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To meet the challenges posed by future generations of massively parallel super-

computers, a reformulation of the dynamical core for the Met Office’s weather and

climate model is presented. This new dynamical core uses explicit finite-volume type

discretizations for the transport of scalar fields coupled with an iterated-implicit,

mixed finite-element discretization for all other terms. The target model aims to

maintain the accuracy, stability and mimetic properties of the existing Met Office

model independent of the chosen mesh while improving the conservation properties

of the model. This paper details that proposed formulation and, as a first step towards

complete testing, demonstrates its performance for a number of test cases in (the

context of) a Cartesian domain. The new model is shown to produce similar results

to both the existing semi-implicit semi-Lagrangian model used at the Met Office and

other models in the literature on a range of bubble tests and orographically forced

flows in two and three dimensions.
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1 INTRODUCTION

The dynamical core of a weather and climate prediction

model is responsible for simulating those fluid dynamical

aspects that are resolved on the mesh that is chosen for the spa-

tial discretisation. The governing fluid dynamical equations

are well known and presented in section 2. The principal

properties required of a dynamical core are the accuracy,

numerical stability and efficiency with which those equations

are numerically approximated (e.g. Lauritzen et al., 2011

gives a discussion of various such aspects). The current trend

of supercomputer architectures is towards a greatly increasing

number of processors, together with an increasingly com-

plex hierarchy of heterogeneous processors and memories.

In terms of the efficiency of a dynamical core, this trend

shifts interest from optimizing the number of calculations

towards optimizing the management of memory and commu-

nications between processors (Lawrence et al., 2017). This

has led to a renewed interest in the choice of mesh used and

in particular to a desire, for those still using it, to move away

from a latitude–longitude mesh, (Staniforth and Thuburn,

2012). However, as noted by Staniforth and Thuburn (2012),

the latitude–longitude mesh confers a number of advantages

over many of the alternative meshes. The challenge then

is to use spatial discretizations that retain the same accu-

racy and stability on the alternative meshes as obtained with

latitude–longitude meshes.

The mixed finite-element approach of Cotter and Ship-

ton (2012); Cotter and Thuburn (2014) and Thuburn and

Cotter (2015) is attractive as it achieves numerical consis-

tency without relying on the orthogonality of the mesh. Those

authors focused on the shallow-water equations and devel-

oped a scheme that shares many of the beneficial properties

of the C-grid finite-difference scheme, in particular good

wave dispersion properties together with the necessary condi-

tions to avoid spurious computational modes. This approach

is very general in terms of the order of accuracy; arbitrarily

high-order schemes can be straightforwardly defined. In line
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with most current dynamical cores, here only second-order

accuracy for the non-transport aspects (i.e. those aspects prin-

cipally responsible for wave propagation) is sought. Therefore

the lowest-order version of the mixed finite-element scheme

is used here but extended to the three-dimensional Euler

equations (section 4). This is achieved by extending the hier-

archy of finite-element spaces to include the particular tem-

perature space proposed by Guerra and Ullrich (2016); Natale

et al. (2016) and Melvin et al. (2018). At lowest order, this

space resembles a finite-difference Charney–Phillips stag-

gering of temperature. In particular it gives a finite-element

scheme that has good wave dispersion properties for ver-

tically propagating waves, as well as having the necessary

conditions to avoid spurious computational modes in three

dimensions.

A critical component of a weather and climate prediction

system is the numerical scheme used for the transport of

scalar quantities, e.g. the semi-Lagrangian scheme (Staniforth

and Côté, 1991) has proven to be a very effective scheme

and is used by many operational weather and climate pre-

diction centres. However, an important weakness of virtually

all such schemes is that they do not conserve the quantity

they transport. Here the aim is to retain the good properties

of the semi-Lagrangian scheme, namely an upwind scheme

with small dispersive errors and scale-selective damping and

with flexibility in the order of the scheme, but to addition-

ally provide a flux-form scheme, at least for the density

field, and hence exact conservation. Since the lowest-order

finite-element scheme is second-order, this means using a

transport scheme that is separate from the rest of the dynami-

cal core (as is the case generally for most models and in partic-

ular for semi-implicit semi-Lagrangian schemes). Whilst the

transport scheme could be a finite-element scheme, here (fol-

lowing Thuburn and Cotter, 2015) a finite-volume scheme is

used (presented in section 5) as that would seem a straight-

forward way of retaining the desired properties. Specifically a

method of lines approach is used in which third-order upwind

polynomial reconstructions are coupled with a third-order

Runge–Kutta temporal discretization.

The temporal discretization scheme described here takes

as its starting point the dynamical core described in Wood

et al. (2014) (referred to there as the “standard SISL” version)

which forms the basis of the weather and climate prediction

system described by Williams et al. (2015) and Walters et al.
(2017). In particular it is desired to retain the good tempo-

ral accuracy and long time-step stability of that model. So

while this work describes the replacement of the spatial dis-

cretization and transport schemes of Wood et al. (2014), the

present scheme uses a similar iterated-implicit temporal dis-

cretization, an overview of which is given in section 3 and a

more detailed treatment in section 6. The current scheme dif-

fers from that of Wood et al. (2014) due to the presence, in the

mixed finite-element method, of non-diagonal mass matri-

ces, which complicates the solution of the implicit system of

equations.

Although the development of this scheme is motivated by

its application to non-orthogonal global meshes on the sphere,

it is important that it has good accuracy on Cartesian meshes;

without this, its performance on the global meshes is unlikely

to be acceptably good and it certainly will not be acceptable as

the basis for regional modelling. Therefore, example compu-

tational results from a variety of essentially two-dimensional

and also some three-dimensional test cases are reported in

section 7 before a concluding discussion in section 8.

2 CONTINUOUS EQUATIONS

The Euler equations for a perfect gas in a rotating frame are

𝜕u
𝜕t

= −𝝃 × u − 2𝛀 × u − 𝛻 (K + Φ) − cp𝜃𝛻Π , (1)

𝜕𝜌

𝜕t
= −𝛻 ⋅ (𝜌u) , (2)

𝜕𝜃

𝜕t
= −u ⋅ 𝛻𝜃, (3)

together with the nonlinear equation of state

Π
(

1−𝜅
𝜅

)
= R

p0

𝜌𝜃, (4)

where u is the velocity vector, 𝝃 ≡ 𝛻 × u is the relative vor-

ticity,

𝛀 is the rotation vector, K ≡ u ⋅ u∕2 is the kinetic energy per

unit mass,

Φ is the geopotential such that 𝛻Φ = −g where g is the

acceleration due to gravity, cp is the specific heat at constant

pressure,

𝜃 is potential temperature related to temperature through T =
𝜃Π,

Π = (p∕p0)𝜅 is the Exner pressure with p pressure and p0

a constant reference pressure, R is the gas constant per unit

mass, 𝜅 ≡ R∕cp and 𝜌 is density.

These equations are solved subject to the boundary condi-

tion of zero mass flux through the boundaries of the domain.

Note that, following Cotter and Shipton (2012); Cotter and

Thuburn (2014) and Thuburn and Cotter (2015), the veloc-

ity equation is written in the vector-invariant form. In the

shallow-water form of the equations, this allows the dis-

cretized version of the equations to retain some of the mimetic

properties discussed by Staniforth and Thuburn (2012). The

scheme presented here targets most of the desirable criteria

outlined in Staniforth and Thuburn (2012), but notably it does

not target conservation of energy or axial angular momentum.

3 OVERVIEW OF THE
SPATIO-TEMPORAL DISCRETIZATION

The temporal discretization of the equations is inspired by the

iterative-semi-implicit semi-Lagrangian discretization such

as that used in Wood et al. (2014). In that scheme all advec-

tive terms are handled using a semi-Lagrangian scheme. In
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the implementation of Wood et al. (2014), the advected quan-

tities are the start of time-step fields whilst, at convergence

of the iterative scheme, the advecting velocity is averaged in

time. All other terms are handled using an iterative-implicit

temporal discretization.

The same basic discretization is targeted here but with the

following differences:

1. To achieve good conservation properties, instead of a

semi-Lagrangian scheme, an explicit Eulerian flux-form

scheme is used for the continuity equation.

2. A similar scheme is also used for potential temperature

but in advective form (this is to achieve good wave disper-

sion properties by avoiding the need to average the vertical

wind).

3. The self-advection terms in the velocity equation (which in

the vector invariant form of the equation are manifested in

the kinetic energy𝛻K and vorticity 𝝃×u terms of Equation

1) are averaged in time and evaluated iterative-implicitly.

4. A mixed finite-element spatial discretisation is used in

place of the finite-difference one used in Wood et al.
(2014).

First consider the velocity Equation 1. This can be written

as
𝜕u
𝜕t

= S, (5)

where

S ≡ −𝝃 × u − 2𝛀 × u − 𝛻 (K + Φ) − cp𝜃𝛻Π . (6)

This is first integrated in time to give

u (x, t + Δt) − u (x, t)
Δt

= 1

Δt ∫
t+Δt

t
S dt, (7)

where x is a fixed position. The right-hand side time integral is

then approximated using a, possibly off-centred, trapezoidal

rule to give

𝛿tu = S
𝛼
, (8)

where, for a generic scalar or vector variable F,

𝛿tF ≡ Fn+1 − Fn

Δt
, (9)

and

F
𝛼 ≡ 𝛼Fn+1 + (1 − 𝛼)Fn. (10)

The parameter 𝛼 is an off-centring parameter which takes

the value 1∕2 for a centred scheme. The superscripts n+1 and

n denote the time-level of a variable.

Using the same notation, the density Equation 2 and poten-

tial temperature Equation 3 are discretized as

𝛿t𝜌 = −𝛻 ⋅
[


(
𝜌n,u1∕2

)]
, (11)

𝛿t𝜃 = −(
𝜃n,u1∕2

)
, (12)

where u1∕2
indicates that the advecting velocity

is a centred average in time, 

(
𝜌n,u1∕2

)
is the

time-averaged flux of density and (
𝜃n,u1∕2

)
is

the time-averaged advection tendency of the potential

temperature.

All terms are discretized in space using the mixed

finite-element scheme described in section 4, except for 

and  which are discretized using the finite-volume scheme

described in section 5.

Equations 8–12 and 4 represent a set of coupled, nonlinear

equations. These are solved using a quasi-Newton method that

is detailed in section 6.

4 THE MIXED FINITE-ELEMENT
DISCRETIZATION

4.1 Subdivision of domain

The three-dimensional model domain (D, with boundary 𝜕D)

is partitioned into a mesh consisting of a number of cells (C),

each cell having a number of faces (F), edges (E) and vertices

(V). Where appropriate, subscripts D, C, F, E and V, respec-

tively, will be used to denote evaluation of quantities over

objects of these types. Here, in three dimensions, hexahedral

cells are used that are aligned in columns in the vertical (with

their lateral faces having normals that are perpendicular to

gravity).

4.2 Function spaces

To form the finite-element function spaces in three dimen-

sions, the sequence of finite-element spaces of Natale et al.
(2016) is used. This sequence is the natural extension of the

two-dimensional function spaces used for the shallow-water

equations presented in Cotter and Shipton (2012); Thuburn

and Cotter (2015).

There are four principal function spaces, denoted by

Wi, i = 0, 1, 2, 3, each of which has specific attributes and,

in particular, varying degrees of continuity across cell bound-

aries. These spaces are related by the de Rham complex (Bott

and Raoul, 1982):

W0

𝛻
−→ W1

𝛻×
−→ W2

𝛻⋅
−→ W3. (13)

These function spaces at order l for hexahedral elements

correspond to:

W0 The Ql+1 space of scalar functions;

W1 The Nédélec Nl space of vector functions;

W2 The Raviart–Thomas RTl space of vector functions;

W3 The QDG
l space of scalar functions.

Further details on these spaces can be found in Boffi et al.
(2013). This de Rham complex is complemented by the addi-

tional function spaces:

W𝜃 The space of scalar functions based on the vertical part of

W2; as discussed in section 1, this is used to avoid vertical

averaging in the coupling between the vertical momentum
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and potential temperature equations and hence to obtain

good numerical wave dispersion properties;

W𝜒 The QDG
m space of scalar functions, where m may be dif-

ferent from l; this allows the representation of the coor-

dinate field to be decoupled from the choice of the other

finite-element spaces.

Details on the structure of these spaces can be found in

Appendix A. As noted in the Introduction, the choice of

lowest-order elements is made here, i.e. l = 0. Details of the

form of the basis functions for this choice can be found in

Appendix B.

4.3 Variable expansions and weak forms

Each variable is assigned to a function space that is consistent

with its physical nature. Specifically:

Φ ∈ W0, pointwise scalar functions;

𝝃 ∈ W1, vector functions corresponding to circulations;

u ∈ W2, vector functions corresponding to fluxes; and

𝜌 ∈ W3, scalar functions corresponding to volume integrals.

Additionally, Π is placed in W3 and the form of the rotation

vector 𝛀 is assumed to be known analytically and so will be

computed where needed. In order to obtain good wave dis-

persion properties equivalent to the use of a Charney–Phillips

grid and to avoid the computational mode of the Lorenz grid,

𝜃 ∈ W𝜃 . Melvin et al. (2018) give details on this choice.

Each variable is expanded in the trial functions associated

with its function space. Finally, the (time-dependent) coeffi-

cients of this expansion are chosen such that the projection of

each equation onto test functions vanishes for all test functions

from the appropriate function space, i.e. the error is orthog-

onalized to the test function space. This is the discrete weak

form of the equation.

For example, for a prototypical discrete equation, f = 0, for

some variable f , the weak form of this equation is given by

multiplying the equation by a test function h and integrating

over the domain

∫D

hf dV = 0, (14)

and then requiring that this equation holds for all test func-

tions g in the appropriate function space. Equation 14 can be

concisely written as ⟨h, f ⟩ = 0. (15)

The Galerkin method is followed in which the test func-

tions are chosen from the same space as the trial functions.

These functions are given in Appendix B. For each of

W0,W1,W2,W3, these functions are usually denoted respec-

tively by 𝛾 , c, v, and 𝜎. The test function for W𝜃 is denoted

by w.

Note that the boundary condition,

n𝜕D ⋅ u = 0, (16)

on the boundary of the domain, 𝜕D, (where n𝜕D is the out-

ward normal to that boundary) is enforced in the expansion of

the velocity, u, in the trial functions for W2. This boundary

condition is only valid on the top and bottom of the domain,

where it is appropriate to apply a no-flux boundary condi-

tion. For all the cases considered here (which use periodic

boundary conditions in the horizontal), and more generally for

spherical domains, no extra boundary conditions are needed.

However, for bounded domains (such as used for local-area

modelling), extra flux integral boundary conditions would

arise when integrating by parts (as done in the next section).

4.4 Weak form of the equations

4.4.1 Velocity equation
Using Equation 6, multiplying Equation 8 by test functions

from W2 and integrating over the domain D gives the weak

form of the velocity equation as⟨v, 𝛿tu⟩ = −⟨v, 𝝃 × u + 2𝛀 × u⟩𝛼
−
⟨

v, 𝛻K + 𝛻Φ + cp𝜃𝛻Π
⟩𝛼

. (17)

However, various quantities in this equation do not have the

required continuity to permit the required vector operations to

be evaluated.

• Exner pressure, Π, is discontinuous between cells, so 𝛻Π
is not defined at cell boundaries. Additionally, the poten-

tial temperature, 𝜃, is only continuous between cells in

the vertical direction. This prevents direct evaluation of

Equation 17. Instead, the procedure is: first split the inte-

gration over the domain into the sum of integrations over

cells; then integrate by parts over each cell, introducing

boundary integrals over the cell faces; and then rewrite as

global integrals, i.e.⟨
v, cp𝜃𝛻Π

⟩
=
∑

C

⟨
cp𝜃v, 𝛻Π

⟩
C

=
∑

F

⟨⟨⟦cp𝜃v⟧F, {Π}F⟩⟩F

−
∑

C

⟨
𝛻C ⋅

(
cp𝜃v

)
,Π
⟩

C

= ⟨⟨⟦cp𝜃v⟧, {Π}⟩⟩ − ⟨𝛻C ⋅
(
cp𝜃v

)
,Π
⟩
, (18)

where ⟨⋅⟩C indicates integration over a cell;

𝛻C⋅ indicates that the divergence is evaluated only within

the interior of the cell, excluding the faces;⟨⟨⋅⟩⟩F indicates integration over a face; and⟨⟨⋅⟩⟩ indicates the sum of integrations over all faces

(because of the boundary condition (16) this sum is in fact

only non-zero for interior faces).

The notation ⟦⋅⟧F indicates the jump in its argument across

a face and {⋅}F indicates the value of its argument on a face;

the choice made here is to use the average of the discontin-

uous values on the face. The appearance of ⟦⋅⟧F and {⋅}F

without subscripts indicates the sum of integrations over

all faces. Appendix C gives details of these operators.

• Since u ∈ W2, 𝝃 = 𝛻×u is not defined at cell boundaries.

Therefore the vorticity 𝝃 ∈ W1 is obtained as the weak
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FIGURE 1 Unit vectors in terrain-following coordinates. zb is parallel to

gravity and xb is normal to gravity. nb is normal to the model layers and tb is

parallel to model layers

curl of u by requiring that

⟨c, 𝝃⟩ = ⟨𝛻 × c,u⟩ − ⟨⟨c, {u} × n⟩⟩, (19)

for all c ∈ W1 where n is the outward normal to each

face. Note that, due to the uniqueness of {u} on faces, the

boundary term, ⟨⟨⋅⟩⟩, in Equation 19 is only non-zero on

the top and bottom boundaries of the domain. At these

points, consistently with an assumed free-slip condition on

the velocity field, the value of {u} on the domain bound-

aries takes the value just inside the domain. This choice

results in the horizontal components of the vorticity being

zero on the top and bottom boundaries of the domain.

• The kinetic energy, K, does not in general have any conti-

nuity between cells and its gradient is not defined. There-

fore, this term is integrated by parts to give

⟨v, 𝛻K⟩ = − ⟨𝛻 ⋅ v,K⟩ , (20)

where the boundary condition (16) has been used to elim-

inate the boundary integral.

Therefore, with the addition of a Rayleigh damping term,

Equation 17 becomes

⟨v, 𝛿tu⟩ = − ⟨v, 𝝃 × u⟩𝛼−⟨v, 2𝛀 × u⟩𝛼+⟨𝛻⋅ v,K⟩𝛼−⟨v, 𝛻Φ⟩𝛼
− ⟨⟨⟦cp𝜃v⟧, {Π}⟩⟩𝛼+⟨𝛻C ⋅

(
cp𝜃v

)
,Π
⟩𝛼

−
⟨

v, 𝜇
(

u ⋅ nb

zb ⋅ nb

)
zb

⟩1

. (21)

For the Rayleigh damping term:

• 𝜇 is a damping profile that varies with height above the

surface;

• the overbar ⟨ ⟩1
indicates that the term is evaluated fully

implicitly in time, i.e. at time level n + 1;
• zb is the basis vector of W2 aligned with the vertical

direction; and
• nb is the basis vector of W1 aligned with the direction

normal to the vertically facing cell face (Figure 1).

4.4.2 Continuity equation
Multiplying Equation 11 by test functions from W3 and

integrating over the domain D gives the weak form of the

continuity equation as

⟨𝜎, 𝛿t𝜌⟩ = −
⟨
𝜎, 𝛻 ⋅ 

(
𝜌n,u1∕2

)⟩
, (22)

where it is assumed that the transport scheme used to evalu-

ate  returns a vector in W2 so that its divergence is defined

everywhere.

4.4.3 Thermodynamic equation
Multiplying Equation 12 by test functions from W𝜃 and

integrating over the domain D gives the weak form of the

thermodynamic equation as

⟨w, 𝛿t𝜃⟩ = −
⟨

w,(
𝜃n,u1∕2

)⟩
. (23)

4.4.4 Equation of state
Multiplying Equation 4 by test functions from W3 and inte-

grating over the domain D gives the weak form of the equation

of state as ⟨
𝜎,Π

1−𝜅
𝜅

⟩
=
⟨
𝜎,

R
p0

𝜌𝜃

⟩
. (24)

4.5 Transformation to a reference cell

It is possible to evaluate the various integrals required for the

weak formulation (i.e. Equations 21, 22, 23 and 24) directly

in physical space. However, for any mesh other than one that

consists of identical cells, this approach would require the

evaluation of a number of integrals that are specific to each

cell (for example the evaluation of the integral of the prod-

uct of various basis functions). It is generally accepted that a

more efficient approach is to transform the equations for each

physical cell into a single, reference cell (Rognes et al., 2009).

Then only one set of basis functions and one set of quadrature

points are needed, rather than different sets being required for

each cell.

Therefore, consider a mapping 𝝓 ∶ Ĉ → C between a refer-

ence cell Ĉ with coordinates 𝝌 =
(
𝜒1, 𝜒2, 𝜒3

)
and a physical

cell C with coordinates 𝝌 = (𝜒1, 𝜒2, 𝜒3) such that 𝝌 = 𝝓
(
𝝌
)
.

Variables and operators in the reference cell are denoted with

a ̂ to differentiate them from the undressed variables and

operators used to indicate evaluation in the physical cell.

It is important that the transformations between the physical

and reference cells preserve the various geometric properties

of the mixed finite-element discretization. This would happen

automatically if the metric tensor of the reference cell were

the transformation of the metric tensor of the physical cell,

but this would reintroduce a dependency in the reference cell

on the physical cell it is mapped with. Instead a Cartesian

metric tensor is assumed for the reference cell independently

of the physical cell. Therefore, preservation of the required

properties is achieved by using a specific collection of trans-

formations that are specific to each function space. These

transformations are designed to preserve the hierarchy of the

function spaces by preserving:
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(a) the appropriate continuity between cells, specifically

maintaining continuity of vector components that are tangen-

tial to cell faces for vectors in W1 and vector components that

are normal to cell faces for vectors in W2; and

b) the integrals appropriate to each space, i.e. pointwise

evaluation for W0, line integrals for W1, area integrals for

W2, and volume integrals for W3.

The transformations will collectively be referred to as Piola

transformations. They are given below for each of the func-

tion spaces. More details can be found in Brezzi and Fortin

(1991); Monk (2003) and Rognes et al. (2009). Furthermore,

it is assumed that the physical space uses the same Cartesian

metric tensor as the reference space.

• For scalar fields in W0, which represent pointwise scalars

(0-forms), the transform is

𝛾 (𝝌) ≡ 𝛾
[
𝝓
(
𝝌
)]

= 𝛾̂
(
𝝌
)
, (25)

which satisfies

𝛻𝛾 = J−T𝛻̂𝛾̂ , (26)

where the Jacobian J ≡ 𝜕𝝓
(
𝝌
)
∕𝜕𝝌 and J−T ≡ (

J−1
)T

.

• For vector fields in W1, which represent circulation vectors

(1-forms), the covariant Piola transform is

c (𝝌) ≡ c
[
𝝓
(
𝝌
)]

= J−Tĉ
(
𝝌
)
, (27)

which satisfies

𝛻 × c (𝝌) = J
det J

𝛻̂ × ĉ
(
𝝌
)
. (28)

• For vector fields in W2, which represent flux vectors

(2-forms), the contravariant Piola transform is

v (𝝌) ≡v
[
𝝓
(
𝝌
)]

=
Jv̂
(
𝝌
)

det J
, (29)

which satisfies

𝛻 ⋅ v (𝝌) = 1

det J
𝛻̂ ⋅ v̂

(
𝝌
)
. (30)

• For scalars in W3, which represent volume averaged quan-

tities (3-forms), the transformation would naturally be

𝜎 (𝝌) ≡ 𝜎
[
𝝓
(
𝝌
)]

=
𝜎
(
𝝌
)

det J
. (31)

However, use of Equation 31 would result in the weak form

of the divergence transforming as

∫D

𝜎𝛻 ⋅ v dV = ∫D̂

𝜎

det J
𝛻̂ ⋅ v̂ dV̂ , (32)

where dV̂ denotes the transformation of the physical vol-

ume element, dV , and is given by dV∕ det J. For non-affine

cells (which in the context of the present hexahedral cells

means cells that are not parallelepipeds), det J is not con-

stant within a cell and therefore Equation 32 cannot be

integrated exactly using numerical integration, in fact it

cannot even accurately represent a constant, so it is not

even first-order accurate. The solution applied here is

TABLE 1 Transformations between physical space 𝝌 and
computational space 𝝌 , using the mapping 𝝓

(
𝝌
)
= 𝝌 and

J ≡ 𝜕𝝓
(
𝝌
)
∕𝜕𝝌

Space Function Differential of Function

W0 𝛾 = 𝛾̂

W1 c = J−Tĉ 𝛻𝛾 = J−T𝛻̂𝛾̂

W2 v = Jv̂∕ det J 𝛻 × c = J𝛻̂ × ĉ∕ det J

W3 𝜎 = 𝜎 𝛻 ⋅ v = 𝛻̂ ⋅ v̂∕ det J

rehabilitation (Bochev and Ridzal, 2010) in which the W3

mapping Equation 31 is modified to

𝜎 (𝝌) ≡ 𝜎
[
𝝓
(
𝝌
)]

= 𝜎
(
𝝌
)
. (33)

Equation 32 now becomes

∫D

𝜎𝛻 ⋅ v dV = ∫D̂

𝜎𝛻̂ ⋅ v̂ dV̂ . (34)

The rehabilitation method is designed so that the order of

accuracy of the scheme is maintained on arbitrary meshes.

This though comes at the expense that the divergence oper-

ator applied to a vector field in W2 no longer maps to W3.

However, Natale et al. (2016) showed that for the kind

of meshes looked at here (terrain-following in a Cartesian

domain), the coordinate mapping is close enough to affine

that both the rehabilitated and non-rehabilitated method

have similar accuracy. Therefore, the loss of the property

that the divergence of a vector field in W2 maps into W3

is not expected to impact the properties of the scheme.

Table 1 summarizes the spaces and transformations for

functions in each space W0 to W3. The additional function

spaces W𝜃 and W𝜒 use the same transformations as W0

(i.e. those appropriate for pointwise scalars).

Additionally, Equations 14 and 15 become

∫D̂

hf det J dV̂ ≡ ⟨h, f det J⟩ , (35)

where the angle bracket notation still denotes the domain

volume integral but now with respect to the reference cell

coordinates.

4.6 Discrete equations using the reference cell

Applying the coordinate transformations to Equation 21

gives:⟨
Jv̂, J𝛿tû

det J

⟩
= −

⟨
Jv̂,

(
J−T𝝃̂

)
×
(

Jû
det J

)⟩𝛼

−
⟨

Jv̂, 2𝛀 × Jû
det J

⟩𝛼

+
⟨
𝛻̂ ⋅ v̂, 1

2

(
Jû

det J

)
.

(
Jû

det J

)⟩𝛼

−
⟨

v̂, 𝛻̂Φ̂
⟩𝛼

− ⟨⟨⟦cp𝜃v̂⟧,{Π̂}⟩⟩𝛼
+
⟨

cp𝜃𝛻̂C ⋅ v̂ + v̂ ⋅ 𝛻̂C

(
cp𝜃

)
, Π̂
⟩𝛼
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−
⟨

Jv̂, 𝜇
(

û ⋅ n̂b

ẑb ⋅ n̂b

)
J ẑb

det J

⟩1

, (36)

where ⟨⟨⋅⟩⟩ now denotes the surface integrals over the collec-

tion of all cell faces evaluated in the reference space and ⟦⋅⟧ is

defined in terms of normal vectors evaluated in the reference

space. Also, the fact that the W2 contravariant Piola trans-

formation (29) preserves surface integrals over cell faces has

been used.

The vorticity 𝝃̂ is obtained by evaluating⟨
J−Tĉ, J−T𝝃̂ det J

⟩
=
⟨

J𝛻̂ × ĉ, J û
det J

⟩
−⟨⟨J−Tĉ, J

{
û
}
× J−Tn̂⟩⟩. (37)

For Equation 22 the coordinate transformation gives:⟨
𝜎, det J𝛿t𝜌

⟩
= −

⟨
𝜎, 𝛻̂ ⋅ ̂

(
𝜌n, û

1∕2
)⟩

, (38)

where the fact that the transport scheme gives a flux that is in

W2 has been used.

For Equation 23 it gives:⟨
ŵ, det J𝛿t𝜃

⟩
= −

⟨
ŵ, det J̂

(
𝜃n, û

1∕2
)⟩

. (39)

Here ̂ is constructed to be in the W𝜃 reference space

(section 5.3.2) and is defined continuously as the transforma-

tion of  ≡ u ⋅ 𝛻𝜃, i.e.

̂ = 1

det J
û ⋅ 𝛻̂𝜃. (40)

And for Equation 24 it gives:⟨
𝜎, det JΠ̂

1−𝜅
𝜅

⟩
=
⟨
𝜎, det J R

p0

𝜌 𝜃

⟩
. (41)

Solutions are sought such that these equations hold for all

the test functions. To achieve this, as discussed in section 4.3,

each of the prognostic variables is expanded as the product

of temporally varying degrees of freedom with the spatially

varying set of trial functions. Thus:

û =
∑

j
ũj (t) v̂j

(
𝝌
)
, (42)

𝜌 =
∑

j
𝜌j (t) 𝜎j

(
𝝌
)
, (43)

𝜃 =
∑

j
𝜃j (t) ŵj

(
𝝌
)
, (44)

Π̂ =
∑

j
Π̃j (t) 𝜎j

(
𝝌
)
, (45)

where the sum is over all the trial functions of the appropri-

ate space, and each of ũj, 𝜌j, 𝜃j and Π̃j represents a vector

of the degrees of freedom associated with the respective trial

function v̂j, 𝜎j, ŵj and 𝜎j (Appendix B gives details).

Let ũ denote the vector made up of all the coefficients ũj,

i.e. ũ =
[
ũ1, ũ2, ...

]T
, and similarly for 𝜌, 𝜃, and Π̃. Substituting

the expansions (42)–(45) into Equations 36, 38, and 39 leads

to

M2𝛿tũ + M𝜇ũ
1

= Ru
𝛼
, (46)

M3𝛿t𝜌 = RF
𝜌 , (47)

M𝜃𝛿t𝜃 = RA
𝜃 , (48)

where, with the exception of the damping layer term in the

momentum equation, Ru
𝛼
, RF

𝜌 and RA
𝜃

are defined to be the

vectors obtained from the right-hand sides respectively of

Equations 36, 38, and 39, and the components of the mass

matrices are defined as

(M2)ij ≡
⟨

Jv̂i,
J v̂j

det J

⟩
, (49)

(M3)ij ≡ ⟨
𝜎i, det J 𝜎j

⟩
, (50)

(M𝜃)ij ≡ ⟨
ŵi, det J ŵj

⟩
, (51)

and (
M𝜇

)
ij ≡

⟨
Jv̂i, 𝜇

( v̂j ⋅ n̂b

ẑb ⋅ n̂b

)
J ẑb

det J

⟩
. (52)

4.7 Calculation of the Jacobian

For various calculations the Jacobian of the coordinate trans-

formation from the reference cell to each physical cell, along

with its determinant is required. This is achieved by setting

𝝓
(
𝝌
)
=
[
𝜙1

(
𝝌
)
, 𝜙2

(
𝝌
)
, 𝜙3

(
𝝌
)]

and placing each 𝜙i in

W𝜒 , for i = 1, 2, 3. In the interior of the computational

domain, the coordinates are continuous fields. However, in a

bi-periodic domain the coordinates are discontinuous across

the computational “edges” of the domain where they jump

by the length of the domain. Therefore W𝜒 is chosen to be

a discontinuous version of W0 (but for which the interior

degrees of freedom are in fact continuous). The Jacobian can

then be calculated everywhere it is needed and in particular

it will have the appropriate values across the computational

“edges” of a bi-periodic domain. Appendix D gives details of

the computation of the Jacobian.

4.8 Quadrature

In order to numerically evaluate the various spatial integrals

that are required, Gaussian quadrature is used with quadrature

weights denoted by 𝜆i and quadrature points denoted by 𝝌 i.

Therefore, integrals of the form (35) are approximated by

∫D̂

hf det J dV̂ ≈
n∑

i=1

𝜆ih
(
𝝌 i
)

f
(
𝝌 i
)

det J
(
𝝌 i
)
, (53)

where the volume element has been absorbed into the quadra-

ture weights, and n denotes the total number of quadrature

points. Since det J is polynomial (Appendix D), if both h
and f are also polynomial then, provided a suitable quadra-

ture rule with enough quadrature points is used, Equation 53

is exact. For the lowest-order (l = 0) elements used here a

three-point Gaussian quadrature rule is used in each direc-

tion. This is exact up to fifth-order polynomials and is chosen
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to ensure that, provided det J is constant, then all terms are

integrated exactly. However, in the presence of orography,

det J is a non-constant polynomial (Appendix D). Since in

general g and f may be such that the integrand contains fac-

tors proportional to (det J)−1 the approximation to the integral

will not then be exact. Results (not shown) using a five-point

Gaussian quadrature are visually indistinguishable from those

presented using a three-point rule, indicating that the errors

due to inexact quadrature are indeed small.

5 FINITE-VOLUME TRANSPORT
DISCRETIZATION

5.1 Method of lines advection

To complete the discretization, expressions for mass flux ̂

and the advection of potential temperature ̂ are required. A

method-of-lines approach is used in which the temporal and

spatial aspects are treated separately. The temporal aspects

are handled using an explicit Runge–Kutta scheme described

in section 5.2 while the spatial aspects are handled by

finite-volume upwind polynomial reconstruction described in

section 5.3.

The first step is to map from the finite-element degrees

of freedom to finite-volume degrees of freedom. For the

finite-volume degrees of freedom, a C-grid staggering in the

horizontal and a Charney–Phillips staggering in the verti-

cal is chosen. A consequence then of using the lowest-order

mixed finite-element spaces described here is that there is

a one-to-one correspondence between the finite-volume and

finite-element degrees of freedom and the mapping between

them is trivial.

Although the advecting velocity u1∕2
is updated as part

of the overall scheme, it is not updated within the transport

scheme itself.

5.2 Temporal aspects

Consistent with using a finite-volume approach ̂ and ̂ are

approximations to their average value over a time step. Let the

pair of generic variables y and f denote either the pair 𝜌 and

𝛻̂ ⋅̂ , or the pair 𝜃 and ̂. Then, to evaluate the time-averaged

value of f , denoted by f , the equation

𝜕y
𝜕t

= f , (54)

is solved using an explicit Runge–Kutta scheme and f is

obtained as the weighted sum of values used in the final stage

of that scheme. Therefore, if the m-stage Runge–Kutta scheme

is written in terms of some known coefficients aij and bk as

y(i) = yn + Δt
i−1∑
j=1

aijf
(
y(j)
)
, i = 1, ...,m, (55)

yn+1 = yn + Δt
m∑

k=1

bkf
(
y(k)

)
, (56)

then f is given by

f ≡
m∑

k=1

bkf
(
y(k)

)
. (57)

Note that, for the case of f = 𝛻̂ ⋅ ̂ , the divergence oper-

ator used in this calculation is the same as that used in the

finite-element scheme.

The specific Runge–Kutta scheme used here is the

third-order, three-stage, strong stability preserving

Runge–Kutta scheme (Gottlieb, 2005).

5.3 Spatial aspects

All calculations are performed using the reference cell and its

neighbours together with the specification of a uniform mesh.

5.3.1 Mass flux
The mass flux ̂ on a cell face is evaluated as the product of

the normal component of velocity on that face with an esti-

mation of the density on that face. The normal velocity is

obtained directly as the appropriate degree of freedom of the

finite-element velocity field û. The value of density on the

face is obtained by first constructing a one-dimensional poly-

nomial representation of the density field as a function of the

reference coordinate in the direction normal to the cell face,

and then evaluating the polynomial at the cell face.

The polynomial, of even order p, is constructed using a sten-

cil of p+1 cells. Noting that p+1 is odd, this stencil is centred

about the cell that is immediately upwind of the target face.

The coefficients of the polynomial are obtained by requiring

that the volume integral of the polynomial over any cell in

the stencil is equal to the mass in that cell. Specifically, the

polynomial in powers of 𝜒 is given by

𝜌
(
𝜒
)
=

p∑
i=0

ai𝜒
i, (58)

with the constraint

∫Ĉ

𝜌 dV̂ = ∫Ĉ

𝜌i dV̂ ≡ 𝜌i, (59)

over all cells i in the stencil. Here 𝜌i is the value of the density

field in cell i, and the fact that the volume of the reference

cell is chosen to be 1 has been used. From Equation 58 the

reconstructed value of 𝜌 at the flux point 𝜒F can be obtained

as

𝜌
(
𝜒F
)
=

p∑
i=0

𝛼i𝜌i, (60)

where the new coefficients 𝛼i are linear combinations of the

ai and also depend upon 𝜒F. Near the vertical boundaries of

the domain, where there are not enough points to construct

the polynomial, the order is reduced. This is done in steps of

two in order to retain an upwind bias.
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5.3.2 Potential temperature advection
To compute ̂ a similar method to that for the mass flux is

used in that it uses a one-dimensional polynomial reconstruc-

tion but of odd order p. However, in this case the polynomial

is obtained by matching directly the values of the degrees of

freedom of 𝜃 in an appropriate stencil. The stencil has an even

number p + 1 of points and is biased in the upwind direction.

The gradient of 𝜃 is obtained by differentiating the polynomial

and evaluating the derivative at the position of the desired

degree of freedom of 𝜃. This derivative is multiplied by the

evaluation of û at that point (where
{

û
}

is used where û is

discontinuous).

The process is repeated for each of the three directions to

provide a full three-dimensional update. Finally, this update

is divided by det J to obtain ̂ as defined by Equation 40.

5.3.3 Consistent metrics
As identified by Klemp et al. (2003), in order to obtain accu-

rate solutions for stratified flow over fine-scale orography, a

consistent discretization of certain metric terms that arise due

to the terrain-following vertical coordinate is needed.

Consider a domain with terrain-following coordinates as set

out in Figure 1, where orthogonal physical unit vectors xb and

zb are normal and parallel to gravity and orthogonal terrain

following unit vectors tb and nb are parallel and normal to the

model levels. The evolution of a scalar quantity q that is pre-

served over Lagrangian trajectories in this two-dimensional

domain is governed by

𝜕q
𝜕t

= −Ẋ
𝜕q
𝜕X

− Ż
𝜕q
𝜕Z

, (61)

where X is aligned with xb, Ẋ denotes the material derivative

of X, Z is aligned with zb, and Ż denotes the material deriva-

tive of Z. If q is vertically stratified (q = q(Z)) and the flow is

horizontal (Ż ≡ 0) then 𝜕q∕𝜕t = 0.

Consider now what is required for this result to hold in

terrain-following coordinates (𝜁, 𝜂) where 𝜁 is aligned with

tb and 𝜂 with nb. In these coordinates

𝜕q
𝜕t

= −𝜁̇
𝜕q
𝜕𝜁

− 𝜂̇
𝜕q
𝜕𝜂

. (62)

By inverting the transformation from (𝜁, 𝜂) to (X, Z), it is

found that

𝜁̇ = 1

J

(
𝜕Z
𝜕𝜂

Ẋ − 𝜕X
𝜕𝜂

Ż
)
, (63)

𝜂̇ = 1

J

(
−𝜕Z
𝜕𝜁

Ẋ + 𝜕X
𝜕𝜁

Ż
)
, (64)

where J is the Jacobian of the coordinate transformation.

Substituting these into Equation 62 gives

𝜕q
𝜕t

= −1

J

(
Ẋ 𝜕Z
𝜕𝜂

− Ż 𝜕X
𝜕𝜂

)
𝜕q
𝜕𝜁

−1

J

(
−Ẋ 𝜕Z

𝜕𝜁
+ Ż 𝜕X

𝜕𝜁

)
𝜕q
𝜕𝜂

. (65)

Therefore, for q to remain constant in time when Ż = 0 and

q = q(Z), it is required that

−Ẋ 1

J
dq
dZ

(
𝜕Z
𝜕𝜂

𝜕Z
𝜕𝜁

||||A − 𝜕Z
𝜕𝜁

𝜕Z
𝜕𝜂

||||A
)

= 0, (66)

where the subscript A indicates terms computed by the advec-

tion operator. For the terrain-following coordinate transfor-

mations used here, the dominant term is 𝜕Z∕𝜕𝜁 and hence

the term 𝜕Z∕𝜕𝜁 |A computed by the advection operator along

model layers needs to match the metric term 𝜕Z∕𝜕𝜁 contained

in the advecting velocity 𝜂̇ normal to model layers.

As in Melvin et al. (2010), this is achieved by modifying

Equation 64 such that the 𝜕Z∕𝜕𝜁 term is computed by the

advection operator. In practice this is achieved by modifying

the velocity vector used in the advection scheme according to

û∗
i = ûi + û ⋅ 𝛻̂𝜒i − ̂ (

𝜒i, û
)

det (J) , i = 1, 2, 3, (67)

where ûi is the ith component of û and ̂ (
𝜒i, û

)
is the advec-

tion operator applied to the ith component of the coordinate

field 𝝌 . This modification means that the metric term
(
𝛻̂𝜒i

)
component of ûi, as computed by the finite-element scheme, is

replaced by that computed by the high-order upwind scheme

̂ (𝜒i, ⋅). This then means that both the metric term compo-

nents and the advected components of 𝜒 are computed using

the same scheme and so there is no inconsistency. Although in

principle this modification can be applied to the velocity vec-

tor for all advection terms, in order to remove the distortion

over fine-scale orography, it is only necessary to apply it to the

potential temperature advection term, such that û∗
1∕2

is used

to advect 𝜃n in Equation 40. Furthermore, for all the exam-

ples presented here a uniform mesh in the 𝜒1 and 𝜒2 directions

is used such that Equation 67 only results in modifying the

vertical component of the velocity û3.

6 SOLUTION PROCEDURE

6.1 Notation

The convention followed below is that calligraphic s indi-

cate residuals of the equations to be solved. Gothic ℜs

denote linear combinations of these residuals. The italic Rs of

section 4.4 indicate right-hand sides of the equations.

6.2 Overview

The governing Equations 46, 47, 48, and 41, can be compactly

written as

 (
xn+1

)
= 0, (68)

where xn+1 ≡ [
ûn+1, 𝜌n+1, 𝜃n+1, Π̂n+1

]T

is the sought-after

state vector at the next time step. A full Newton method would

solve this equation iteratively as

 (
x(k)) x′ = − (

x(k)) , (69)
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where x′ ≡ x(k+1) − x(k) is the increment to the state vector, 
is the Jacobian ofwith respect to x, and superscript (k) indi-

cates the iteration index of the Newton loop. However,  is a

large matrix and its inverse is dense, therefore a quasi-Newton

method is used in which the Jacobian is approximated by a

simpler linear system

 (
x(k)) x′ ≈ x′. (70)

Note that, since both  and  operate on increments to the

solution, at convergence of the iterative solution, the same

full, nonlinear Equation 68 is solved. The choice of whether

or how to approximate  affects whether, and how quickly,

the iterative scheme convergences and also the computational

efficiency of the scheme.

Following the approach of Wood et al. (2014), the choice

of the linear operator  is inspired by the linearization of 
about some reference state x∗ to obtain  (x∗) and then solve

 (x∗) x′ = − (
x(k)) . (71)

The spatially continuous form of  in physical space is

given by

(x∗
phys

)
x′

phys
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u′ − 𝜇
(

nb⋅u′

nb⋅zb

)
zb

+𝜏uΔtcp
(
𝜃′𝛻Π∗ + 𝜃∗𝛻Π′) ,

𝜌′ + 𝜏𝜌Δt𝛻 ⋅
(
𝜌∗u′) ,

𝜃′ + 𝜏𝜃Δtu′ ⋅ 𝛻𝜃∗,
1 − 𝜅

𝜅

Π′

Π∗ − 𝜌′

𝜌∗
− 𝜃′

𝜃∗
,

(72)

where 𝜏u,𝜃,𝜌 are relaxation parameters. Applying the mixed

finite-element discretization presented above to these opera-

tors results in:

M𝜇

2
ũ′ − PΠ∗

2𝜃 𝜃
′ − G𝜃∗ Π̃′ = −u, (73)

M3𝜌
′ + D

(
𝜌∗ũ′) = −𝜌, (74)

M𝜃𝜃
′ + P𝜃∗

𝜃2
ũ′ = −𝜃, (75)

MΠ∗

3
Π̃′ − M𝜌∗

3
𝜌′ − P∗

3𝜃𝜃
′ = −Π. (76)

Note that, at convergence of the iterative procedure, primed

quantities vanish and Equation 68 is solved, which, given

the definitions (78)–(81) below, is equivalent to solving

Equations 46–48 and 41. In these expressions M𝜇

2
is the oper-

ator formed by combining the W2 mass matrix with the

operator arising from the Rayleigh damping:

M𝜇

2
≡ M2 + ΔtM𝜇. (77)

Additionally, a number of definitions have been used here.

First, from Equations 46–48 and 41 the residuals from the

current estimate of the solution are defined as

u ≡ Δt
(

M2𝛿tũ + M𝜇ũ
1

− Ru
𝛼
)
, (78)

𝜌 ≡ Δt
(
M3𝛿t𝜌 − RF

𝜌

)
, (79)

𝜃 ≡ Δt
(

M𝜃𝛿t𝜃 − RA
𝜃

)
, (80)

and

Π ≡
⟨
𝜎, det J

[(
Π̂(k)

) 1−𝜅
𝜅 − R

p0

𝜌(k)𝜃(k)
]⟩

, (81)

where the time level n + 1 variables in the definitions (9)

for 𝛿t and (10) for
𝛼

have been replaced by the latest iter-

ates, denoted by superscript (k). Second, various operators are

defined as

D ≡ 𝜏𝜌Δt
⟨
𝜎, 𝛻̂ ⋅ v̂

⟩
, (82)

G𝜃∗ ≡ 𝜏uΔt
⟨

cp𝜃
∗𝛻̂C ⋅ v̂ + v̂ ⋅ 𝛻̂C

(
cp𝜃

∗
)
, 𝜎
⟩

−𝜏uΔt⟨⟨⟦cp𝜃
∗v̂⟧,{𝜎}⟩⟩, (83)

PΠ∗

2𝜃 ≡ 𝜏uΔt
⟨

cpŵ𝛻̂C ⋅ v̂, Π̂∗
⟩

+𝜏uΔt
⟨

v̂ ⋅ 𝛻̂C

(
cpŵ

)
, Π̂∗

⟩
−𝜏uΔt⟨⟨⟦cpŵv̂⟧,{Π̂∗

}⟩⟩, (84)

M𝜌∗

3
≡
⟨
𝜎,

𝜎

𝜌∗
det J

⟩
, (85)

MΠ∗

3
≡ 1 − 𝜅

𝜅

⟨
𝜎,

𝜎

Π̂∗
det J

⟩
, (86)

P𝜃∗

𝜃2
≡ 𝜏𝜃Δt⟨⟨⟦ŵv̂⟧,{𝜃∗}⟩⟩

−𝜏𝜃Δt
⟨
𝛻̂C ⋅

(
ŵv̂
)
, 𝜃∗

⟩
, (87)

P∗
3𝜃 ≡

⟨
𝜎,

ŵ
𝜃∗

det J
⟩
. (88)

The subscripted operators Pij denote projections that map

from Wj to Wi (Appendix E gives the derivation of P𝜃∗

𝜃2
); D

is a divergence operator that maps from W2 to W3, and G𝜃∗

is a gradient operator that maps from W3 to W2.

The system of Equations 73–76 is solved using an iter-

ative Krylov method that is preconditioned by an approx-

imate Schur complement of the equations for the pressure

increment. The approximate Schur complement is formed

by using lumped forms of the M𝜇

2
and M𝜃 mass matrices.

The right-hand side terms are then updated using the latest

estimates for the prognostic variables. This includes the FV

transport terms through the updated advecting wind field;

Table 2 gives details. This process is iterated a number of

times. For all results presented here, four iterations are used.

7 COMPUTATIONAL EXAMPLES

In the following, the results are presented of model runs

on standard Cartesian benchmarks of atmospheric dynamics,

drawing on the suite considered in Melvin et al. (2010) for

the vertical slice tests, with additional 3D tests. The boundary

set-up has doubly periodic boundary conditions in the hori-

zontal and zero flux on the top and bottom boundaries. The

test parameters are summarized in Table 3. As noted, while

in principle the finite-element methodology affords flexibility

on the polynomial order, here the focus will be on results in the
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TABLE 2 Outline of the iterative solution procedure used within a time step

do n = 1,N (begin time-step loop)

– Given the solution xn ≡ (
û, 𝜌, 𝜃, Π̂

)n
, let the first

estimate for xn+1 ≡ (
û, 𝜌, 𝜃, Π̂

)n+1

be x(0) = xn.

– Set x∗ ≡ (𝜌∗, 𝜃∗, Π∗) =
(
𝜌, 𝜃, Π̂

)n
and compute

the operators in Equation 73–76 for  (x∗).

– Compute the time-level n components of
(u, 𝜌, 𝜃 ,Π

)
.

do k = 1,K (Newton iteration)

– Set the advecting wind û
1∕2 ≡ (

û(k−1) + ûn) ∕2.

– Compute the advection terms 
(
𝜌n, û

1∕2
)
, 

(
𝜃n, û

1∕2
)

.

– Compute the time-level n + 1 components of
(u, 𝜌, 𝜃 ,Π

)
.

– Solve Equation 71 to obtain the increments x′ ≡ x(k) − x(k−1)

and hence the updated estimate x(k) for the time-level n + 1 fields.

end do

end do

lowest-order case. Additionally a number of simplifications

and specifications are made:

• All tests are in a non-rotating frame such that 𝛀 ≡ 0.

• There are no monotonicity constraints applied to the

model.

• All meshes are uniform and orthogonal in the 𝜒1 and 𝜒2

directions; this results in a simplified form of the coordi-

nate Jacobian J (Appendix D).

• The coordinate fields are obtained from

𝜒1 = (1 − 𝜀1)𝜒−
1
+ 𝜀1𝜒

+
1
, (89)

𝜒2 = (1 − 𝜀2)𝜒−
2
+ 𝜀2𝜒

+
2
, (90)

𝜒3 = (1 − 𝜀3)𝜒−
3
(𝜒1, 𝜒2) + 𝜀3𝜒

+
3
, (91)

where
(
𝜒−

1
, 𝜒+

1

)
and

(
𝜒−

2
, 𝜒+

2

)
are the constant minimum

and maximum values of 𝜒1 and 𝜒2 respectively. 𝜒−
3
(𝜒1, 𝜒2)

is the orographic profile, 𝜒+
3

is the constant height of the

domain top and 𝜀i, i = 1, 2, 3 is a parameter that takes

values between zero and one.

• The semi-implicit scheme is centred in time so that 𝛼 =
1∕2 and the relaxation parameters 𝜏u,𝜌,𝜃 = 1∕2. Addition-

ally, four iterations of the Newton loop are used.

• Following Wood et al. (2014), the reference profiles x∗ are

taken to be based upon the start of time-step fields x∗ ≡ xn,

however in contrast to Wood et al. (2014) there is no further

modification of the profiles (i.e. static adjustment applied

to 𝜃∗ or recomputation of 𝜌∗).

• A quadratic reconstruction of the density is used for the

mass flux ̂ and a quadratic reconstruction of the gradient

term in the advective update ̂.

• Where applied, the Rayleigh damping profile takes the

same form as used in Melvin et al. (2010), i.e.

𝜇 (z) =
⎧⎪⎨⎪⎩

0, z < zB,

𝜇 sin2

[
𝜋

2

(
z − zB

zT − zB

)]
z ≥ zB,

(92)

where zB is the height at which the Rayleigh starts, zT is the

top of the model domain and the parameter 𝜇 is specific to

each test case.

For the Cartesian domain used in these examples, the gen-

eral coordinate 𝝌 used previously is replaced by the standard

Cartesian coordinates x so that (𝜒1, 𝜒2, 𝜒3) ≡ (x, y, z). In

this section w is used to denote the vertical component of the

velocity u (i.e. w = D𝜒3∕Dt = Dz∕Dt) as distinct from the

test function for W𝜃 .

7.1 Non-hydrostatic gravity waves

First, the model is tested on the non-hydrostatic gravity wave

test in Skamarock and Klemp (1994). In a two-dimensional

domain, (x, z) ∈ [−150, 150] km × [0, 10] km, a potential

temperature perturbation of the form:

𝜃′ =
𝜃0 sin (𝜋z∕H)

1 + [(x − xc)∕a]2
, (93)

with 𝜃0 = 0.01 K, xc = 0, a = 5 km, H = 10 km, is super-

posed on a background atmosphere with constant buoyancy

frequency N = 0.01 s−1 and a horizontal wind U = 20 m/s.

The initial potential temperature perturbation spreads out in

the form of gravity waves (Figure 2). The final perturbation

TABLE 3 Model parameters for each test. The Courant number is given by C ≡ UΔt∕Δx: for cases where U = 0, C has been calculated using the
largest value of u′. The acoustic Courant number (using a representative speed of sound Cs = 343 m/s) varies from 3 up to 40. For all cases the
surface pressure (away from, or in the absence of, orography) is psurf = 1 000 hPa ⇒ 𝜋surf = 1. For 3DBH and 3DRB, Δy = Δx and the domain
size in the y direction is 40 and 1 km respectively

Test 𝚫x 𝚫z 𝚫t Domain Background Tsurf U C

(km) (m) (s) (km×km) Initial State (K) (m/s)

NHGW 1 1,000 12 300 × 10 N = 0.01 s−1 300 20 0.24

DC 0.025–0.4 25–400 0.25–4 51.2 × 6.4 Isentropic 𝜃 = Tsurf 300 0 ≈ 0.4

HMW 2 250 20 240 × 50 Isothermal T = Tsurf 250 20 0.2

NHMW 0.4 250 5 144 × 35 N = 0.01 s−1 300 10 0.125

SH 0.5 300 8 100 × 30 N = 0.01 s−1 288 10 0.16

3DBH 0.2 200 4 60 × 16 N = 0.01 s−1 293.15 10 0.2

3DRB 0.01 10 1.25 1 × 1.5 Isentropic 𝜃 = Tsurf 300 0 ≈ 0.36

NHGW = Non-Hydrostatic Gravity Waves; DC = Density Current; HMW = Hydrostatic Mountain Waves; NHMW = Non-Hydrostatic Mountain Waves;

SH = Schär Hill; 3DBH = Three-Dimensional Bell-shaped Hill; 3DRB = Three-Dimensional Rising Bubble
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FIGURE 2 Potential temperature perturbation (a) at the initial time

(contours every 10−3 K) and (b) at time t = 3, 000 s (contours every

5 × 10−4 K) for the non-hydrostatic inertia-gravity wave test [Colour figure

can be viewed at wileyonlinelibrary.com]

is in line with results in the literature, and in particular with

Melvin et al. (2010).

7.2 Density current

Next, the case of a falling cold air bubble in Straka et al.
(1993) is considered. A negative thermal perturbation:

T ′ =

{
0 K if r > 1,

− 15

2
[1 + cos(𝜋r)] K if r < 1,

(94)

where r =
{
[(x − xc)∕xr]2 + [(z − zc)∕zr]2

}0.5
,

xc = 0 km, xr = 4 km, zc = 3 km and zr = 2 km, is

superposed on a [−25.6, 25.6] km × [0, 6.4] km motionless

isentropic atmosphere with constant background 𝜃 = Tsurf =
300 K. This test includes an additional artificial diffusion term

applied to the potential temperature and the components of the

velocity vector of the form 𝜈𝛻2𝝓, where 𝜙 is the prognostic

variable, and 𝜈 = 75 m2/s . Driven by its negative buoyancy,

the bubble falls, hits the bottom boundary and moves outward,

developing vortices (Figure 3). Convergence with increasing

resolution is evident from the final potential temperature dis-

tribution. At the finest resolution and final time, the minimum

perturbation value and the front location match the results in

Melvin et al. (2010) to within less than one percent (Table 4).

7.3 Linear hydrostatic/non-hydrostatic flow over a hill

The ability of the model to simulate orographically driven

flow is tested with idealized profiles of increasing slope.

A height-based terrain-following coordinate (Equation 91)

is used as in Melvin et al. (2010), and the thermodynamic

variables are initially hydrostatically balanced.

In the first two tests, the bottom boundary is described by

the function:

zS = hm

1 + (x∕a)2
. (95)

FIGURE 3 Potential temperature perturbation at time t = 900 s for the

density current test and resolutions Δx = (a) 400 m, (b) 200 m, (c) 100 m,

(d) 50 m, and (e) 25 m. Contours are plotted in the range [−16,−1]K with a

1 K interval [Colour figure can be viewed at wileyonlinelibrary.com]

In particular, a hydrostatic flow is simulated by setting the

height hm = 1 m, half-width a = 10 km, and background wind

speed U = 20m/s. The domain is a 240 km × 50 km isother-

mal atmosphere with background temperature T = 250 K. A

damping layer is used in the topmost 20 km of the domain,

with 𝜇Δt = 0.3, and final time t = 15000 s.

A non-hydrostatic flow is simulated using the same height

hm, a half-width a = 1 km, background wind speed U =
10m/s, a 144 km × 35 km atmosphere with surface tem-

perature Tsurf = 300 K and constant buoyancy frequency

N = 0.01 s−1, a damping layer in the topmost 10 km with

TABLE 4 Minimum and maximum 𝜃 perturbation from the
background state 𝜃surf = 300 K and front location (rightmost
intersection of −1 K contour with z = 0) in the density current test.

Grid size
(m)

𝚫𝜽min

(K)
𝚫𝜽max

(K)
Front

location (m)

400 −4.0704 0.5194 13939

200 −7.6091 0.1158 14941

100 −10.1768 0.1233 15313

50 −9.5342 0.0626 15384

25 −9.6589 0.0047 15402

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 4 Vertical velocity perturbation w for the hydrostatic mountain

wave test. (a) Hydrostatic case result at time t = 15, 000 s, with contours in

the range [−4, 4] × 10−3 m/s with a 5 × 10−4 m/s interval, (b) ENDGame

(Melvin et al., 2010), and (c) profiles at x = 0 for the results from the

current model (solid line) and from ENDGame (dashed line) [Colour figure

can be viewed at wileyonlinelibrary.com]

𝜇Δt = 0.15, and final time t = 9000 s. In both the hydrostatic

(Figure 4) and non-hydrostatic (Figure 5) flow cases, the

shape of the vertical velocity at final time of the mixed

finite-element simulation compares favourably both with the

results from the semi-implicit semi-Lagrangian model of

Melvin et al. (2010) (referred to as ENDGame) and also the

linear analytic solution presented there.

7.4 Schär hill

In the third test (Schär et al. 2002) a mountain range is con-

sidered with bottom boundary profile given by the function

zS = hme−(x∕a)2 cos2
(
𝜋x
𝜆

)
, (96)

FIGURE 5 Vertical velocity perturbation w for the non-hydrostatic

mountain wave test. (a) Non-hydrostatic case result at time t = 9, 000 s,

contours in the range [−4.8, 4.8] × 10−3 m/s with a 6 × 10−4 m/s interval. (b)

ENDGame (Melvin et al., 2010), and (c) profiles at x = 0 for the results

from the current model (solid line) and from ENDGame (dashed line)

[Colour figure can be viewed at wileyonlinelibrary.com]

with hm = 250 m, 𝜆 = 4 km, and a = 5 km. The domain

is a 100 km × 30 km atmosphere with surface temperature

Tsurf = 288 K, constant buoyancy frequency N = 0.01 s−1,

and a background wind U = 10 m/s. A damping layer is used

in the top 10 km, with 𝜇Δt = 1.2. At final time t = 2250 s, the

vertical velocity distribution matches the ENDGame result

reasonably well (Figure 6), and the amplitude of the waves

above the mountain is again similar to both ENDGame and

the results of Klemp et al. (2003). As with ENDGame (Melvin

et al., 2010), in order to obtain solutions that compare well

with the linear solution, a consistent discretization of cer-

tain metric terms is needed, as described in section 5.3.3.

Without this correction, the same distortion as seen in Klemp

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


14 MELVIN ET AL.

FIGURE 6 Vertical velocity perturbation w after 5 hr for the 2D Schär hill

test. Contours are plotted in the range [−0.5, 0.5]m/s with a 5 × 10−2 m/s

interval. (a) Δt = 8 s, (b) Δt = 8 s with inconsistent metric terms, and (c)

profiles at x = 0 for the results with consistent metrics from the current

model (solid line) and from ENDGame (dashed line) from Melvin et al.
(2010) [Colour figure can be viewed at wileyonlinelibrary.com]

et al. (2003) and Melvin et al. (2010) of the waves above the

mountain is present (Figure 6b.

7.5 3D medium-steep bell-shaped hill

Next, the three-dimensional flow over a bell-shaped hill of

Lock et al. (2012) and Yamazaki et al. (2016) is considered.

The bottom boundary profile is:

zS = hm[
1 + (x∕a)2 + (y∕a)2

]3∕2
, (97)

with hm = 400 m, a = 1 km. The maximum value of

the derivative of Equation 97 corresponds to an approxi-

mate slope of 20◦. The domain is a 60 km × 40 km × 16 km

FIGURE 7 Vertical velocity perturbation after 1 hr (900 time steps) for the

bell-shaped hill test. (a) x–z slice at y = 0, (b) y–z slice at x = 2, 000 m, (c)

x–y slice at z = 800 m, (d) x–y slice at z = 2, 000 m,. The contour interval is

0.25 m/s for (a), and 0.1 m/s otherwise [Colour figure can be viewed at

wileyonlinelibrary.com]

atmosphere with surface temperature Tsurf = 293.15 K, con-

stant buoyancy frequency N = 0.01 s−1, and a background

wind U = 10m/s. A damping layer is used in the top 6 km,

with 𝜇Δt = 1.2. The vertical velocity distribution at final time

t = 3600 s is in line with the literature (Figure 7; cf. figure 7

in Lock et al., 2012 and figure 10 in Yamazaki et al., 2016).

7.6 3D rising bubble

The 3D rising bubble test of Kelly and Giraldo (2012) is

used. This simulates a buoyant thermal bubble on a neutrally

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 8 Potential temperature perturbation from background state of 𝜃 = 300 K for the 3D rising bubble test. (a, c, e) x–z slices at y = 0. (b, d, f) x–y slices

taken at the level indicated by the dashed line in the x–z slices. (a, b) show initial data, (c, d) at t = 200 s and (e, f) at t = 400 s, (all with contours in the range

[0.05, 0.5]K with a 0.05 K interval) [Colour figure can be viewed at wileyonlinelibrary.com]

stratified isentropic background state with 𝜃 = Tsurf = 300 K

in a domain 1 km × 1 km × 1.5 km. A spherical perturbation

of radius r0 = 250 m, located at (x0, y0, z0) = (0, 0, 350) m is

added to the background state. The perturbation is defined by

𝜃′ =

{
A
[
1 + cos

(
𝜋r
r0

)]
r ≤ r0,

0 r > r0,
(98)

with r =
√[

(x − x0)2 + (y − y0)2 + (z − z0)2
]

and A = 0.25 K

as in Abdi and Giraldo (2016). Snapshots of the bubble at t =
0, 200 and 400 s are shown in Figure 8 and a one-dimensional

cross-section at x = y = 0 in Figure 9. These results com-

pare well with those of Kelly and Giraldo (2012), notably

maintaining a maximum value of the perturbation close to

0.5 K and only exhibiting a small undershoot above the bub-

ble, comparable to the discontinuous Galerkin (DG) method

of Kelly and Giraldo (2012).

8 SUMMARY

A method for coupling a mixed finite-element method

alongside a finite-volume transport scheme and an iterative

semi-implicit time scheme has been presented. This method

seeks to combine the benefits of all three schemes: the numer-

ical consistency (independent of the mesh) and accurate wave

dispersion properties of the mixed finite-element scheme, the

flexibility and accuracy of a high-order upwind treatment of

scalar advection from the finite-volume transport scheme, and

the stable treatment of physically insignificant fast waves by

the semi-implicit scheme.

The resulting model has been applied to a standard set of

two-dimensional and three-dimensional test cases in Carte-

sian domains from the literature. This model has a similar

level of accuracy to other models on these tests, including the

semi-implicit semi-Lagrangian ENDGame dynamical core

http://wileyonlinelibrary.com
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FIGURE 9 Potential temperature perturbation from background state of

𝜃 = 300 K at x = y = 0 after 400 s for the 3D rising bubble

currently used at the Met Office. Nevertheless, a range of

improvements and extensions to the model presented here are

currently being developed:

1. The discretization presented here is valid for arbitrary

quadrilateral-based meshes and future work will report on

the extension of this model to spherical three-dimensional

domains using quasi-uniform grids.

2. The computation of the vorticity in the W1 space (19) used

here can introduce spurious oscillations. Although this has

minimal effect on the results shown here, upwind-based

schemes such as that used by Natale et al. (2016) are being

investigated to improve on this aspect.

3. The method of lines scheme used to transport scalars

imposes a time-step restriction on the model due to

the CFL number constraint. Future work will investi-

gate removing this constraint through using a flux-form

semi-Lagrangian scheme for the scalars and possibly also

for the velocity components.
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APPENDICES

A. FINITE-ELEMENT SPACES

Consider a domain D partitioned into a mesh consisting of

DC cells, DF faces, DE edges and DV vertices. Denoting the

coordinates by (𝜒1, 𝜒2, 𝜒3), where 𝜒1 and 𝜒2 are horizontal

coordinates and 𝜒3 a vertical coordinate, the finite-element

function spaces used here at order l for hexahedral elements

correspond to:

W0 The Ql+1 space of scalar functions built from the ten-

sor product of Pl+1 (𝜒1)Pl+1 (𝜒2)Pl+1 (𝜒3) polynomials of

order l + 1 with full continuity between cells. The dimen-

sion of this space is dim (W0) = DV + lDE + l2DF + l3DC

W1 The Nédélec space of vector functions built from the

tensor product of two Pl+1 polynomials and one Pl

polynomial with continuity between cells only in the

tangential direction. The dimension of this space is

dim (W1) = (l + 1)DE + 2l (l + 1)DF + 3l2 (l + 1)DC

W2 The Raviart–Thomas space of vector functions built from

the tensor product of one Pl+1 polynomial and two

Pl polynomials with continuity between cells only in

the normal direction. The dimension of this space is

dim (W2) = (l + 1)2 DF + 3l (l + 1)2 DC

W3 The QDG
l space of scalar functions built from the ten-

sor product of Pl (𝜒1)Pl (𝜒2)Pl (𝜒3) polynomials with no

continuity between cells. The dimension of this space is

dim (W3) = l3DC

W𝜃 The space of scalar functions Pl (𝜒1)Pl (𝜒2)Pl+1 (𝜒3)
based on the vertical part of W2. These are discontinuous

between cells in the horizontal directions but continuous

between cells in the vertical direction.The dimension of

this space is dim (W𝜃) = (l + 1)2 D∗
F + l (l + 1)2 DC, where

D∗
F is a subset of DF containing only the faces in the 𝜒3

direction.

W𝜒 The QDG
m space of scalar functions built from the tensor

product of Pm (𝜒1)Pm (𝜒2)Pm (𝜒3) polynomials with no

continuity, where m may be different from l. The dimen-

sion of this space is dim
(
W𝜒

)
= m3DC

B. BASIS FUNCTIONS

For hexahedral elements each basis function can be decom-

posed into the tensor product of three orthogonal polynomi-

als, multiplied by a unit vector for the basis functions in the

vector spaces W1 and W2. Two orders of polynomial func-

tions are required in order to fully specify the basis functions;

if the functions in W3 are order l, the two sets of polynomials

can be denoted by

Fi (𝜂) ≡
l+1∏
j=0
j≠i

𝜂 − 𝜂j

𝜂i − 𝜂j
, i = 0,… , l + 1, (B1)

and

Gi (𝜂) ≡
l∏

j=0
j≠i

𝜂 − 𝜂j

𝜂i − 𝜂j
, i = 0,… , l. (B2)

These are the Lagrange interpolating polynomials that take

the value 0 at 𝜂 = 𝜂j, j ≠ i, and the value 1 at 𝜂 = 𝜂i. Here 𝜂

denotes a generic coordinate. The polynomials Fi are of order

l + 1 and those for Gi are of order l. For l = 0 equation B2

https://doi.org/10.1016/j.jcp.2015.02.045
https://doi.org/10.1016/j.jcp.2015.02.045
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is the empty product giving G0 (𝜂) ≡ 1. The locations of the

basis nodal points 𝜂j are evenly spaced in the computational

coordinate 𝜂 and include the endpoints, 𝜂 = 0, 1. For con-

stant functions, the centre point 𝜂 = 1∕2 is nominally used

as the nodal point. Using Equations B1 and B2 then the basis

functions, in the reference coordinates 𝝌 ≡ (
𝜒1, 𝜒2, 𝜒3

)
, for

space W0 are given by

𝛾ijk
(
𝝌
) ≡ Fi

(
𝜒1

)
Fj
(
𝜒2

)
Fk
(
𝜒3

)
. (B3)

Those in W1 are given by

cijk
(
𝝌
) ≡ ⎧⎪⎨⎪⎩

Gi
(
𝜒1

)
Fj
(
𝜒2

)
Fk
(
𝜒3

)
i,

Fi
(
𝜒1

)
Gj
(
𝜒2

)
Fk
(
𝜒3

)
j,

Fi
(
𝜒1

)
Fj
(
𝜒2

)
Gk
(
𝜒3

)
k.

(B4)

Those in W2 are given by

vijk
(
𝝌
) ≡ ⎧⎪⎨⎪⎩

Fi
(
𝜒1

)
Gj
(
𝜒2

)
Gk
(
𝜒3

)
i,

Gi
(
𝜒1

)
Fj
(
𝜒2

)
Gk
(
𝜒3

)
j,

Gi
(
𝜒1

)
Gj
(
𝜒2

)
Fk
(
𝜒3

)
k.

(B5)

Those in W𝜃 are given by

wijk
(
𝝌
) ≡ Gi

(
𝜒1

)
Gj
(
𝜒2

)
Fk
(
𝜒3

)
. (B6)

Finally those in W3 are given by

𝜎ijk
(
𝝌
) ≡ Gi

(
𝜒1

)
Gj
(
𝜒2

)
Gk
(
𝜒3

)
. (B7)

For the results presented here only the lowest-order ele-

ments, l = 0, are used. In this case, and assuming the basis

nodal points for the linear functions Fi are at the extremities

of the reference cell so that 𝜂0 = 0 and 𝜂1 = 1, Equations B1

and B2 give:

F0 (𝜂) = 1 − 𝜂, (B8)

F1 (𝜂) = 𝜂, (B9)

and

G0 (𝜂) = 1, (B10)

and these are shown in Figure B1.

FIGURE B1 Basis functions needed for l = 0 order elements

C. EVALUATION OF DISCONTINUOUS
FIELDS AT AND ACROSS CELL FACES

Consider a function 𝜑 and an interior face F shared by cells

C− and C+. Let n−
F be the vector normal to the face F that is

outward pointing for cell C− and let n+
F be the correspond-

ing outward-pointing vector normal to face F for cell C+. The

inner and outer traces of 𝜑 on the face F are denoted by 𝜑−
F

and 𝜑+
F , respectively. These are defined to be:

𝜑±
F (x, t) ≡ lim

𝜀→0
𝜑(x ± 𝜀n−

F , t). (C1)

Then the face value of 𝜑 and the jump in 𝜑 across that face

are defined, respectively, to be:

{𝜑}F ≡ 1

2

(
𝜑+

F + 𝜑−
F

)
, (C2)

and ⟦𝜑⟧F = 𝜑−
F n−

F + 𝜑+
F n+

F . (C3)

If the face F of cell C− is an exterior face then define:

{𝜑}F = 𝜑, ⟦𝜑⟧F ≡ 𝜑n−
F . (C4)

If 𝜑 is a vector, then the multiplications in the definition of⟦𝜑⟧ are dot products. Therefore, if 𝜑 is a scalar then {𝜑} is

also a scalar but ⟦𝜑⟧ is a vector, whilst if 𝜑 is a vector then

{𝜑} is also a vector but ⟦𝜑⟧ is a scalar.

D. EVALUATION OF THE JACOBIAN

With a linear coordinate space the coordinates within a cell C
are given by

𝜒i =𝜒 (1)
i F0

(
𝜒1

)
F0

(
𝜒2

)
F0

(
𝜒3

)
+ 𝜒 (2)

i F1

(
𝜒1

)
F0

(
𝜒2

)
F0

(
𝜒3

)
+ 𝜒 (3)

i F0

(
𝜒1

)
F1

(
𝜒2

)
F0

(
𝜒3

)
+ 𝜒 (4)

i F1

(
𝜒1

)
F1

(
𝜒2

)
F0

(
𝜒3

)
+ 𝜒 (5)

i F0

(
𝜒1

)
F0

(
𝜒2

)
F1

(
𝜒3

)
+ 𝜒 (6)

i F1

(
𝜒1

)
F0

(
𝜒2

)
F1

(
𝜒3

)
+ 𝜒 (7)

i F0

(
𝜒1

)
F1

(
𝜒2

)
F1

(
𝜒3

)
+ 𝜒 (8)

i F1

(
𝜒1

)
F1

(
𝜒2

)
F1

(
𝜒3

)
, (D1)

for i = 1,… , 3. Here the mesh is further assumed to be

uniform in the horizontal such that

𝜒 (1)
1

= 𝜒 (3)
1

= 𝜒 (5)
1

= 𝜒 (7)
1

= 𝜒−
1
, (D2)

𝜒 (2)
1

= 𝜒 (4)
1

= 𝜒 (6)
1

= 𝜒 (8)
1

= 𝜒+
1
, (D3)

𝜒 (1)
2

= 𝜒 (2)
2

= 𝜒 (5)
2

= 𝜒 (6)
2

= 𝜒−
2
, (D4)

𝜒 (3)
2

= 𝜒 (4)
2

= 𝜒 (7)
2

= 𝜒 (8)
2

= 𝜒+
2
, (D5)

and Δ𝜒1 ≡ 𝜒+
1
− 𝜒−

1
and Δ𝜒2 ≡ 𝜒+

2
− 𝜒−

2
. Therefore the

Jacobian can be simplified to

J =

[Δ𝜒1 0 0
0 Δ𝜒2 0
𝜀1 𝜀2 𝜀3

]
, (D6)
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where 𝜀i denotes a linear interpolating function in the 𝜒i
direction of the change in the 𝜒3 coordinate, i.e.

𝜀1 ≡ [(𝜒 (2)
3

−𝜒 (1)
3

)(
1 − 𝜒2

)
+
(
𝜒 (4)

3
−𝜒 (3)

3

)
𝜒2

](
1 − 𝜒3

)
+
[(

𝜒 (6)
3

− 𝜒 (5)
3

) (
1 − 𝜒2

)
+
(
𝜒 (8)

3
−𝜒 (7)

3

)
𝜒2

]
𝜒3, (D7)

𝜀2 ≡ [(𝜒 (3)
3

−𝜒 (1)
3

)(
1 − 𝜒1

)
+
(
𝜒 (4)

3
−𝜒 (2)

3

)
𝜒1

](
1 − 𝜒3

)
+
[(

𝜒 (7)
3

− 𝜒 (5)
3

) (
1 − 𝜒1

)
+
(
𝜒 (8)

3
−𝜒 (6)

3

)
𝜒1

]
𝜒3, (D8)

𝜀3 ≡ [(𝜒 (5)
3

−𝜒 (1)
3

)(
1 − 𝜒1

)
+
(
𝜒 (6)

3
−𝜒 (2)

3

)
𝜒1

](
1 − 𝜒2

)
+
[(

𝜒 (7)
3

− 𝜒 (3)
3

) (
1 − 𝜒1

)
+
(
𝜒 (8)

3
−𝜒 (4)

3

)
𝜒1

]
𝜒2. (D9)

E. FINITE-ELEMENT ADVECTION OF THE
REFERENCE POTENTIAL TEMPERATURE

The linear approximation  to the Jacobian  requires the

evaluation of a finite-element estimate of the advection of

the reference potential temperature field 𝜃∗ by the increment

to the wind, u′, specifically ⟨w,u′ ⋅ 𝛻𝜃∗⟩. However, since

𝜃∗ ∈ W𝜃 is horizontally discontinuous, this term has to

be integrated by parts. Following the same procedure as

used to derive equation 18 together with the definitions of

Appendix C, the result is:⟨
w,u′ ⋅ 𝛻𝜃∗

⟩
=
∑

C

⟨
wu′, 𝛻𝜃∗

⟩
C

=
∑

F

⟨⟨⟦wu′⟧F, {𝜃∗}F⟩⟩F

−
∑

C

⟨
𝛻C ⋅

(
wu′) , 𝜃∗⟩

C

= ⟨⟨⟦wu′⟧, {𝜃∗}⟩⟩ − ⟨𝛻C ⋅
(
wu′) , 𝜃∗⟩ .(E1)

Transforming this expression to use the reference cell gives⟨
w,u′ ⋅ 𝛻𝜃∗

⟩
= ⟨⟨⟦ŵû′⟧,{𝜃∗}⟩⟩ − ⟨𝛻̂C ⋅

(
ŵû′) , 𝜃∗⟩ , (E2)

where ⟨⟨⋅, ⋅⟩⟩ now denotes the surface integrals over the col-

lection of all cell faces evaluated using the reference cell and⟦⋅⟧ is defined in terms of normal vectors defined for the ref-

erence cell. The form for P𝜃∗

𝜃2
given by Equation 87 follows

from this expression.


