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Poincaré Plot Image and Rhythm–Specific Atlas for
Atrial Bigeminy and Atrial Fibrillation Detection
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Abstract—A detector based only on RR intervals capable of
classifying other tachyarrhythmias in addition to atrial fibril-
lation (AF) could improve cardiac monitoring. In this paper a
new classification method based in a 2D non-linear RRI dynamics
representation is presented. For this aim, the concepts of Poincaré
Images and Atlases are introduced. Three cardiac rhythms were
targeted: Normal sinus rhythm (NSR), AF and atrial bigeminy
(AB). Three Physionet open source databases were used. Poincaré
Images were generated for all signals using different Poincaré plot
configurations: RR, dRR and RRdRR. The study was computed
for different time window lengths and bin sizes. For each rhythm,
the Poincaré Images of the 80% of that rhythm’s patients were
used to create a reference image, a Poincaré Atlas. The remaining
20% were used as test and classified into one of the three rhythms
using normalized mutual information and 2D correlation. The
process was iterated in a tenfold cross-validation and patient-
wise dataset division. Sensitivity results obtained for RRdRR
configuration and bin size 40 ms, for a 60 s time window were
94.35%±3.68, 82.07%±9.18 and 88.86%±12.79 with a specificity
of 85.52%±7.46, 95.91%±3.14, 96.10%±2.25 for AF, NSR and
AB respectively. Results suggest that a rhythm’s general RRI
pattern may be captured using Poincaré Atlases and that these
can be used to classify other signal segments using Poincaré
Images. In contrast with other studies, the former method could
be generalized to more cardiac rhythms and does not depend on
rhythm-specific thresholds.

Index Terms—Atrial fibrillation (AF), Atrial bigeminy (AB),
Normalized mutual information (NMI), 2D Correlation, Rhythm
classification.

I. INTRODUCTION

CARDIAC tachyarrhythmias refer to a group of patho-
logical depolarization patterns that may occur both in

the ventricles and in the atria. Although supraventricular
tachyarrhythmias do not represent an explicit life-threatening
risk, they are associated with high mortality and increased
morbidity. Atrial tachyarrhythmias like atrial fibrillation (AF),
atrial flutter (AFL) and atrial tachycardia (AT) are linked to
thromboembolic events and myocardial tissue deterioration
[1]. Their monitoring is thus, important to evaluate their oc-
currence and burden in order to apply the necessary treatment
and follow its effectiveness.

Implantable loop recorders (ILR) are currently the option
that offers the longest non-interrupted monitoring. Other de-
vices as single-lead surface recorders have also been developed
to attain a more extended monitoring than classical 24-48 hour
ambulatory Holters. Both types of devices are limited either
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by signal quality or by computational power, memory and
battery. Atrial signals, are more susceptible to noise and they
typically require of computationally expensive methods for
noise and ventricular activity cancellation. Arrhythmia detec-
tion algorithms based on wave morphology are still unrealistic
for signals’ quality and hardware restrictions of currently
available devices. Therefore, they normally rely mainly on
cardiac rhythm parameters by R peak detection, more resistant
against noise interference [2].

Many algorithms have been proposed for AF detection
using only RR interval (RRI) variability; based on statis-
tical dispersion, entropy, symbolic dynamics, time-varying
coherence function and Poincaré plot [3]. Many of these
studies have proven to be very effective for the detection
of AF. However, all of them focused on characterizing and
developing a model specific for AF, unable to detect other
atrial rhythms [2], [4]–[7]. To the best of our knowledge, there
is a lack of methodologies based solely on RRIs capable of
identifying tachyarrhythmias other than AF. Nevertheless, also
AFL is known to be linked with stroke [8], [9] and AFL, AT
and multifocal atrial tachycardia (MAT) with cardiomyopa-
thy caused by rapid atrioventricular conduction. Other atrial
electrophysiological disturbances as frequent premature atrial
complexes (PAC) previously considered clinically irrelevant,
have also been linked to higher stroke incidence, myocardial
tissue degradation and AF development [10]–[13]. In addition,
maintained atrial bigeminy (AB) has been shown to promote
left ventricular remodelling and deterioration [14]. These
findings suggest to pay more attention to these conditions
whose prevalence should not be ignored. Monitoring exclu-
sively AF may underestimate the influence of other types of
tachyarrhythmias and lead to an incomplete evaluation of the
cardiac state. Furthermore, frequent PACs and other rhythms
that alter the RRI sequence are known to hinder AF detectors
as they are confused with AF, increasing false positive rates
[15], [3]. Targeting them directly would improve AF detection.

This study poses a new approach towards cardiac tach-
yarrhythmia classification by transforming RRI into images.
Differently than current methodologies, the proposed model
can be generalized to different rhythms and, in contrast
with AF-focused methods, it does not define rhythm-specific
parameters and thresholds. The Poincaré plot is a graphical
representation that describes the RRIs non-linear relationships
by plotting each RRI against its previous one. Depending on
the underlying cardiac rhythm, the plot generated by the RR
or dRR intervals follows a diverse pattern that can be visually
recognized as described previously in [16], [17]. The proposed
methodology is based on the observation that different rhythms
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generate different patterns in the plot, and that these can
be captured and used to classify other RRIs. Past studies
used Poincaré plots for AF detection for defining parameters
and thresholds to describe particular patters in the plot [7],
[18]–[21]. In this study, we introduce two new versions of
the Poincaré plot to which we refer as Poincaré Images and
Poincaré Atlases and we explore the possibility of identifying
and classifying NSR, AB and AF ECG segments.

Preliminary results considering only a type of Poincaré
Image, bin size and time window as well as a simpler
classification metric, were presented in [22]. In this work, the
concepts of Poincaré Image and Poincaré Atlas are extensively
assessed and the parameters influencing their computation
are optimized for obtaining better classification results. The
improvements introduced in this work with respect to [22]
include: the exploration of the bin size influence on Poincaré
Images and Altases, the study of different types of Poincaré
Images configuration, the optimization of the distance metric
between Poincaré Images and Atlases and finally the assess-
ment of the methodology’s performance for reduced time
windows that range from 120 s to 20 s (in [22] only a time
window of 120 s was used). The major contribution of this
study is thus, the definition of Poincaré Images and Atlases
and the demonstration of their potential to detect and classify
different cardiac rhythms with segments as short as 20 s.

II. MATERIALS AND METHODS

The method adopted is based on the analysis of RR intervals
and their representation through the Poincaré plots, i.e. the
2-D graph of the current RR versus the previous one. The
plot provides a representation of the RR interval dispersion
within the RR series and, in a non-linear dynamics view, is the
two-dimensional (2-D) reconstructed RR interval phase-space,
which is a projection of the reconstructed attractor describing
the dynamics of the cardiac system [23], [24]. In this study, the
Poincaré plot is treated as an intensity image by introducing
the concept of Poincaré Image and further computations are
performed on it.

A. The Poincaré Image

Let’s consider the pairs of two consecutive RR intervals
(RRn, RRn+1), being n ∈ {1, 2, . . . , N − 1} with N the num-
ber of samples in the considered epoch. The Poincaré Image,
P [j, k] is a pixelated version of the traditional, continuous
Poincaré plot and is defined as follows

P [j, k] =
N−1∑
n=1

1[j,∆x](RRn) · 1[k,∆y](RRn+1) (1)

where 1k,∆x(·) is the indicator function

1[m,∆v](x) :=

{
1 if x ∈ [m∆v, (m + 1)∆v) ,

0 if x /∈ [m∆v, (m + 1)∆v) .
(2)

and where k, j are the bin indexes and ∆x and ∆y
are the selected bin size, respectively. Thus, P [j, k] is
the counting of the number of times RRn lays in the

interval [k∆x, (k + 1)∆x) and, jointly, RRn+1 lays in
[j∆y, (j + 1)∆y). The values of P [j, k] are computed in a
range of interest and for given values of ∆x and ∆y. It’s worth
noting that P [j, k] depends on three parameters: N,∆x,∆y.
The Poincaré Image differs from the Poincaré plot because it
is discretized in bins and each bin has an associated amplitude.
A comparison of the two, for the case of RR segment in NSR,
is shown in figure 1.

B. Rhythm classification by Poincaré Image

The basic idea behind the proposed classification strategy
is that ECG segments with similar rhythm do share similar
Poincaré Images. Mutual Information (MI) metric can be used
to measure the similarity between two Poincaré Images: it is
a commonly adopted metric to measure similarity between
medical images (both 2D and 3D) widely used to evaluate
image alignment in image registration problems (Viola et
al. [25] and Maes et al. [26]). It measures the amount of
information that one variable contains about another one.
As a similarity measure it has a number of advantages, as
it assumes no prior functional relationship between images.
Rather, it assumes a statistical relationship that can be captured
by analyzing the images’ joint entropy. MI can be expressed
through diverse mathematical forms such as Shannon entropy
(SE), joint entropy or the Kullball–Leibler distance. Each
definition contains the same information and can be rewritten
into the others. Based on SE, the MI, I(A,B), between two
images A and B, can be expressed as

I(A,B) = H(B)−H(B/A) (3)

where H(B) corresponds to the SE of image B based
on the probability distribution of its pixels’ values. H(B/A)
instead represents the conditional entropy computed on the
conditional probabilities p(b/a) of pixels from image A and
B [27]. As there does not exist a defined upper bound for MI,
different normalization strategies have been suggested [28],
[29]. Normalized MI (NMI) as an analogue to covariance and
related with the geometrical mean as in [29] is expressed as

NMI(A,B) =
I(A,B)√
H(A)H(B)

(4)

A different approach for measuring dependencies between
Poincaré images is the 2D correlation analysis. While MI
and NMI evaluate similarities between two images based on
their statistical distributions, the 2D correlation coefficient
quantifies the energy metric among them. It is computed as

Corr(A,B) =

∑
y

∑
x

(
Axy −A

) (
Bxy −B

)
√∑

y

∑
x

(
Axy −A

)2∑
y

∑
x

(
Bxy −B

)2 (5)

where x and y are the number of pixels per row and column
and A and B correspond to the mean values of image A and
B respectively.

Let’s now suppose we know the characteristic Poincaré
Image for a given cardiac rhythms of interest, i.e. a Poincaré
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Figure 1. Creation of Poincaré Images from Poincaré Plots.(a) Poincaré Plot obtained from a signal segment of 120 s. (b) Grid indicating the bin discretization
of the Poincaré Plot. The discontinuos line accounts for the common limits applied for all Poincaré Images. (c) Poincaré Image created using a bin size of
[40x40] ms. (d) Poincaré Image of bin size [20x20].

Image which represents the typical RR pattern for that cardiac
rhythm. We will call it Poincaré Atlas (the way these Poincaré
Atlas are built will be discussed in the next section). Let’s Ar

be the Poincaré Atlas for rhythms r and let’s suppose we are
interested in recognizing R different rhythms (let’say, r = 1:
NSR, r = 2: AF, r = 3:AT, ... r = R: AB). Let’s now consider
a new RR segment, whose rhythm has to be identified. A
strategy could be to compare its Poincaré Image with the all
the available Atlases and select the one which maximize the
NMI and 2D Correlation coefficient, namely

r̂NMI = arg max
0≤r≤R

NMI(Ar, P ) (6)

r̂Corr = arg max
0≤r≤R

Corr(Ar, P ) (7)

where r̂ is now the estimated cardiac rhythm. Note that
Equations (6, 7) do not require the setting of any threshold to
identify a rhythm. Both parameters could be combined as

r̂ = arg max
0≤r≤R

(
NMI(Ar, P )

r̂NMI
· Corr(Ar, P )

r̂Corr

)
(8)

The procedure is described in the following figure
In order to apply Equation (8) the set of Atlases had to be

computed. Atlases were derived as the average among all the
Poincaré Image of the same cardiac rhythm. That is

Ar =
1

Mr

Mr∑
m=1

P
(r)
m

N
(r)
m

(9)

where P
(r)
m is the Poincaré Image of the mth epoch of

rhythm r within the available dataset, N (r)
m the total number

of RR points in the Poincaré Image and and Mr is the total
number of epochs of rhythm r. Prior to the computation of
NMI and Corr, images were expressed as probability maps
as in Equation (9). In addition, in order to discretize values,
Poincaré Images and Atlases were scaled to Uint16 before
Equation (6).

NSR Atlas AF Atlas AB Atlas

(a) (b) (c)

Figure 2. Examples of Poincaré Atlases (first row) and Images (second row)
of RR configuration for a time window of 120s and bin size 20ms and
rhythms: (a) NSR, (b) AF, (c) AB. Arrows represent the comparison process
of NMI and 2D correlation. Solid arrow lines represent the Atlas attaining
the maximum value as expressed in 8 for (a),(b) and (c), respectively.

C. Analyzed Datates and Processing

The MIT-BIH arrhythmia database (MITDB), the MIT-BIH
atrial fibrillation database (AFDB), and the long term atrial
fibrillation database (LTAFDB) were used in this study. The
MITDB contains 48 ambulatory half-hour ECG recordings.
The AFDB contains 26, 10-hour ambulatory recordings and
the LTAFDB 84 recordings of 24–25 hours each [30]. All
databases contain beat annotations. From the MITDB and
LTAFDB segments labelled as AF, NSR and AB were used.
From the AFDB only AF was included. Other rhythms were
not considered because either too short episodes or very few
episodes were present.

RR sequences were divided into segments of equal length
(in s) with 50% overlap. Four window lengths were consid-
ered: 120 s, 60 s, 30 s and 20 s. For each segment, three
types of Poincaré Images were computed: 1) The RR Poincaré
Image, obtained by Equation (1), 2) the dRR Poincaré Image,
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Figure 3. One of the 10 different sets of Poincaré Atlas for RRdRR images computed during the study representing NSR, AF and AB. Values are probability
distributions discretized as uint16.

computed by replacing the series of RR intervals in Equation
(1) with the series of first difference of the RRs, namely
dRRn = RRn+1−RRn, and, finally 3) the RRdRR Poincaré
Images, built by the juxtaposition (side–by–side) of the first
two images. All Images were built using the same bin–size
on both axes (∆x = ∆y). Furthermore, four values of bin–
size were tested: 5 ms, 10 ms, 20 ms and 40 ms. In each
Image, x– and y-axes ranges were set from 0 ms to 1600
ms for RR Image and from -800 ms to 800 ms for the
dRR ones. Images’ dimensions (in pixels) varied according
to the selected bin–size resulting in a [320x320], [160x160],
[80x80] and [40x40] matrix for ∆x = 5 ms, ∆x = 10 ms,
∆x = 20 ms and ∆x = 40 ms, respectively. The combination
of the different bin-sizes and window lengths resulted in 16
different configurations that were used to built RR, dRR and
RRdRR Images. Each Image was labelled as a determined
rhythm (NSR, AF, etc...) according to the dominant cardiac
rhythm of the relative RR segment (i.e the dominant rhythm
was the rhythm that covered more than the 50% of the signal
segment used to build the Poincaré Image). From all the
images generated, only those labelled as NSR, AF or AB were
considered.

D. Performance evaluation
The available Poincaré Image dataset was divided in two

subsets by patient–wise division, i.e. each subset contained
images of different patients: the training–set (containing 80%
of the available patients) and the independent test–set (con-
taining the remaining 20% ones). The training–set Images
were used to generate the Atlases for each rhythm by averaging
(Equation (9)) all the available images belonging to the same
cardiac rhythm. Then, for each image of the test–set, the NMI
and 2D Correlation coefficient between the image and the
Atlases were computed and the rhythm identified according
to Equation (8). A ten fold cross–validation was performed
to avoid bias related to a single split of the dataset. Given
the low and unequal distribution of AB images, AB patients
were divided as homogeneously as possible in the ten—fold
cross–validation sets. At each K–fold, 8 subsets were used for
train and 2 for test. Results are expressed as weighted mean
and standard deviation with respect to the number of classified
segments at each iteration.

III. RESULTS

The total amount of images generated for the three rhythms
is displayed in Table I. The last column of the table indicates
the total number of different patients from which the images
of each rhythm came from.

Table I
TOTAL NUMBER OF IMAGES AND PATIENTS PER RHYTHM.

Rhythm
Time Window (s)

Patients
120 60 30 20

NSR 52,000 103,800 207,100 309,800 113
AF 41,670 83490 167,100 250,800 114
AB 211 530 1303 2,251 30

A. Image choice

To choose the best image type (RR, dRR and RRdRR)
accuracy, sensitivity and specificity classification values were
compared for different window lengths and bin–sizes. As an
example the performance for AF classification is shown in
Table II. For AF classification, the usage of RR images led to
higher specificity but poorer sensitivity values than the usage
of dRR images. The combination of both in RRdRR led to a
more balanced relationship between sensitivity and specificity
maintaining similar accuracy values than dRR. Therefore, the
following results are shown for RRdRR only.

B. Distance metric for Poincaré Image classification

Accuracy, sensitivity and specificity values of the RRdRR
images classification after the 10 fold cross-validation are
gathered in Figures 4, 5 and 6. In each figure, each row of
three graphs represents a rhythm’s classification results using
different time windows and bin–sizes. Each line in a graph
represents the results obtained using the same time window
with varying bin–sizes along the x-axis.

Figures 4, 5 and 6 gather the classification results obtained
using NMI, 2D correlation and the combination of both,
respectively, distance metrics between Poincaré Images and
the rhythm–specific Atlases. The combination of NMI and
2D correlation as represented in Figure 6 led to a better
performance than both measures independently. Therefore,
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Table II
RESULTS FOR THE ALL TYPES OF AF IMAGES, TIME WINDOWS AND BIN

SIZE 40 ms.

TW (s) RR dRR RRdRR

Accuracy (%)

120 82.32±5.27 89.26±3.83 89.96±3.52
60 83.15±4.79 89.09±3.23 89.78±3.24
30 82.39±4.20 88.18±2.79 89.12±3.19
20 82.52±3.21 87.18±3.24 88.60±3.05

Sensitivity (%)

120 82.75±8.98 95.61±4.35 94.87±3.71
60 83.52±9.40 95.15±3.84 94.35±3.68
30 81.77±6.35 94.43±1.91 93.40±2.95
20 80.70±6.29 92.20±1.93 91.76±3.03

Specificity (%)

120 81.93±4.29 83.39±4.50 85.43±4.06
60 82.78±7.89 83.45±7.65 85.52±7.46
30 82.96±7.71 82.36±6.25 85.13±7.46
20 84.20±6.98 82.49±7.14 85.63±6.83

Values are presented as weighted mean ± standard deviation.
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Figure 4. Results for NMI as distance metric. Accuracy, sensitivity and
specificity values for the classification of NSR, AF and AB as a function
of time windows and bin sizes. NSR, AF and AB are shown from the top to
the bottom.

further results are presented and discussed just using this
combined metric as described in Equation 8.

C. Image parameter optimization

Independently of the bin size, the larger the time window,
the better the classification performance of AF and NSR. As
the time window was reduced, so was the standard deviation
for all rhythms.

The underrepresentation of AB, led to very high accuracy
values and higher standard deviation with respect to AF and
NSR. Sensitivity values for a time window of 120 s showed a
poorer performance in comparison to the other time windows
used due to the lower amount of AB images. Bin size did
not influence substantially results in term of accuracy values
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Figure 5. Results for 2D correlation as distance metric. Accuracy, sensitivity
and specificity values for the classification of NSR, AF and AB as a function
of time windows and bin sizes. NSR, AF and AB are shown from the top to
the bottom.
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Figure 6. Results for NMI and 2D correlation as distance metric. Accuracy,
sensitivity and specificity values for the classification of NSR, AF and AB as
a function of time windows and bin sizes. NSR, AF and AB are shown from
the top to the bottom.

for AF and NSR. However, it did affect the balance between
sensitivity and specificity values of AF and NSR.

D. Statistical analysis

A two-way ANOVA test was performed to study time
window and bin size influence in the classification of NSR,
AF and AB. Time window was significant for AF and AB
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Figure 7. Classification results after ten fold cross validation of the three time windows and bin–size [40x40] ms. Each bar represents in percentage, the
distribution of the classification of all images with a determined rhythm; NSR, AF or AB, into one of the three rhythms or non classified (NC).

sensitivity and specificity values respectively (p < 0.05), 120
s and 60 s the best options for both cases. Bin size was only
significant for NSR specificity, being 40 ms the best choice.
Based in this analysis, the best combination of parameters
would be a 120 or 60 s time window with 40 ms bin size.
Results for this combination are gathered in Table III.

Table III
CLASSIFICATION RESULTS WITH TIME WINDOW 60 S AND BIN SIZE 40 MS.

Rhythm Accuracy (%) Sensitivity (%) Specificity (%)
NSR 88.81±3.87 82.07±9.18 95.91±3.14
AF 89.78±3.24 94.35±3.68 85.51±7.46
AB 96.08±2.25 88.86±12.78 96.10±2.25

Values are presented as weighted mean ± standard deviation.

E. Optimized ECG classification

In Figure 7 the classification distribution of the Poincaré
Images for the four different time windows and optimal bin–
size is shown. Images were labelled as ”not classified” when
the score resulting from the computation of NMI and 2D corre-
lation was the same for more than one Poincaré Atlas. Each bar
of the graphs represents the 100% of images of a determined
rhythm and the percentage that has been classified into each
of the four different categories; NSR, AF, AB or not classified
(NC). Regardless of the time window and bin–size used,
the classification distribution of each different set of images
belonging to the same rhythm followed similar patterns. The
misclassified NSR images were always categorized as false AF
episodes in a higher percentage than AB episodes. AF false
negatives were although classified more often as NSR than as
AB. AB classification after ten fold cross-validation attained
higher standard deviation values with respect to the other
rhythms of study. However, as the time window was shortened
and the amount of AB images increased, the standard deviation
was reduced.

IV. DISCUSSION

Poincaré plots have been used as inspiration for the gen-
eration of parameters to describe non–linear RRI patterns,

typically focusing on the detection of AF [2], [5], [7], [21].
However, to the best of our knowledge, this is the first study
that considered the design represented in the plot as a whole.
The creation of a reference image specific for each rhythm
aimed to capture the general design created by that rhythm
as described by [16] even influenced by different noise levels
presence, ectopic beats, heart rate or inter–patient variability.

AF, NSR and AB rhythms were used to test the presented
methodology. As AB episodes are shorter and more infrequent
in the databases than AF and NSR, the number of images and
patients was inferior to those of the other two rhythms of
study. Different databases were used to maximize variability
between the signals employed. Noisy signal segments were
not excluded from this study. From the three types of Poincaré
Images studied, the combination of RR and dRR in RRdRR
led to a balanced relationship between AF sensitivity and
specificity. Even though both RR and dRR have been used
in several past studies [7], [18], [21], RRdRR has never
been reported before. Time windows of 120 s and 60 s were
the best options according to the statistical analysis. This is
compliant with the European Society of Cardiology (ESC)
AF guidelines which set 30 s as the minimum length for an
AF episode to be considered clinically relevant [31]. In the
presented methodology, a time window of 60 s would detect
>30 s episodes, as only the 50% of arrhythmia prevalence on
the time window’s samples is needed for its detection.

The condition of >30 s AF episodes is based on an agreed
convenience due to the limitations of current monitoring
techniques rather than on an electrophysiological basis. The
significance of shorter episodes still remains unclear. Hence,
their monitoring could be of clinical interest. Results obtained
for 30 s and 20 s did not differ more than 3 percentage points
from those of wider time windows as presented in Table II
and Figure 6. Even if better performance was achieved for
larger time windows, shorter ones as 20 s and 30 s could
be of greater interest from a clinical perspective. The aim of
presenting different time windows was not only to optimize
this parameter, but also to study how the methodology behaves
as it is shortened.

AF and NSR results suggest Poincaré Atlases and Images
manage to represent the complex RRI dynamics characteristic
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of a certain rhythm. Standard deviation values instead, show
the dependency of the methodology on the patients used both
for classification and for computation of the Atlases. This may
indicate than either more than one Atlas may be needed to
successfully capture all the different types of behaviour of AF
and NRS or than more patients are required to fully represent
the heterogeneity of the RR patterns characteristic of a certain
rhythm. AF for instance, is known to present different degrees
of organization [32] that may lead to different RRI behaviour.
Furthermore, the high standard deviation obtained for AB
classification clearly shows that the AB inter–patient variabil-
ity was not enough to provide a complete representation of
AB pattern for all cases. Lower sensitivity values obtained
in some K–fold iterations as 56.8%, 65.4% and 70.0% with
corresponding specificity 98.3%, 99.4% and 99.0% suggest
that the atlases created did not succeed in representing the AB
pattern of the test set population. However, high sensitivity
values as 97.7%, 96.7% or 94.6% with specificity 98.7%,
96.1% and 96.7% demonstrate that the Poincaré Atlas ap-
proach may successfully discriminate among AF, NSR and
AB. These results point out also at the necessity of the
proposed methodology of a higher number of patients and
episodes to build a rhythm–specific Atlas.

Nevertheless, with the enough amount of patients and
episodes RRI analysis using Poincaré Images would permit
the generalization of the method to different cardiac rhythms,
in contrast with current algorithms that are rhythm–specific
designed.

A. Related work

Other studies aiming to classify cardiac tachyarrhythmia
only through RRI analysis attempted to characterize a par-
ticular rhythm behaviour with one or more parameters and set
a threshold indicating the presence of such rhythm [2], [4], [5],
[7], [15], [18], [21], [33]–[35]. Those studies targeted a single
tachyarrhythmia and proved to be very effective at detecting
AF. However, they reported poor results when trying to detect
other rhythms as [2], [7].

A comparison of the former approach with the published
algorithms is rather challenging as current algorithms have
been optimized for the detection of AF while the one presented
in this work aims to target other rhythms simultaneously.
Contrast among them has been typically done by studying
AF detection on the AFDB. However, the AFDB does not
contain annotations for rhythms other than AF, AV junctional
rhythm and AFL, being these last two in a very low proportion.
Therefore, it is difficult to evaluate how other detector’s
performance is influenced by the presence of other rhythms
and how our results could improve by targeting them.

Lee et al. [34] published a methodology for AF detection
based on time varying coherence functions (TVCF) and sen-
sitivity They reported a sensitivity and specificity of 98.2%
and 97.7% respectively on the AFDB. However, when their
method was tested on the MIT-BIH arrhythmia database, that
contains other arrhythmia, specificity lowered from 97.7% to
81.2%. The thresholds computed for the detection of AF were
calculated using the same AFDB database, so performance

results using this database could be biased. Zhoe et al [5]
used symbolic dynamics and SE for AF detection, obtaining a
sensitivity and specificity of 97.4% and 98.4% on the AFDB.
Similarly to [34], their specificity dropped from 98.28% in
the AFDB to 87.41% in the MIT-BIH arrhythmia database.
Petrenas et al. [33] AF detector for an 8-beat window achieved
a sensitivity and specificity of 97.1% and 98.3% respectively
on the AFDB. One of the key points for the achievement
of such performance was the implementation of a bigeminy
and ectopic beat suppression algorithm. They also reported a
decrease in specificity when applied to the MIT-BIH database
from 98.3% to 86.4%.

These differences in performance show how explicitly tack-
ling other rhythms could improve AF monitoring. In addition,
they demonstrate that the high specificity rates reported on
AFDB might not be representative of AF detection in presence
of other arrhythmia. The former study does not intent to
present an specific classifier for AF and AB, but to intro-
duce a new type of approach towards the detection of atrial
tachyarrhythmia. It aims to put forward a method that could
be extended to different types of RRI patterns rather than a
model specifically designed to detect a single arrhythmia.

B. Limitations and future work
The major limitation of this study is the need of a consider-

able amount of tachyarrhythmia episodes and patients to create
the Poincaré Atlases. Some data augmentation techniques
could help overcome this issue. However, the resultant images
should still be physiologically feasible as otherwise the effect
could be counterproductive. Geometrical modification tech-
niques implying image transformations as rotation and flipping
would not fulfil this condition unless values representing RR
intervals are kept withing the physiological range. Although
we theorise that the proposed model could be applied to
describe other rhythms, the available data limited the study
to AF, NSR and AB. Furthermore, the amount of AB data
was very low in comparison with AF and NSR, which led
to a very high standard deviation values. Ideally, a set of
Poincaré Atlases should be built representing all different
tachyarrhythmia and made open-source for being used in other
studies.

V. CONCLUSION

This paper presents a new approach for cardiac tach-
yarrhythmia classification introducing the concepts of Poincaré
Images and Atlases for the creation of different rhythm ref-
erence models. In addition, a combined display of the RR
and dRR Poincaré Plot, RRdRR, has been introduced for the
joint description of the two-beat and three-beat variability. The
proposed method has been evaluated for the detection of AF,
AB and NSR segments with promising results, proving the
capacity of extending it to different rhythms.
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