
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5987  | https://doi.org/10.1038/s41598-021-85350-y

www.nature.com/scientificreports

Heart rate variability 
analysis for the identification 
of the preictal interval in patients 
with drug‑resistant epilepsy
Adriana Leal1*, Mauro F. Pinto1, Fábio Lopes1, Anna M. Bianchi2, Jorge Henriques1, 
Maria G. Ruano1,3, Paulo de Carvalho1, António Dourado1 & César A. Teixeira1

Electrocardiogram (ECG) recordings, lasting hours before epileptic seizures, have been studied in the 
search for evidence of the existence of a preictal interval that follows a normal ECG trace and precedes 
the seizure’s clinical manifestation. The preictal interval has not yet been clinically parametrized. 
Furthermore, the duration of this interval varies for seizures both among patients and from the 
same patient. In this study, we performed a heart rate variability (HRV) analysis to investigate 
the discriminative power of the features of HRV in the identification of the preictal interval. HRV 
information extracted from the linear time and frequency domains as well as from nonlinear dynamics 
were analysed. We inspected data from 238 temporal lobe seizures recorded from 41 patients with 
drug‑resistant epilepsy from the EPILEPSIAE database. Unsupervised methods were applied to 
the HRV feature dataset, thus leading to a new perspective in preictal interval characterization. 
Distinguishable preictal behaviour was exhibited by 41% of the seizures and 90% of the patients. Half 
of the preictal intervals were identified in the 40 min before seizure onset. The results demonstrate the 
potential of applying clustering methods to HRV features to deepen the current understanding of the 
preictal state.

Epileptic patients suffering from drug-resistant (or medically intractable) epilepsy (DRE) have their daily lives 
disrupted by the occurrence of sudden seizures. These patients, representing 30% of epileptic patients, do not 
benefit from anti-epileptic drug  delivery1–3, encouraging the development of seizure-controlling methodologies. 
A solution involving the integration of seizure prediction models into a warning device could allow for the mini-
mization of possible injuries and anxiety levels resulting from the unpredictability of epileptic  seizures2–4. Envi-
sioning such a solution, several studies have presented seizure prediction approaches designed to capture preictal 
electroencephalogram (EEG) patterns reflecting the transition from the normal brain state (interictal) to a state 
of hypersynchronous neural activity (ictal)5,6. Typically, most of the published seizure prediction approaches are 
based on supervised learning techniques that require the presence of labels for each epoch: interictal, preictal 
and ictal. Hence, the correct estimation of these brain states may impact the design of seizure prediction models.

However, the effective estimation of the preictal interval is still an open question. Although there is clini-
cal evidence of the existence of this interval, it has not yet been associated with any recurrent pattern, and no 
consensus has been reached on its clinical  definition2–4,7. Although no widely accepted evidence of the preictal 
interval has been presented to date, widespread confidence in its existence is suggested by the predictability of 
 seizures3,6–8. In most of the published EEG-based seizure prediction studies, the lack of clinical knowledge has 
been overcome by using a fixed preictal interval, typically ranging from 2 to 90  min2. Additionally, a few studies 
have compared the performance of models for different discrete preictal intervals, ranging from 2 to 240  min9–17. 
In most of these studies, the preictal interval leading to the best performances ranged from 28 to 45 min (on 
average for all patients)10–14. However, some authors have reported optimal performance using the maximum 
value of the preictal interval considered (40 or 60 min)11,13,15. Such an outcome might suggest that this brain 
state may last for more than one hour. Clear differences in the durations of the preictal interval among different 

OPEN

1University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of 
Informatics Engineering, Coimbra, Portugal. 2Politecnico di Milano, Department of Electronics, Information and 
Bioengineering, Milan, Italy. 3University of Algarve, Department of Electronics and Informatics Engineering, 
Faculty of Science and Technology, Faro, Portugal. *email: aleal@dei.uc.pt

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-85350-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5987  | https://doi.org/10.1038/s41598-021-85350-y

www.nature.com/scientificreports/

patients and even from seizure to seizure for the same patient have also been reported, therefore suggesting the 
existence of a seizure-specific preictal  profile10,11,13.

Briefly, the supervised prediction methodologies developed to date perform an “empirical search” by testing 
different integer preictal durations and then selecting the duration that corresponds to the best model perfor-
mance. This approach is highly dependent on accurate labelling. Consequently, it is becoming evident that the 
correct estimation of the preictal period (location and duration before seizure onset) may lead to enormous 
benefits in the development of supervised seizure prediction algorithms, as more accurate data labelling can be 
used in the training  phase3,18. Given this, unsupervised methodologies may provide a significant contribution to 
the characterization of the preictal interval, potentially addressing the preictal variability seen among patients 
and among seizures in the same patient.

Additionally, non-neurological preictal alterations have also been reported in the literature. In fact, epileptic 
seizures have implicit manifestations in other body functions in addition to the explicit brain manifestations 
captured by EEG. The occurrence of these events is often associated with dysfunction of the autonomic nervous 
system (ANS), which is reflected in the output of both the parasympathetic and sympathetic system responses 
to cardiorespiratory function. Given the anatomic proximity of the ANS structures to the temporal lobe, car-
diac parameters such as heart rate (HR) and heart rate variability (HRV) have been reported to capture heart 
rhythm oscillations that are associated with epileptic discharges typically occurring in patients with temporal lobe 
 epilepsy19. The emergence of such extracerebral alterations across the pre-, post- and ictal  periods20–23, concurrent 
with EEG profile changes, has prompted the acquisition of other biosignals, namely, electrocardiograms (ECGs), 
for performing seizure  prediction24. This growing interest by the scientific community can be explained by the 
advent of wearable devices that allow the continuous acquisition of physiological signals in a more comfort-
able and user-friendly mode for the patient that does not require the preparation of a cumbersome EEG setup 
and minimizes discomfort during long-term  monitoring23,24. In the more than 30 years of research on HR and 
HRV changes before and during epileptic events, a majority of studies have compared HR and HRV parameters 
obtained for discriminating healthy controls and epileptic patients or interictal vs ictal intervals. Additionally, 
HRV measurements have been used as the standard parameter when studying cardiac autonomic  control8. More 
recently, great interest has been expressed in HRV modulation across interictal and preictal intervals. Two studies 
documented HRV differences between seizure-free periods and up until 30 min of assumed preictal  activity25,26. 
Four recent HRV-based studies reported promising results regarding the feasibility of seizure prediction using 
HRV  features27–30. These comprehensive studies reported fixed preictal intervals of a maximum of 5 and 15 min 
and achieved similar results.

Based on the above, the present study was designed to provide a deeper understanding of the preictal period 
using easy-to-record information from HRV. First, we extracted an HRV-feature dataset from 5-min windows 
located in the 240 min before seizure  onset13,25. Second, we applied clustering methodologies to all three-feature 
combinations from the extracted 32 HRV features to identify and characterize a seizure-specific preictal interval 
in the 120 min preceding seizure.

Methods
Study assumptions. This study was conducted assuming that (i) seizures separated by at least 240 min were 
considered independent events; (ii) although 240 min of data were analysed, only the cardiac changes observed 
within the 120 min before the seizure discharge were influenced by that event, with the data in the 240–120-min 
interval before seizure onset considered the minimum data required to represent interictal state; (iii) the search 
for the preictal interval was undertaken for solutions comprising two clusters; (iv) given the higher probability 
of a preictal interval lasting less than an interictal interval, the smaller cluster found in each two-cluster solution 
represented the preictal interval; and (v) this interval may not occur strictly near the seizure onset but could be 
captured as an ECG-related event eventually preceding an EEG seizure onset. A visual representation of these 
assumptions is depicted in Fig. S1 in Supplementary Section 1 online.

Database. The dataset used in this study was selected from the European Epilepsy Database, also known 
as the EPILEPSIAE database (www.epile psy-datab ase.eu) and built by the FP7 EPILEPSIAE project (www.
epile psiae .eu). The database contains long-term and simultaneous EEG and ECG recordings of DRE patients 
undergoing pre-surgical monitoring at the epilepsy centres of Epilepsiezentrum, Universitätsklinikum Freiburg 
(Germany), Centro Hospitalar e Universitário de Coimbra (Portugal), and Hôpital de la Pitié-Salpêtrière, Paris 
(France)31,32. The dataset also contains a vast amount of information regarding patient etiologies and medication 
and seizure characteristics (including classification, lobe localization, vigilance state, EEG and clinical onset and 
sleep quality). Data acquisition and consequent research use were approved by the local ethics committees of 
the three hospitals involved in the database development (Ethik-Kommission der Albert-Ludwigs-Universität 
Freiburg; Comité consultatif sur le traitement de l’information en matière de recherche dans le domaine de la 
santé, Hôpital de la Pitié-Salpêtrière; and Comité de Ética do Centro Hospitalar e Universitário de Coimbra). 
Informed consent was obtained from patients and the parents and/or legal guardians of patients under 18 years 
of age. All methods were performed following the relevant guidelines and regulations.

From the EPILEPSIAE database, a group of patients with temporal lobe epilepsy (TLE), was selected for analy-
sis in the present study (details for each patient can be found in Supplementary Section 2 online). This choice 
was based on three facts: (i) TLE is the most frequent type of focal epilepsy in  adults33; (ii) the temporal lobe 
is the predominant lobe of seizure onset in EPILEPSIAE; and (iii) disturbances in the ANS manifest predomi-
nantly in patients suffering from seizures originating from the temporal lobe. Most of the structures responsible 
for autonomic cardiovascular regulation are localized to the same cranial  region23. Additionally, the dataset 
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comprises data from 41 DRE patients (24 males; age range: 13-67 years; mean age: 41± 16 years) collected at the 
Epilepsiezentrum, Universitätsklinikum Freiburg. ECG data were acquired at a sampling frequency of 256 Hz.

To investigate the existence of a preictal period before seizure onset, only the four hours (240 min) preceding 
the seizure event were analysed. In this way, 150 seizures separated by less than 240 min were discarded from a 
total of 388 seizures, leading to the 238 seizures considered in this study.

Extracting HRV from the ECG. Figure 1 presents the flow diagram of the proposed methodology. First, 
the ECG was inspected by identifying the R-peaks and clean segments. Afterwards, the intervals between sub-
sequent R-peaks (or RRIs) were obtained, yielding the RRI series. The latter was then edited by identifying and 
correcting abnormal RRIs. The last step consisted of computing the HRV features. Each aforementioned step is 
thoroughly described in Supplementary Sections 3 and 4 online.

Linear time- and frequency-domain and nonlinear measures were extracted from 5-min ECG windows (see 
Table 1)34–36. Supplementary Section 4 online includes additional details on how each feature was obtained. 
From the feature engineering step (see Fig. 1), a three-dimensional matrix, M ∈ R

3 , with dimensions F × S ×W 
was obtained, with f = 1 : F, F = 32 features; s = 1 : S, S = 238 seizures; w = 1 : W , W = 2768 5-min 
98.33% overlapping windows.

Searching for preictal patterns using unsupervised learning. The existence of a preictal interval, 
characterized by changes in HRV in the two-hour period before seizure onset, was investigated using unsuper-
vised learning. The screening of these 120-min intervals was performed according to the indicators from the lit-
erature addressed in the Introduction. In addition to the preictal interval duration, the present study also aimed 
to elucidate the localization of this interval. In other words, we hypothesize that the preictal interval might not 
manifest for all features at the same time but rather at different timestamps for distinct groups of features. Addi-
tionally, assuming the existence of a preictal brain state in different time windows for different groups of features, 
this state may only manifest over an interval separated from the seizure onset instead of strictly near the seizure 
event. This means that a cerebral trigger might be issued as an indication of the transition from the normal brain 
state (interictal) to an “abnormal, hypersynchronous ictal”  state5, which in turn can induce an abnormal state in 
the ANS. This trigger may be responsible for a short-term alteration in the feature values and may be expressed 
minutes to hours before seizure onset. Additionally, when translating this knowledge to the implementation of 
seizure prediction models, we might ideally expect the preictal interval to be located in the time preceding the 
seizure prediction horizon (SPH), a minimum interval separating alarm onset from seizure onset. Given the 
potential to integrate the preictal interval in the seizure prediction methodology to allow for the patient or the 
caregiver to prepare for an upcoming seizure, optimally, the preictal interval should be found before this SPH 
 interval37. In this work, an SPH of 10 min was considered suitable for realistic application.

The aforementioned hypotheses are reflected in the analysis of the results obtained after performing clustering 
on the feature dataset, as described hereafter. The clustering task was conducted for all three-feature combina-
tions from among the F = 32 feature dataset:
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Figure 1.  Block diagram of the proposed methodology.

Table 1.  HRV-derived features.

inearity/Domain Features

Linear/Time domain NN50, pNN50, SDNN, RMSSD, SDSD, RRMean, RRMin, RRMax, RRVar

Linear/Frequency domain Total power, VLF power, LF power, HF power, LF norm, HF norm, LF/HF

Nonlinear
SD1  , SD2 , SD1/SD2 , DFA α1 , DFA α2 , ApEn, SampEn, LLE, CD

RQA (REC, L, TT, DET, LAM, ENT, L max)
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c = 1 : C, C = 4960 combinations of three features resulting from CF
3 .

In this way, it might be possible to understand which features are more frequently present among the best 
clustering solutions and therefore, by preserving the original semantics of the feature dataset, provide a simple 
interpretation of the clustering results. Additionally, we maximized the probability of discovering interesting 
solutions by combining features three-by-three instead of only examining the two-dimensional feature space.

The following clustering methods were applied to each of the 4960 three-dimensional feature spaces: 

1. K-means clustering (KM), a partitioning method typically successful in detecting spherically shaped and 
well-separated clusters.

2. Agglomerative hierarchical clustering (AH) is often used to identify structured clusters. Here, the distance 
between clusters was measured using the Ward method and the Euclidean distance  metric38.

3. Density-based spatial clustering of applications with noise (DBSCAN) is considered appropriate for identify-
ing structured clusters while distinguishing noisy samples or outliers. Two parameters should be defined: the 
minimum number of samples in clusters, MinPts, and a radius Euclidean distance, ε , that allows establish-
ment of a neighbourhood among  samples39,40. Here, MinPts was set to six, which is twice the dimensionality 
of the feature space according to Sander et al.41. Four different values of ε were tested after data normalization 
and analysis of the k-distance plot (resulting in DBSCANε , with ε = 1, 2, 3 and 4)39.

4. Expectation-maximization (EM) clustering using Gaussian mixture models (GMMs)40, applied by assuming 
clusters follow a Gaussian distribution and are therefore described by a mean and standard deviation (both 
parameters estimated using the EM algorithm).

Selecting clustering solutions. We assume that the preictal interval can be represented by a single cluster, clearly 
separated from the remaining samples. This is the reason why we (i) defined k = 2 for the KM, AH and GMM 
methods and (ii) searched for DBSCAN clustering solutions with two clusters. Additionally, solutions containing 
noisy samples, sometimes returned by DBSCAN, were discarded from the analysis. When the assumed preictal 
interval, corresponding to the smaller of the two clusters with the lowest number of samples (see Fig. 2), was 
found to contain less than 1.58 min of information (less than 20 samples), it was also considered noise and there-
fore excluded from the  results17. The clustering solutions previously obtained were then evaluated using Dunn’s 
index (DI)40. Clustering solutions representing compact and well-separated clusters were characterized by high 
DI values. A minimum DI value was defined to accept a given clustering  solution42. Specifically, if a solution 
presented a DI equal to or above 0.15 (defined according to Mahallati et al.42 and by visual inspection of solutions 
across all patients), then it was assumed to identify a preictal interval. With this strategy, the initial set of 4,960 
clustering solutions, inspected for each seizure and clustering method, was drastically reduced by considering 
the aforementioned criteria for accepting solutions (see algorithm 1 in Supplementary Section 5 online). Specifi-
cally, only 0.92% of the solutions were selected in this step.

Selecting clustering solutions based on time continuity and duration. Given that different feature combinations 
and different clustering methods could yield more than one clustering solution, the solutions selected in the 
previous step were differentiated by using two indicators: time continuity and duration (i.e., number of samples). 
The preictal interval was then classified (see algorithm 2 in Supplementary Section 5 online) as continuous if the 
samples in the smaller cluster were sequential over time and discontinuous otherwise.

The first criterion, time continuity, was considered by reasoning that a given clustering solution represented 
a preictal interval occurring continuously over time. If no time continuity was observed for the smaller cluster, 
it might indicate the existence of “jumps” from a preictal interval to an interictal state evolving towards seizure 
onset. In addition, solutions containing a continuous smaller cluster were selected over discontinuous clusters 
since a continuous preictal interval meant that a clearer and permanent change occurred before seizure onset.

When more than one solution was found (after selection by time continuity) and when those solutions com-
prised smaller clusters of different sizes, the solution for which the smaller cluster had the highest number of 
samples was chosen, as it provided more statistical confidence in the presence of a preictal state.

Stratifying and selecting clustering solutions based on time continuity and duration. Finally, another analysis 
was performed to provide quantitative information regarding the location of the assumed preictal interval (see 
algorithm 3 in Supplementary Section 5 online). To this end, the temporal location of the samples defining the 
smaller cluster was registered and stratified into the following intervals: 120 to 80 min, 80 to 40 min and 40 to 
0 min before seizure onset. This analysis enabled an understanding of how many clustering solutions comprise 
a smaller cluster (assumed as the preictal interval) starting in one of the three 40-min intervals near the seizure.

The MATLAB source code developed for this study is publicly available on GitHub via https ://githu b.com/
adria nalea l/HRV-Preic tal-Ident ifica tion-Epile psy.git.

Results
Figure 2 depicts an example of the clustering solutions returned for patient 5. Evidence of a preictal interval was 
found for three of the four seizures; the interval was continuous over time for the second and fourth seizures. 
For this patient’s first seizure, it was not possible to find clustering solutions complying with the conditions of the 
first selection process. In other words, for this seizure, there were no clustering solutions comprising a smaller 
cluster with a minimum of 20 non-noisy samples (or lasting for at least 1.58 min) and a cluster validity index, 
in this case DI, over 0.15.

https://github.com/adrianaleal/HRV-Preictal-Identification-Epilepsy.git
https://github.com/adrianaleal/HRV-Preictal-Identification-Epilepsy.git
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Selecting clustering solutions based on time continuity and duration. In Fig. 3, we analyse the 
clustering results obtained by selecting solutions according to time continuity and duration for the smaller clus-
ter. Solutions were accepted for a total of 97 seizures out of 238 (41%). Additionally, 35 of the represented solu-
tions contain a smaller cluster that occurred or just ended in the SPH interval of 10 min before seizure onset. In 
other words, an assumed preictal interval was found before the SPH interval for 62 seizures (26%).

According to Fig. 3, the smaller cluster can be characterized in terms of the start time before seizure onset, 
duration, clustering methods used in its generation and time continuity. In terms of time continuity, there were 
52 solutions that were continuous over time (54%). Additionally, the continuous smaller clusters were found 
to last from 1.58 min (20 samples) to 35.83 min (431 samples), whereas the duration of discontinuous clusters 
usually fell in the range of 1.58 min (20 samples) from 80.75 min (970 samples). Among the clustering methods, 
DBSCAN3 , DBSCAN2 and GMM returned the vast majority of accepted clustering solutions (34%, 22% and 
19%, respectively). Finally, the start time of the smaller cluster demonstrates high variability. Therefore, to better 
quantify the start time of the smaller clusters, we performed stratification of the solutions into three intervals 
and present the results in the following section.

Stratifying and selecting clustering solutions based on time continuity and duration. The 
clustering results were subsequently stratified into three 40-min-long intervals occurring before seizure onset 
(120–80, 80–40 and 40–0). The results, presented in Fig. 4, indicate that for 89 seizures out of 238 (37%), it was 
possible to find clustering solutions comprising a smaller cluster suggestive of the existence of a preictal interval. 
In fact, there were 15 solutions found in the previous subsection that could not be stratified into the intervals 
considered. However, for seven of those seizures, other accepted solutions were found to fit in those intervals. 
These solutions contained a smaller cluster that was discontinuous and/or had a shorter duration than the solu-
tion selected in the previous subsection. For the remaining eight seizures, no clustering solution fit in the 40-min 
intervals.

Whereas no clustering solutions were found for any of the seizures from four patients, there were 12 patients 
for whom it was possible to determine solutions for 50% or more of the seizures. Additionally, 40–0-min intervals 

Figure 2.  Representation of clustering solutions for patient 5. The smaller clusters (identified with dashed lines) 
found for the second and fourth seizures are continuous, lasting for 3.50 and 5.42 min (or comprising 43 and 
66 samples), respectively. The smaller cluster for the third seizure is discontinuous and lasts for 1.83 min (i.e., 
23 samples). The three accepted solutions (for the last three seizures) correspond to Dunn’s index (DI) values 
of 0.1555, 0.1576 and 0.1585, respectively. No clustering solutions were accepted for the first seizure; a solution 
containing noisy samples was randomly selected and is represented here.
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Figure 3.  Results for the selection of clustering solutions based on time continuity and duration. The smaller 
cluster from the selected two-cluster solutions found for 97 seizures was characterized. The colours in the figure 
indicate (a) the smaller cluster start time before seizure onset (0 min); (b) the duration of the smaller cluster; (c) 
the clustering methods returning the clustering solutions; and (d) the continuity over time of the smaller cluster 
(54% were continuous clustering solutions). See the colour scale for each subfigure. The x-axis and y-axis in all 
plots contains the patient and seizure indexes, respectively. As an example, the clustering solution accepted for 
seizure 1 of patient 24 was returned by DBSCAN2 and DBSCAN3 and comprises a continuous smaller cluster 
that starts 84 min before seizure onset and lasts for 5.67 min.
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were more prominent (found for 47 seizures, 53%) than the other two intervals (120–80-min intervals found for 
21 seizures, 28%, and 80–40-min intervals found for 25 seizures, 24%).

The results were cross-checked with metadata provided by the EPILEPSIAE database, including the four 
variables characterizing each patient: sex (male and female), epileptic focus lateralization (right, left and both 
hemispheres), age at hospital admission and age at the time of the first epileptic seizure (onset age). However, 
no correlation was found between our results and these variables, which, for the case of lateralization, is in line 
with the  literature22,23.

The metadata characterizing each seizure were also analysed (see Fig. 5a–c). Seizures that occurred in the 
awake stage as well as focal onset impaired awareness (FOIA) seizures were predominant among the accepted 
clustering solutions. However, seizures occurring when the patient was awake were the most frequent among all 
238 seizures (76%). The same occurred with FOIA seizures, which were the most frequent type of seizure (50%). 
When interpreting the results according to the seizure onset time, no strong conclusion could be drawn, apart 
from a slight tendency for the seizures to occur early in the morning among those clustering solutions that were 
accepted, specifically for the 40–0-min interval before seizure.

The smaller clusters observed among the two-cluster non-noisy solutions (assumed to represent preictal 
intervals) were further characterized in terms of the most frequent features and clustering methods, as shown 
in Fig. 5d,f, respectively. All the obtained solutions were also analysed in terms of the duration and continuity 
of the smaller cluster (see Fig. 5e,g, respectively). Here, it is important to note that the numbers on the axis for 
(d–g) do not add up to the number of seizures for which several clustering solutions were accepted (as occurs 
in (a–c)). In fact, for the same seizure, it was possible to find clustering solutions complying with the preictal 
interval requirements for different (i) 40-min intervals (see patients 7, 24, 28 and 32 in Fig. 4), (ii) clustering 
methods and (iii) feature combinations.

Regarding the features most frequently appearing in the accepted clustering solutions, it is clear that time-
domain features such as RRMax, RRMin and RRMean are strongly predominant. Additionally, LF/HF, pNN50, 
NN50 and RQA ENT also stand out. It is also worth noting the differences between the profile presented for 
40–0 min intervals and that for the other two 40-min intervals, as clearly manifested, for example, in features 
RRMean, RRMin, RRMax and pNN50. Such differences might indicate the occurrence of HRV changes over 
time that are captured by different groups of features in distinct time intervals. The fact that the mean, minimum 
and maximum of the RR intervals were often observed among the accepted clustering solutions may indicate the 
presence of ECG confounds that are not related to the occurrence of epileptic seizures.
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Figure 4.  Results of the stratification and selection of clustering solutions based on time continuity and 
duration. (a) Information regarding the existence of clustering solutions for each patient (x-axis) and each 
seizure (y-axis, in chronological order) for the three different intervals considered: 120–80, 80–40 and 40–0 min 
before seizure onset (occurring at 0 min). There were four seizures (third seizure in patient 7, fifth seizure in 
patient 24, first seizure in patient 28, and second seizure in patient 32) for which clustering solutions were found 
in more than one interval. (b) The percentage of seizures for which at least one clustering solution was found is 
depicted for each patient and each 40-min interval considered. Female patients are indicated by an asterisk. It is 
important to note that when clustering solutions were found in more than one interval, the interval nearer the 
seizure was considered for the computation of the percentage for each patient in this subfigure.
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Figure 5.  Characterization of the clustering results for each 40-min interval. (a) Seizure vigilance state (A: 
awake, 1: sleep stage I, 2: sleep stage II, R: REM sleep), (b) seizure type (FOA: focal onset aware, FOIA: focal 
onset impaired awareness, FBTC: focal to bilateral tonic-clonic, UC: unclassified), (c) seizure onset time, (d) 
most frequent features, (e) duration of the smaller cluster (minutes), (f) most frequent clustering methods and 
(g) time continuity of the smaller cluster (“All continuous” was assigned when all solutions found for that seizure 
were continuous and “None continuous” if no solution was continuous). nCS indicates the number of clustering 
solutions found in each interval, including when more than one solution was found for each seizure.
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Concerning the tested clustering methods, it can be seen that methods GMM and DBSCAN (applied with 
ε = 2 and ε = 3 ) returned the majority of accepted solutions, therefore indicating that these methods are most 
suitable for searching for preictal intervals among clustering solutions of diverse shape and duration.

With regard to the duration of the smaller cluster, no one cluster duration demonstrates clear prevalence, 
which means that when assuming a preictal interval corresponding to this smaller cluster, it is likely to have 
a duration that lasts from 1.58 min (20 samples) up to a maximum of 35.83 min (431 samples). It is worth 
noting that this limit applies for the 40–0-min interval, whereas a maximum number of samples correspond-
ing to 9.08 min (110 samples) and 5.42 min (66 samples) was returned for 120–80- and 80–40-min intervals, 
respectively. It can also be observed that the duration of the clustering solutions was found to range from 1.58 to 
9.08 min for 100% of the clustering solutions found for the 120–80- and 80–40-min intervals and in 58% of the 
solutions fitting 40-0-min intervals. These results further support the hypothesis that different seizures, possibly 
associated with the same patient, are characterized by different preictal  dynamics3,18.

Finally, a larger percentage of discontinuous clustering solutions was found for the 40–0-min interval than 
for the other intervals. This indicates that cardiac events triggered as a result of an oncoming seizure that are 
located in the 40 min before the seizure most likely do not occur continuously but rather as a sequence of heart 
rhythm alterations occurring towards the seizure onset. It is worth mentioning that the noise detection method 
may introduce missing values responsible for pseudo-discontinuities.

Discussion
This study is a proof of concept that is, to the best of our knowledge, the first attempt to apply unsupervised 
learning methods to HRV-derived features in characterizing the preictal interval. Evidence of this interval was 
found in 41% of the seizures analysed and in 37 out of 41 patients. In addition, preictal intervals ending before 
the seizure prediction horizon of 10 min were found for 26% of the seizures as well as a total of 54% continuous 
preictal intervals. Furthermore, 53% of the preictal intervals occurred in the 40 min before seizure onset, which 
is in line with the mean duration and location of preictal intervals leading to the best seizure prediction perfor-
mances in previous  studies9–15. For the majority of the clustering solutions, the duration of the preictal interval 
ranged from approximately 2 to 9 min. The results also show the high variability of this interval both between 
and within patients, reinforcing the need for patient-specific approaches in treating  epilepsy3,18.

With regard to the most relevant features identified in this study, there was a clear prevalence of time-domain 
features such as RRMax, RRMin and RRMean along with a mild presence of LF/HF, pNN50, NN50 and RQA 
ENT among the accepted clustering solutions. These results are aligned with those presented in two HRV-based 
seizure prediction  studies28,30. Behbahani et al.30 reported RRMean, LF/HF and SD1/SD2 as the features capturing 
most changes in the preictal state. They developed a seizure prediction model using an adapted decision thresh-
old method and a preictal interval of 5 min. Billeci et al.28 proposed a seizure prediction model based on HRV 
features, using a preictal interval of 15 min and at least 50 min of interictal data. To the best of our knowledge, to 
date, this is the only study presenting a comprehensive analysis of an HRV feature dataset in terms of the number 
and importance of each of those features in distinguishing interictal from preictal epileptic stages. In fact, after 
applying a feature selection method, the authors found that features obtained from the time (RRMean, pNN50) 
and frequency (HF/LF) domains, together with nonlinear measures (RQA LAM, HF power and coefficient of 
SampEn), were relevant in characterizing a preictal interval of 15 min.

While identifying a preictal stage in 41% of seizures is not sufficient for developing a seizure prediction model, 
we did not expect to observe cardiac changes for all  seizures3,8,10. It might not even be possible to find preictal 
patterns in electrographic data, as reported by Bandarabadi et al.10. In that study, an optimal preictal period was 
found for 67% of the seizures using a method based on amplitude distribution histograms and spectral features 
extracted from EEG  data10. In sum, monitoring autonomic changes might prove useful in seizure prediction 
only for some patients or even for specific seizures recorded for the same  patient3.

Additionally, the results reported herein should be understood in light of the limitations of our study. Namely, 
the assumptions regarding the search for the preictal interval, taken for the sake of finding acceptable solutions, 
may have made our unsupervised approach not completely unsupervised. The analysis of 240 min of ECG data 
may also weaken confidence in the existence of a sufficient amount of interictal cardiac screening. However, in 
addition to the two studies in the literature reporting the EEG and ECG analysis of this time  interval13,25, the vast 
majority of supervised studies in the literature indicate that the preictal interval is located within an hour before 
the seizure  onset10–15. Accordingly, we found that more than 53% of seizures manifested preictal HRV changes 
in the 40–0-min interval. As a result, we consider that a representative interictal interval was analysed for each 
seizure, simultaneously allowing a fast computation of the results. Accordingly, it is important to highlight that 
new studies are required to confirm the existence of such intervals in certain seizures using HRV data. In fact, 
new research on both cardiac and brain information can uncover the types of seizures for which pre-seizure 
changes are common. We also encourage new endeavours in the unsupervised characterization of the preictal 
interval, as we believe this new perspective has the potential to reveal key aspects related to neurophysiological 
knowledge of the preictal state.

Two of the previously addressed aspects establish future directions for the presented work. Specifically, the 
additional information regarding cardiac preictal changes could improve seizure prediction methodologies, 
particularly in the context of multimodal approaches. Future research will consist of applying the methodol-
ogy described herein to the EEG recordings of the same group of patients to validate the results for the preictal 
interval found by ECG analysis. In this way, it will be possible to overcome our current main limitation, i.e., 
validation of the origin of the cardiac changes seen over the 240 min of data. Performing an unsupervised 
search of the preictal interval on EEG data could make it possible to discard potential confounders present in 
the ECG and EEG signals and increase confidence in the identified preictal intervals. In addition to assessing 
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the neurological condition of the patient, an EEG analysis may also allow the identification of artefacts (e.g., 
muscular artefacts). This information can be used to eliminate confounding factors for the unsupervised preictal 
interval search in ECG. For instance, muscular artefacts may result from walking or talking and may be associ-
ated with an alteration of the heart rhythm. In sum, the characterization of the preictal interval based on EEG 
and ECG will yield new labels for the preictal interval, which will afterwards be integrated into data fusion and 
seizure-specific prediction methodologies. The final results are expected to contribute to the field of epilepsy in 
terms of the design of prospective seizure prediction studies, recognized in the epilepsy field as a path leading 
to the validation of the clinical applicability of prediction  models3.

Ultimately, the evidence of preictal changes may enable the prediction of epileptic seizures sufficiently early 
to allow the patient to prepare for the upcoming seizure, seek a safe location to experience the seizure and avoid 
negative social exposure during seizure occurrence. Moreover, as the field of epilepsy progresses, the feasibility 
of seizure prediction might lead to the development of new strategies for therapeutic treatment, such as closed-
loop electrical stimulation, enabling seizure control. Considering the path to such clinical applications, further 
studies are required to address this work’s limitations regarding the analysis of data acquired during pre-surgical 
monitoring. Even though we are aware of the influence of alterations of medication on the ANS and, therefore, 
on the ECG, we believe that the seizure-specific approach taken in this study allows a normalization of the 
medication effect at the individual level.
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