 of (29), gives the
extreme points of (34) as:







x4

x5

s1
s2
s3






=

















0
2
0
0
0






,







0
4
1
0
0






,







3
4
1
0
0






,







0
4
0
1
0






,







3
4
0
1
0






,







0
4
0
0
1






,







3
4
0
0
1

















.
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Then, by (33), the extreme points to (32) in terms of (x1, x2, x3, x4, x5) are:







x1

x2

x3

x4

x5






=

















3
4
1
0
2






,







2
4
5
0
4






,







2
4
5
3
4






,







3
3
5
0
4






,







3
3
5
3
4






,







3
4
0
0
4






,







3
4
0
3
4

















.

We conclude this section with a final example that considers the set F of (8)
when u is the p-dimensional vector of ones and α ∈ Z

p is a binary vector. Thus, this
example constructs the convex hull of a special instance of S in (1) relative to the
set of binary vectors that is lexicographically less than or equal to α. This special
case having u = 1 was studied in [3,5,6]. Notable simplifications to Theorem 2 for
this case are: all coefficients γij are 0 or 1 by (6) and (9), L in (21) is an identity
matrix due to the conditions of Remark 1 being satisfied for all i having αi = 1, γ′

t

in (21) consists of all ones by (6) and (9) since the constraint index t of the proof
must have αt = 0 by (18) and since the first τ rearranged variables have αi = 1,
and the transformations of (28) and (29) set yi = xi for all i such that αi = 0 or
i = t.

Example 5 Let p = 5, αT = (1, 0, 1, 1, 0), and uT = (1, 1, 1, 1, 1). The set F of (8)
is given by:

F =











x ∈ R
5
≥0 : x ≤ 1,







1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 1 1 1













(1 − x1)
(0 − x2)
(1 − x3)
(1 − x4)
(0 − x5)






≥







0
0
0
0
0

















,

where 1 ∈ R
5 denotes the vector of ones. Suppose that the fifth inequality is

satisfied with equality at some extreme point x̂ so that t = 5 as found in (18),
with τ = 3. System (20), expressed using (21), becomes:











(x, s) ∈ R
5
≥0 × R

4
≥0 : x ≤ 1,







1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 1 1 0
1 0 0 0 1













(1 − x1)
(1 − x3)
(1 − x4)
−x5

−x2






=







s1
s3
s4
0
s2

















. (36)

Adding −u2 = −1 times the first equation to the fifth, and then multiplying (as
per Lemma 4 and Remark 2 with r2 = r3 = 0 and r4 = −1) the first four equations

by





1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1





−1

=





1 0 0 0
0 1 0 0
0 0 1 0
−1 −1 −1 1



 , transforms (36) to the form of (25) given by:











(x, s) ∈ R
5
≥0 × R

4
≥0 : x ≤ 1,







x1

x3

x4

x5

x2






=







1
1
1
0
0






+







−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
1 1 1 −1 0
1 0 0 0 −1













s1
s3
s4
0
s2

















. (37)

Then (27) with x′′ = x2 takes the form:

{

(x5, x2, s) ∈ R
1 × R

1
≥0

× R
4
≥0

: 0 ≤ x5 ≤ 1, x2 ≤ 1,

x2 = s1 − s2,

s1 + s3 + s4 + (1− x5) = 1} .

(38)
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The transformation y2 = x2 and y5 = x5 of (28) changes (38), upon removing the
nonnegative slack variable s2, to the form:

{

(y, s′) ∈ R
2
≥0 × R

3
≥0 : y2 ≤ 1, y5 ≤ 1, y2 ≤ s1, y5 = s1 + s3 + s4

}

, (39)

as found in (30). This last set has the binary extreme points given by:







y2

y5

s1
s3
s4






=

















0
0
0
0
0






,







0
1
1
0
0






,







1
1
1
0
0






,







0
1
0
1
0






,







0
1
0
0
1

















.

The inverse transformation x2 = y2 and x5 = y5 of (29) gives the extreme points
of (38) to be:







x2

x5

s1
s3
s4






=

















0
0
0
0
0






,







0
1
1
0
0






,







1
1
1
0
0






,







0
1
0
1
0






,







0
1
0
0
1

















.

Then (37) gives the extreme points to (36) in terms of (x1, x2, x3, x4, x5) as:







x1

x2

x3

x4

x5






=

















1
0
1
1
0






,







0
0
1
1
1






,







0
1
1
1
1






,







1
0
0
1
1






,







1
0
1
0
1

















.

4 Conclusions and Extensions to Integral Knapsack Polytopes

This paper provides an explicit algebraic description of the convex hull of bounded,
nonnegative integer vectors that are lexicographically less-than-or-equal-to a given
vector. The number of required inequalities is linear in the number of vector en-
tries. This work generalizes related results of [2,3,5,8] that consider, in different
contexts, similar characterizations for binary vectors.

Building upon an observation of [6] that relates lexicographic orderings of bi-
nary variables with 0-1 knapsack polytopes having “weakly super-decreasing” co-
efficients, we conclude this paper by identifying the convex hull of certain specially-
structured integral knapsack polytopes. A set of scalars a1, a2, · · · , ap is said to be
weakly super-decreasing if:

aj ≥

p
∑

i=j+1

ai for each j = 1, · · · , p− 1. (40)

Consider a binary knapsack polytope:

BKP (x) ≡







x ∈ Z
p
≥0

: x ≤ 1,

p
∑

j=1

ajxj ≤ b







, (41)

where the coefficients aj are weakly super-decreasing. Select the largest scalar
b′ ≤ b such that there exists an x̂ ∈ Z

p
≥0

, x̂ ≤ 1, with b′ =
∑p

j=1 aj x̂j , and let α = x̂.
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(Two possible such vectors x̂ can exist and, if so, choose the lexicographically
larger.) Then a special (one-sided) case of [6] rewrites the polytope (41) as:

BKP (x) =
{

x ∈ Z
p
≥0

: x ≤ 1, x � α
}

, (42)

so that (42) with x ∈ Z
p
≥0

and x � α replaced by x ∈ R
p
≥0

and minimal cover

inequalities of the form (3), respectively, gives the convex hull of (41) and (42).
Section 3 allows us to generalize this result to knapsack polytopes having

bounded integer variables. As in (1), let u ∈ Z
p
≥0

denote a vector of upper bounds

on x ∈ Z
p
≥0

. Define scalars a1, a2, · · · , ap to be “weakly super-decreasing relative
to u” if:

aj ≥

p
∑

i=j+1

aiui for each j = 1, · · · , p− 1, (43)

so that (40) is that special case of (43) obtained by fixing u = 1. Now, consider
an integer knapsack polytope:

IKP (x) ≡







x ∈ Z
p
≥0

: x ≤ u,

p
∑

j=1

ajxj ≤ b







, (44)

where the coefficients aj satisfy (43). Again select the largest scalar b′ ≤ b such
that there exists a x̂ ∈ Z

p
≥0

with b′ =
∑p

j=1 aj x̂j , but this time allow x̂ ≤ u. (As

before, if two such vectors x̂ exist, choose the lexicographically larger.) Then, by
setting α = x̂, we can rewrite (44) as:

IKP (x) =
{

x ∈ Z
p
≥0

: x ≤ u, x � α
}

, (45)

so that the set F of (8) gives, via Theorem 2, the convex hull of (44) and (45).

Example 6 Consider the integer knapsack polytope in p = 5 variables having uT =
(3, 4, 5, 3, 4) given by:

{

x ∈ Z
5
≥0 : x ≤ u, 480x1 + 96x2 + 16x3 + 4x4 + x5 ≤ 1842

}

,

so that b′ = b = 1842 and αT = (3, 4, 1, 0, 2), with the coefficients (a1, a2, a3, a4, a5) =
(480, 96, 16, 4, 1) weakly super-decreasing relative to u. Thus the vectors α and u

are as given in Example 1. Here, the aj were chosen to have a5 = 1 and the
four inequalities of (40) satisfied with equality. The inequalities below, taken from
Example 1, define the convex hull of this polytope:











x ∈ R
5
≥0 : x ≤ u,







1 0 0 0 0
0 1 0 0 0
4 4 1 0 0
15 15 3 1 0
10 10 2 0 1













(3 − x1)
(4 − x2)
(1 − x3)
(0 − x4)
(2 − x5)






≥







0
0
0
0
0

















.
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