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Abstract: Microgrids represent a flexible way to integrate renewable energy sources with pro-
grammable generators and storage systems. In this regard, a synergic integration of those sources
is crucial to minimize the operating cost of the microgrid by efficient storage management and
generation scheduling. The forecasts of renewable generation can be used to attain optimal man-
agement of the controllable units by predictive optimization algorithms. This paper introduces the
implementation of a two-layer hierarchical energy management system for islanded photovoltaic
microgrids. The first layer evaluates the optimal unit commitment, according to the photovoltaic
forecasts, while the second layer deals with the power-sharing in real time, following as close as
possible the daily schedule provided by the upper layer while balancing the forecast errors. The
energy management system is experimentally tested at the Multi-Good MicroGrid Laboratory under
three different photovoltaic forecast models: (i) day-ahead model, (ii) intraday corrections and (iii)
nowcasting technique. The experimental study demonstrates the capability of the proposed manage-
ment system to operate an islanded microgrid in safe conditions, even with inaccurate day-ahead
photovoltaic forecasts.

Keywords: photovoltaic (PV) forecast; microgrid; energy management system; photovoltaic energy;
mixed-integer linear programming

1. Introduction

The definition proposed by Lasseter in [1] of the microgrid (MG) concept is nowadays
worldwide recognized. An MG is an aggregation of electrical load and generators which,
with different degrees of coordination among one another, can work independently from
the main grid [2].

In an MG, generator units are usually distributed energy sources (that can either
be programmable such as the case of diesel generators or nonprogrammable, usually
exploiting renewable energy sources (RES) as photovoltaic (PV) fields and wind generators.
In order to properly balance the system and account for rapid variation both from the
production and consumption side, of fundamental importance are the energy storage
systems (ESS) [3]. In recent years, the MG definition was further developed, leading
to a broader concept of multi-energy systems, or multi-goods microgrids (MGMG) [4].
Those systems, in fact, have the goal of accounting for multiple needs leveraging on
the synergies among different energy forms and energy-related services (e.g., electricity,
heating, cooling and potable water). In addition, multiple storages can be adopted (i.e.,
batteries for the short term and hydrogen for the long term), making the system flexible and
more efficient. The key feature to accomplish this ambitious project is the development of
comprehensive energy management systems (EMS) able to properly optimize the dispatch
of the available units [5]. Various types of EMS have been proposed in the literature,
starting from rule-based EMS to more advanced optimization techniques [6]. Indeed, the
development of reliable forecast algorithms for load and RES generation profiles [7] has
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promoted the adoption of predictive optimization algorithms, which base decisions on
the expected future contingencies [8]. As for the PV power forecast, due to its intrinsic
nature, it increases the uncertainty degree. Therefore, the required forecast must be reliable
and must span on different time horizons to serve the scope of properly dispatching the
available units. In [9], Mazzola et al. developed a rolling horizon (RH) algorithm based
on mixed-integer linear programming (MILP) for an off-grid MGMG, while in [10] MILP
optimization was applied to the optimal control of a grid connected MG featuring a Battery
Energy Storage System (BESS). The EMS must be able to manage the challenges that the
MG concept present at different time-scales [11], starting from scheduling of MG operations
to power sharing, primary frequency and voltage control. Therefore, the design of an EMS
follows a hierarchical structure, with the upper layer in charge of the short-term planning
(i.e., unit commitment and storage management for the upcoming 24 h/day), and the
lower layers in charge of dispatching the units [12]. The employment of hierarchical EMS
is numerically demonstrated in [13] for a large-scale PV MG, while the authors in [14]
describe and successfully develop an online EMS on a laboratory scale MG. Relevant effort
has been made to study and develop MG EMS, but on-field validation of MG control
based on experimental activities is needed to fully characterize the outcomes of the EMS
implementation. In this respect, experimental MGs play an essential role, allowing the
demonstration of the MGMG concept, as well as the identification and overcoming of the
technical barriers [15]. The work [16] presents both simulation and experimental results of
a single-layer EMS based on MILP optimization. They considered a grid-connected MG,
demonstrating the capability of a rolling horizon approach in minimizing the operating
cost. A rule-based second layer is considered in the experimental activities carried out
in [17] for a small grid-connected PV-BESS system. A hierarchical scheme is also proposed
in [18], considering real-time experiments for on-grid systems made of a PV field, a wind
turbine and BESS. They validated the performances of hierarchical EMS by comparing it
with single-layer EMS. In [19], PV forecast is integrated into rolling horizon using a Sarima
approach and results are based only on simulation. In another work, [20], PV forecast
options are presented discussing potential applications within microgrids, but without any
simulations. Finally, a persistent PV forecast is adopted as an update of the forecast every
3 h and performance is evaluated through simulations of an on-grid case [21].

To the best of the author’s knowledge, neither detailed comparison of different PV
forecast approach nor experimental activities with hierarchical EMS have been carried out
for islanded MG.

This study covers this research gap by comparing three different PV forecasting
methodologies integrated into hierarchical EMS on MG operations: the comparison is
performed on four selected days in terms of primary energy consumptions to assess the
advantages of complex forecast approaches over simpler ones. In addition, the three
methodologies are also implemented in an experimental facility, the MultiGood MicroGrid
Laboratory (MG2Lab) [22], to demonstrate the method’s reliability and robustness. The
selected configuration represents an islanded microgrid, with PV as a renewable energy
source, BESS, an internal combustion engine and a water desalination system.

The present work is structured as follows: Section 2 provides a brief introduction to
the forecasting techniques available in literature together with an in-depth description of
the ones implemented here. Section 3 describes the EMS structure with all the needed
adjustments to properly account for and include non-dispatchable units such as PV. Then,
Sections 4 and 5 present the experimental setup together with a case study. Finally, Section 6
draws the conclusions.

2. PV Forecast Models

The power fluctuation shown by variable RES, like PV and wind, represents one of
the most relevant challenges for grid operators to guarantee the stability, security, and
reliability of integrated energy systems [23]. The availability of accurate power forecasts
can facilitate operations and, for this reason, have been extensively studied in the research
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community. Especially when dealing with isolated energy systems such as off-grid MG,
a reliable forecast of the available power sources is crucial to effectively schedule the
programmed mix of power sources. This process should be iteratively performed with
different time horizons to ensure the maximum continuity of the operation.

PV power fluctuations can be traced back to two main factors: the first one, deter-
ministic, depends on the Sun position, while the second, stochastic, depends on weather
conditions, such as cloud cover and pollution, and the local surroundings of the plant,
such as shadows on PV modules [24]. PV forecasting methodologies are commonly di-
vided into three categories [25], namely physical, statistical, and hybrid methods. The
first one describes the behavior of the production plan through analytical equations for
the components using weather data (i.e., irradiation, temperature, pressure, humidity,
and cloud coverage) as the input of the model. Statistical methods, on the other hand,
require historical information on solar irradiance and power production to infer trends.
They can be further divided into two main categories: artificial intelligence (AI) based and
regression methods [26,27]. In the wide group of AI, machine learning (ML) techniques
such as artificial neural networks (ANN) have been deeply investigated [28]. In particular,
ANNs are more suitable compared with classical statistical methods when nonlinear and
complicated correlation exists between the data and no prior assumption is formulated [29].
Finally, hybrid methods are a combination of two or more forecasting techniques [30],
and their goal is to emphasize the strengths of the individual models while overcoming
their deficiencies.

In general, the optimal approach depends on the application and on the required fore-
cast horizon and timestep; therefore, different techniques can be successfully implemented.
As shown in Figure 1, the current work focuses on three models which compute the power
prediction at three different levels: the outer arrows are representative of the first forecast,
valid for the following 24 h, 2 times per day, at 11 AM and PM (this approach is called
“day-ahead”). Once this information is computed, the forecast is updated every hour for the
following 3 h in the so-called “intraday refinement”. Finally, the inner loop represents the
nowcasting, hence the prediction for the following 30 min, with a minute resolution.

Figure 1. Forecasting scheme and timing for photovoltaic (PV) forecasting algorithms.

In the following sections, the three methodologies are described in detail.

2.1. Day Ahead

Many approaches can be found in the literature to address the issue of providing the
24 h ahead PV power forecast and the relative power injection in the electrical grid [31].
Among all, the physical hybrid artificial neural network (PHANN) methodology was
proven to provide the best results, leveraging on the adoption of the clear sky radiation [32].
The basic model is a multilayers feedforward neural network where the parameters have
been set according to [33]. The PV power forecast is computed two times a day, at 11 AM
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and PM, when updated information is available from the weather service. A comprehensive
list of the parameter provided to the PHANN both in the training and test phase can be
found in [34].

2.2. Intraday

Following the prediction provided by the 24 h ahead methodology, some improve-
ments can be performed thanks to the information collected during the plant operation:
new data regarding the production of the plant and the actual measurements of envi-
ronmental parameters can be beneficial to increase the model accuracy. In particular, as
demonstrated in [35], they allow increasing the accuracy of the prediction of the following
3 h. Hence, this procedure is iteratively performed every hour and given the current time t,
the refinement Pf ,t+h is provided for the following 3 h (h ∈ [1, 2, 3]).

The implemented algorithm relies on a three-layer ANN, where the hyperparameters
have been optimized with a “grid search” approach. This approach allows optimizing the
available parameters and hyperparameters running multiple independent simulations,
varying their values in a predefined range [36]. The input parameters are the following:

• Time parameters: day of the year (DoYt+h) and hour of the day (Ht+h) corresponding
Timestamp to be forecast;

• Ambient parameters: global horizontal irradiation (GHI f ,t+h,24) and the Irradiation
on the plane of the array (GPOA f ,t+h,24) collected the previous day from the provider
and already used to compute the forecast power with the 24 h ahead logic;

• Forecast power obtained with the 24 h ahead logic (Pf ,t+h,24);
• The last forecast error available (E f ,t);
• The current measurements for the weather parameters (Pm,t, Tm,t and GPOAm,t).

2.3. Nowcasting

As shown in the literature [37], when the forecast horizon is reduced to few minutes
ahead, the most promising techniques rely on statistical analysis and image processing
techniques. The final purpose is to provide a useful tool to assess the PV power nowcast to
be later included in a power and/or energy management system. Since image processing
techniques require higher initial investment cost due to the instrumentation and is highly
expensive from a computational point of view, it will not be considered in this work. The
model here presented and adopted is an extension of the naïve persistence, generally
employed as a benchmark for accuracy evaluation [29]. This model assumes that the future
power generation at time t is the last registered value at time t− s, being s the time horizon.

Pt = Pt−s (1)

As previously explained, the radiation level and hence the PV production depends on
two main factors, the first one deterministic while the second one is purely stochastic. The
formulation proposed in [35] addresses the first one, rewriting Equation (1) to the following:

Pt = Pt−s
αt

αt−s
(2)

where α represents the solar altitude on the horizon, this method is referred to as Ro-
bust persistence.

3. EMS with PV Forecast Implementation

The PV forecast approaches presented in the previous section are integrated into a
hierarchical EMS as the centralized control system of an MG. The EMS is suitable for a
single-bus islanded electrical system, made of programmable generators, storage systems
and noncontrollable RES, and it is designed to account for the production of various
goods by the MG units, minimizing the daily generation cost. The hierarchical structure
is subdivided into two layers to deal with the scheduling problem and the generation
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dispatch. In particular, the first layer oversees the daily strategic decisions based on fore-
casted good demands and RES generation. A predictive deterministic MILP optimization
problem is employed, solved following a rolling horizon approach. The outputs of the
first layer are the commitment status of the programmable generators and the planning
of storage management. Real-time unbalances, and forecast errors make it necessary to
contemplate correction rules that guarantee proper MG operations, handled by the second
layer. Figure 2 shows the conceptual scheme behind the proposed EMS, underlining the
important information exchanges among the various modules and between the EMS and
the MG. Regardless of the PV forecast approach, the EMS structure remains the same. The
different forecast approaches are employed to provide adjusted inputs to the first-layer
optimization, which are updated accordingly with the features of the forecast method. The
corresponding EMS is then named EMSDA, with day-ahead PV forecasts, EMSINT, with
intraday forecast corrections, and EMSNC, with both intraday and nowcasting methods.
The description of the two layers is given in the following sections; for more details, the
reader can refer to previous work [12].

Figure 2. Architecture and information flow of the proposed two-layer energy management sys-
tems (EMS).

3.1. First Layer Model

The purpose of the first layer is to identify the optimal unit commitment of the
MG unit to ensure demand satisfaction throughout its operation at the lowest cost. The
optimal commitment is obtained by the solution of an optimization problem, formulated
as a deterministic mixed-integer linear program. The objective function consists in the
minimization of the operating cost, made of (i) fuel consumption, (ii) startup cost of
programmable units, (iii) wearing cost of storage systems and generators, (iv) penalization
for unmet demands and (v) penalization for curtailment of RES generation. The operation
problem that finds the optimal unit commitment based on the solution of the economic
dispatch of the MG units according to the expected value of the forecasts is subjected to
various constraints. Regarding the programmable generators, the constraints represent
their technical limits, such as minimum and maximum output, minimum up-time and
minimum downtime, and ramping limitations. Their characteristic curve, representing
the relation between input and output, is expressed by a linear relation or a piecewise
linear function, according to the level of approximation required. The storage systems are
identified by the dynamic constraint regarding the evolution of their content, minimum
and maximum capacity and the limits of exchanging the stored good with the MG (i.e.,
maximum charging and discharging capability). For BESS, the nonconstant efficiency of
the charging and discharging process, which varies with the set-point, is expressed as a
piecewise linear relationship; moreover, logical constraints are enforced to ensure non-
simultaneous charge and discharge. The satisfaction of the demand is enforced by a good
balance constraint that includes the virtual terms for unmet demand and RES curtailment.
In order to guarantee the security margins for actual operations, the optimization accounts
for spinning reserve constraints that are based on expected demand increase and expected
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RES generation decrease, with respect to the forecasted values: the committed generators
and the storage systems must be able to satisfy the increased net demand throughout the
optimization horizon. The reserve constraints of the BESS system ensure that the state of
charge (SOC) is high enough to satisfy the increase of net electricity demand for the desired
time interval, which is a parameter of the EMS. The mathematical formulation of the first
layer model is detailed in Appendix A.

3.2. Second Layer Model

The second layer control system aims to compensate for real-time unbalances within
the MG while following as close as possible the first-layer schedule (see Figure 3). The
unbalances are mainly caused by forecast errors and approximation of the characteristic
curves of the different units. The information obtained by the solution of the first layer
gives an indication of the optimal management, provided a sufficient accuracy of the
forecasts. In the proposed EMS, the commitment status of the generators is only set and
updated by the first layer. On the other hand, the second layer is in charge of the real-time
dispatch of the units. To avoid a greedy behavior, the main purpose of the second layer
is to track the SOC evolution of the BESS foreseen by the first layer; the SOC trajectory is
the translation of forecast information in terms of storage management. The tracking is
achieved by a centralized PI controller. From the on-field measurements of actual SOC, the
PI computes the total required variation of power output from programmable generation,
complying with their ramp limitations. A linear program is then solved to optimize the
power-sharing among those units. The BESS is operated under droop-control; therefore,
the second layer cannot directly act on its set-point: the SOC tracking is achieved by the
second layer adapting the generation of the remaining units.

Figure 3. Second layer flowchart.

4. Experimental Setup

The aim of this work is to perform a comparison of different PV forecast approaches
used as input of the proposed EMS. First, the evaluation is performed from an experimental
point of view at the MG2Lab of the Department of Energy at Politecnico di Milano.

4.1. Microgrid Description

The MG2Lab includes programmable and nonprogrammable generation units (natural
gas-fired combined heat and power engine, as well as solar PV modules), different types
of storage systems (electrochemical batteries, potable water and thermal storages) and
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various types of loads, representative of the most future on- and off-grid applications for
MGMG (electricity, heating, cooling, desalination, electric bikes and electric cars). The
configuration considered for this study aims at emulating the operation of a rural MG
providing electricity and potable water to its users (see Figure 4). Specifically, for this
analysis, the setup comprises the following units, whose technical limits are reported in
Table 1:

• Two PV fields made up of monocrystalline panels (327 kWp), for a total installed
capacity of 49 kWp;

• Two solar inverters of 25 kWel each coupled with the PV fields for maximum power
point tracking;

• One 70 kW/67.5 kWh lithium-ion BESS;
• One 25 kWel asynchronous generator, fueled by natural gas (ICE);
• One reverse osmosis desalination system, or water purifier (WP), with an associated

water tank, to increase the flexibility of potable water production;
• One back-to-back inverter (B2B) that interfaces the MG2Lab with the distribution

network while decoupling voltage and frequency of the MG for off-grid operations; is
used to simulate an electric load profile.

Figure 4. MultiGood MicroGrid Laboratory (MG2Lab) single line diagram.

Table 1. Technical limits of MG2Lab units in this study.

Min. Out Max. Out Ramp Limit

BESS −70 kW 70 kW —
ICE 12.5 kW 25 kW 3 kW/min
WP 650 L/h 1000 L/h 150 L/min

The MG2Lab is operated in islanded mode, with the BESS operating in grid-forming
mode. The BESS inverter imposes frequency (50 Hz) and voltage (400 V) to the MG, and it
is operated in a droop control, acting as a slack-node for both active and reactive power.
The reactive power flow has not been considered in the EMS control layers due to the
limited extension of the low-voltage experimental facility, which can be considered as a
single-node system. The MG is controlled by a master programmable logic controller (PLC)
and 3 slave PLC, communicating the master through a PROFINET network; all the PLC are
managed by the software PC WORX. The power measurements are directly acquired by
the PLC networks. Concerning the BESS SOC, its estimation is evaluated by the integrated
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battery management system (BMS) that was provided by the BESS manufacturer; the BMS
employs a combined approach based on current and voltage methods. The SOC value is
continuously updated through current integration over time. To correct the measured drift
caused by pure current integration, the BMS updates the SOC estimate through look-up
tables and voltage measurements when certain levels are approached during the discharge
phase (i.e., 60%, 40%, 20%). During the update, the SOC value is kept constant while
the BESS is still discharging until its estimate matches the actual BESS content. Figure 5
provides an example of the BMS update.

Figure 5. Example of state of charge (SOC) measure during experimental operations: the SOC update
by the battery management system is highlighted in the circled areas.

4.2. EMS Implementation

The EMS, presented in Section 3, is deployed in online software on the MG workstation.
The optimization model is written in Matlab formulated through YALMIP [38] and solved
with Gurobi [39], with a MIP gap set to 1%, on a computer with Intel® Core™ i9-7900X
CPU @ 3.3 GHz, and an average solution time of 5 s. The two-layer structure is arranged
between the workstation and the PLC, illustrated in Figure 6 and explained as follows:

• Workstation: the software corresponds to the first layer of the hierarchical EMS, thus
including the forecasting and the optimization modules. They are assigned to cyclic
tasks in the Matlab environment through timer objects. The first layer problem is
defined over a horizon of 24 h with a resolution of 15 min, and it is solved in a rolling
horizon, with an advancement time of 15 min. The forecasting module updates the PV
profiles and sends the new information in synchronism with the timing of the selected
forecast methods. Moreover, the Matlab software communicates with the PLC through
the MODBUS interface, sending the set-point and collecting the measurements of the
MG status every 20 s.

• PLC: the second layer is implemented on the PLC software since only one pro-
grammable generator is included in this setup, meaning that the proposed second
layer problem is simplified, and the solution of the LP is no longer required. Thus,
the PLC receives from the first layer the reference SOC and the commitment and
directly computes the set-point of the programmable generators with a discretization
of 100 ms, following the scheme presented in Section 3.2.

4.3. Case Study Definition

The case study concerns the operations of an off-grid MG, defined according to
the considered MG2Lab units introduced in Section 4.1. The critical electric load curve
(corresponding to the nonprogrammable loads and simulated by the B2B) was taken by
the data provided by Engie-EPS [40], and the water demand profile was estimated by
the NREL tool [41]. Both demands were appropriately scaled to match the production
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capacity of the MG2Lab units. As this study aims at addressing the effects of different PV
forecast methods on MG operation, the real and the forecasted profiles of critical electricity
demand and water demand are kept the same for each day of the experimental campaign.
The characteristics of those demand profiles are shown in Figure 7 and Table 2. The PV
forecasts and actual products will be detailed in the following subsections. The metrics
here adopted to evaluate the forecast accuracy are the normalized mean absolute error
(nMAE) and the normalized root-mean-squared error (nRMSE), whose definition can be
found in [42], and the overall energy discrepancy between the actual production and the
forecast one throughout the whole day considered.

Figure 6. EMS implementation structure.

Figure 7. Critical electricity demand and potable water demand profiles employed in this study.

Table 2. Characteristics of demand profiles.

Peak Daily Demand nRMSE [%]

Critical electricity demand 27.8 kW 352.8 kWh 4.69
Potable water demand 0.55 m3/h 6.9 m3 5.68
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5. Experimental Results

This section discusses the experimental results for the comparison of the different
PV forecast approaches when implemented in a deterministic EMS. In the following
comparison, one PV forecast method runs on the EMS of the MG2Lab while the other two
are simulated for each of the presented days.

Since the operations are performed following a rolling horizon approach, the residual
content of the storage systems at the end of the simulation cannot be imposed a priori;
therefore, different EMS can lead to different final storage SOC. The difference between
initial and final storage content is then accounted as an equivalent fuel saving or consump-
tion, according to the specific average consumption of the generator during the operation
(in case of residual water content, the specific electricity consumption of the WP is also
considered). Moreover, the experimental results are corrected considering the disregarded
energy by BMS updates.

The following experimental rolling horizon operations are also compared with the
operations that would be achieved by implementing a single optimization throughout
the day, called EMS0. This is done to quantify the improvements that the rolling horizon
approach brings in terms of reliability, checking the amount of unsatisfied demand that the
implementation of EMS0 would have caused due to erroneous day-ahead forecasts. In the
case of unmet electricity demand, the reported values of fuel consumption are meaningless
in representing the operating cost.

5.1. Day 1–Experimental EMSDA

This subsection shows the comparison between the experimental operations of the
MG2Lab performed with the day-ahead PV forecast and the simulation with intraday and
nowcasting corrections, shown in Figure 8. Regarding the day-ahead forecast, an overcast
day was expected from the irradiation forecast given by the provider. The considered day,
though, showed two different behavior. The unexpected sunny conditions experienced in
the afternoon did not meet the day-ahead forecasts. Given the erratic trend experienced
in the morning, the intraday correction tended to underestimate the production for the
remaining part of the day. Finally, the forecast accuracy greatly improves, further reducing
the time horizon in the nowcast application with an overall reduction on all the considered
metrics. The details of the dispatch are shown in Figure 9.
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Figure 9. Microgrid dispatch comparison—day 1 (EMSDA reflects the actual microgrid operation
while the others are simulation results).

It can be noted that all the EMS decide to commit the generator since the beginning of
the operation, following a cycle charge approach for most of the time, meaning that when
the generator is on, it is dispatched at maximum power, using the surplus to charge the
BESS and run the WP. Even though the commitment varies between EMSDA and EMSNC,
the general behavior regarding BESS management is similar, consisting of a charging
phase during the early hours of PV production, so to shut down the generator before
the afternoon while ensuring enough energy content in the BESS to guarantee spinning
reserve. The different commitment during the night is caused by the BMS updates during
the experiments that disregarded 13.3 kWh during the BESS discharge phase (see Table 3).
Under this circumstance, the correction obtained by the nowcasting algorithm does not
influence the MG operation. Indeed, during the afternoon, only PV and BESS are in charge
of balancing the electric load; therefore, even with an erroneous forecast, the dispatch is
approximately the same. The EMSINT shows different behavior, starting from the first
moments of PV generation. The intraday corrections, overestimating the PV production,
cause an early shut down of the generator with respect to the other EMS, which is then
committed around midday to comply with reserve constraints. In the meantime, the
EMSINT is underestimating the PV output, but it forces to keep the generator on, according
to its minimum up-time constraint. Therefore, the second layer steps in, ramping down
the generator. At the end of the day, the rolling horizon approach allowed the MG to
operate safely and to correctly balance the forecast errors also from an energy point of
view, as the three EMS show similar fuel consumption and a decreasing value of corrected
fuel consumption according to the considered corrections. Moreover, the rolling horizon
approach allows avoiding 7.4 kWh of unmet electricity demand (computed by EMS0).
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Table 3. Energy summary—day 1 (the microgrid was operated with EMSDA, while the others are
simulation results).

EMSDA EMSINT EMSNC EMS0

Critical electricity demand (kWh) 352.8 352.8 352.8 352.8
Total electricity demand (kWh) 403.2 402.6 402.2 401.4

ICE generation (kWh) 385.3 382.0 397.0 363.5
PV generation (kWh) 55.7 55.7 55.7 55.7

RES curtailment (kWh) 0.0 0.0 0.0 0.0
Unmet electricity demand (kWh) 0.0 0.0 0.0 7.4

Battery discharge (kWh) 75.3 64.9 68.9 71.4
Battery charge (kWh) 110.4 99.5 118.7 96.4

Final BESS SOC (% ) 37.2 24.6 44.7 10.0
Final water tank content (m3) 0.234 0.260 0.227 0.271

BMS discrepancy (kWh) 13.3 — — —
Fuel Consumption (Nm3) 118.9 119.5 122.0 111.2 1

Corrected Fuel Consumption (Nm3) 122.8 121.3 120.0 —
∆ fuel consumption (% ) — −1.27 −2.28 —

1 the fuel consumption by EMS0 is not representative of the actual fuel consumption due to the presence of unmet
electricity demand.

5.2. Day 2–Experimental EMSINT

This subsection shows the comparison between the experimental operations of the
MG2Lab performed with intraday PV forecast and the simulation with day-ahead forecast
and nowcasting corrections, reported in Figure 10. Different from the previous case, due to
high variability in the solar source experienced during the day, according to the metrics,
there is not an improvement deriving from the implementation of the intraday and nowcast
technique. Worth noticing is that, despite the lower accuracy, in a conservative way, the
intraday underestimates the production, preferable from a grid management point of view.
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As in Figure 11, the main difference among the MG operations under the three forecast
methods concerns the commitment of the generator at the beginning of the afternoon
by EMSDA. During the afternoon, the day-ahead method starts overestimating the PV
generation, leading to the decision of employing the WP earlier than the other two EMS.
Then, a sudden underestimation of the PV production caused the commitment of the
generator for security reasons. This startup is not necessary. Indeed, the BESS could be
charged by PV surplus, as foreseen by EMSINT and EMSNC. In particular, the generator
operates at minimum load due to second layer corrections on its set-point. This is the
main reason for the higher fuel consumption by the EMSDA, as reported in Table 4. The
intraday correction underestimates the PV generation, reducing the WP utilization during
the afternoon, as opposed to the other EMS. This fact allowed the MG to work in safe
conditions without resorting to the ICE. Overall, the three proposed EMS permit to avoid
20.2 kWh of unsatisfied electric load.
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Figure 11. Microgrid dispatch comparison—day 2. (EMSINT reflects the actual microgrid operation
while the others are simulation results).

Table 4. Energy summary—day 2 (the microgrid was operated with EMSINT, while the others are
simulations results).

EMSDA EMSINT EMSNC EMS0

Critical electricity demand (kWh) 352.5 352.5 352.5 352.5
Total electricity demand (kWh) 432.5 403.9 414.0 416.5

ICE generation (kWh) 409.5 368.2 389.3 343.6
PV generation (kWh) 76.6 77.0 76.5 76.8

RES curtailment (kWh) 0.0 0.0 0.0 0.0
Unmet electricity demand (kWh) 0.0 0.0 0.0 20.2

Battery discharge (kWh) 65.6 65.0 60.5 56.8
Battery charge (kWh) 118.4 104.8 111.6 80.6

Final BESS SOC (% ) 46.2 42.1 44.6 10.0
Final water tank content (m3) 2.260 0.081 0.262 0.268

BMS discrepancy (kWh) — 7.38 — —
Fuel Consumption (Nm3) 126.4 114.1 119.7 105.2 1

Corrected Fuel Consumption (Nm3) 118.3 115.1 117.5 —
∆ fuel consumption (% ) — −2.70 −0.70 —

1 the fuel consumption by EMS0 is not representative of the actual fuel consumption due to the presence of unmet
electricity demand.

5.3. Day 3–Experimental EMSNC

This subsection shows the comparison between the experimental operations of the
MG2Lab performed with the nowcasting method and the simulation with day-ahead
forecast and intraday corrections, reported in Figure 12. As it can be inferred from the
graph and the metrics table, the moving from the day-ahead forecast, a great increase in
the accuracy is faced reducing the time horizon. Unexpected inaccuracy is given by the
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intraday model in the first hour of the afternoon, realizing a great overestimation of the
available power.
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From the comparison of the forecast methods, there is a clear overestimation of the
PV generation by the day-ahead method in the morning, which is then recovered with
the midday update. This caused a higher utilization of the WP in the morning by the
EMSDA and then a lower BESS SOC in the morning, which lead to an early startup of the
generator during the day (see Figure 13). On the other hand, as the actual PV power was
always lower than the electric load demand, all the EMS resort to the ICE to guarantee the
spinning reserve during the afternoon. Even though the nowcasting approach corrected
the erroneous forecasts, there is no clear advantage from its utilization, as the reserve
constraints of the EMS already revised the commitment, ensuring safe MG operation (see
Figure 12). From the point of view of EMS0, the day-ahead forecast largely overestimated
the PV generation due to flawed weather forecasts; its implementation would not have
guaranteed 70 kWh of electricity production, which is recovered by the other EMS, as
shown in Table 5.

Figure 13. Microgrid dispatch comparison—day 3 (EMSNC reflects the actual microgrid operation
while the others are simulation results).
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Table 5. Energy summary—day 3 (the microgrid was operated with EMSNC, while the others are
simulations results).

EMSDA EMSINT EMSNC EMS0

Critical electricity demand (kWh) 351.7 351.7 351.7 351.7
Total electricity demand (kWh) 399.8 403.5 403.3 399.6

ICE generation (kWh) 391.6 402.0 404.1 299.8
PV generation (kWh) 44.1 44.2 44.4 44.3

RES curtailment (kWh) 0.0 0.0 0.0 0.1
Unmet electricity demand (kWh) 0.0 0.0 0.0 70.5

Battery discharge (kWh) 69.4 76.1 73.8 61.4
Battery charge (kWh) 104.9 118.2 116.5 75.9

Final BESS SOC (% ) 26.5 34.3 44.8 10.0
Final water tank content (m3) 0.471 0.894 0.893 0.470

BMS discrepancy (kWh) — — 7.3 —
Fuel consumption (Nm3) 123.2 124.5 125.3 91.7 1

Corrected fuel consumption (Nm3) 125.7 124.0 124.9 —
∆ fuel consumption (% ) — −1.35 −0.66 —

1 the fuel consumption by EMS0 is not representative of the actual fuel consumption due to the presence of unmet
electricity demand.

5.4. Discussion

The main results of the three days of operation (PV production accuracy and fuel
consumptions) are reported in Table 6, suggesting that even for a simple system, as the one
considered in this work with limited penetration of PV energy (around 15%), accurate PV
forecast can lead to a reduction of fuel consumption while keeping safe MG operations. On
the other hand, the reserve constraints in the first layer of the EMS are the main driving
force for the operation scheduling, imposing the commitment decision regardless of the PV
forecast method employed. This holds true because the corrections of PV forecast affect
only the first timesteps of the operation, while the general schedule is based on day-ahead
information for a big portion of the day, leaving little room for adjustments for the EMS
that work with intraday and nowcasting refinements. Experimental results of the different
cases are not comparable in terms of consumption because of the different solar radiation;
however, the reliability and robustness of the methods are demonstrated. Finally, this work
demonstrated the potentialities of a more accurate PV forecast on the MG management;
however, no ultimate considerations can be drawn as the actual impact depends on the
MG configuration, RES share and loads.

Table 6. Summary of experimental and simulated operations.

EMSDA EMSINT EMSNC

Day 1

nMAE (% ) 2.64 2.74 0.79
nRMSE (% ) 17.18 15.88 3.41

Corrected Fuel
Consumption (Nm3) 122.8 121.3 120.0

∆ fuel consumption (% ) — −1.27 −2.28

Day 2

nMAE (% ) 1.9 2.41 2.42
nRMSE (% ) 8.57 11.36 11.07

Corrected Fuel
Consumption (Nm3) 118.3 115.1 117.5

∆ fuel consumption (% ) — −2.70 −0.70

Day 3

nMAE (% ) 3.71 2.34 1.02
nRMSE (% ) 35.4 23.77 7.48

Corrected Fuel
Consumption (Nm3) 125.7 124.0 124.9

∆ fuel consumption (% ) — −1.35 −0.66
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6. Conclusions

This paper presents the implementation of a two-layer EMS on an experimental facility
consisting of a multi-good off-grid MG. The first layer is based on deterministic MILP
optimization for unit commitment and storage management, and the second layer is based
on PI control to follow the schedule chosen by the first layer while compensating for the
real-time unbalances of the MG generation. The EMS works following a rolling-horizon
approach, and it is conceived to interact with a forecasting module, which adjusts the
PV forecast inputs with a predefined frequency: three different forecast methodologies
that combine day-ahead, intraday refinement and nowcasting models are considered. The
experimental results show that the proposed EMS is able to guarantee safe MG operations
with every PV forecast method; no-load shedding was required during the experiments,
as opposed to the simulation results performed with a single daily optimization, which
shows undesirable values of unmet electricity demand. The refinement of PV forecasts
leads to higher forecast accuracy and a reduction of fuel consumption. On the other hand,
its effect on MG operation is overshadowed by the spinning reserve constraints that require
a minimum SOC of the BESS at the beginning of each commitment update by the first
layer of the EMS, mainly due to the initial status of the MG. Indeed, the more accurate
information is updated with very short (nowcasting) or small advance (intraday), while the
general operation schedule, thus, the MG status, is obtained according to the day-ahead
forecast for the first portion of the day. Due to this asymmetry in how the information is
used in the optimization process, the PV forecast update benefits are still limited. Future
work will consider more complex MG configuration and the implementation of nowcasting
techniques for the second layer, in charge of the power-sharing among the units, rather
than its coupling with the first layer.
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Appendix A

This section presents the mathematical formulation of the optimal UC employed in
the first layer of the EMS described in Section 3.1. The nomenclature for the sets, indexes,
parameters, and variables used in the model is reported in Table A1.

Obj = ∑T
t=1

[
∑i

(
c f

i,t + cO&M
i,t

)
+ ∑gd cUM

gd,t + ∑nd cCurt
nd,t

]
; (A1)

where:
c f

i,t = k̂i
f ,t

(
m̂i

f Ui
t + q̂i

f Zi
t

)
∆t + k̂i

SU,tSUi
t; ∀i ∈ g f , t (A2)

cO&M
i,t = k̂i

O&M,tZ
i
t∆t; ∀i ∈ g, t (A3)

cO&M
i,t = k̂i

O&M,tU
s,dh
t ∆t; ∀i ∈ s, t (A4)

cUM
gd,t = k̂gd

UM,tUMgd
t ∆t; ∀gd, t (A5)

cCurt
nd,t = k̂nd

CU,tCUnd
t ∆t; ∀gd, t (A6)
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Programmable generators constraints

Zg
t , SUg

t , SDg
t ∈ {0, 1}; ∀g, t (A7)

SUg
t ≥ Zg

t − Zg
t−1; ∀g, t (A8)

SUg
t − SDg

t = Zg
t − Zg

t−1; ∀g, t (A9)

Zg
t ≥∑min(t+ÛT

g
,T)

τ=t SUg
t ; ∀g, t (A10)

1− Zg
t ≥∑min(t+D̂T

g
,T)

τ=t SDg
t ; ∀g, t (A11)

Ig
t = m̂gUg

t + q̂gZg
t ; ∀g, t (A12)

Ûg
minZg

t ≤ Ug
t ≤ Ûg

maxZg
t ; ∀g, t (A13)

Ug
t −Ug

t−1 ≤ ∆̂U
i
UP + ∆̂U

g
max,SUSUg

t ; ∀g, t (A14)

Ug
t−1 −Ug

t ≤ ∆̂U
i
DW + ∆̂U

g
max,SDSDg

t ; ∀g, t (A15)

Storage systems constraints

Ĉs
min ≤ Cs

t ≤ Ĉs
max; ∀s, t (A16)

0 ≤ Us,dh
t ≤ Zs

t Ûs
max;Ûs

min(1− Zs
t ) ≤ Us,ch

t ≤ 0;∀ s, t (A17)

Us
t = Us,dh

t + Us,ch
t ; ∀ s, t (A18)

Cs
t+1 = Cs

t −

 Us,dh
t

η̂s
dh

(
Us,dh

t

) + η̂s
ch

(
Us,dh

t

)
·Us,ch

t

∆t− L̂s∆t; ∀s, t (A19)

Spinning reserve constraints

∑g∈gpr
gd

Rg
t + ∑s∈sgd

Rs
t ≥ D̂t

gd,SR + ∑g∈gcn
gd

Ig
t ; ∀gd, t (A20)

where:
D̂t

gd,SR =
(

1 + ∆D̂gd
t,%

)
D̂t

gd −∑
(

1− ∆Û
ndgd
t,%

)
Ût

ndgd ; ∀gd, t (A21)

Rg
t ≤ Ûg

maxZg
t ; Rg

t ≤ Ug
t + ˆ∆Ui

UP; ∀g ∈ gpr
gd, gd, t (A22)

Rs
t ≤ Ûs

max; ∀s ∈ sgd, gd, t (A23)

∑min(t+∆tRES ,T)
τ=t Rs

t ∆t ≤ Cs
t − Ĉs

min; ∀s ∈ sgd, gd, t. (A24)

Good balance constraints

∑
g∈gpr

gd

Ug
t − ∑

g∈gcn
gd

Ig
t + ∑

s∈sgd

Us
t + UMgd

t = D̂t
gd + ∑

nd∈ndgd

Und
t ∀s ∈ sgd, gd, t (A25)

UMgd
t , CUnd

t ≥ 0; ∀gd, nd, t (A26)

Und
t = Ût

nd − CUnd
t (A27)
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Table A1. Nomenclature for optimal UC model.

Set and Indices

t Timestep
i Generic MG unit
gd MG good
g Programmable generator
g f Fossil-fueled generator
gpr

gd/gcn
gd Generator producing/consuming good gd

s Storage system
sgd Storage system participating in good gd balance
nd Non-dispatchable generator (RES unit)
ndgd Non-dispatchable generator producing good gd

Parameters

D̂gd Forecasted demand of good gd
Ût

ndgd Forecasted generation of non-dispatchable generator

∆D̂gd
t,%

Expected increase of demand

∆Û
ndgd
t,%

Expected decrease of non-dispatchable generation

D̂t
gd,SR Expected net demand for spinning reserve

Ûi
min/Ûi

max Minimum/maximum output of unit i

∆̂U
i
UP/∆̂U

i
DW Ramp-up/ramp-down limit of unit i

∆̂U
g
max,SU/∆Ûg

max,SD Maximum ramp during startup/shut-down

ÛT
g
/D̂T

g Minimum up-time/down-time
m̂i/q̂i Coefficient for linear formulation of input/output relation
k̂i Generic cost coefficient

Variables

Zg
t Commitment status of generator g

SUg
t , SDg

t Startup and shut-down decisions of generator g
Ig
t , Ug

t Consumption and production of generator g
Cs

t Storage content (SOC)
Us

t Bus balance for storage s
Us,ch

t , Us,dh
t Charging and discharging power for storage s

Zs
t Auxiliary binary variable for storage s

UMgd
t Unmet demand of good gd

CUnd
t Curtailment of non-dispatchable generation

Ri
t Reserve contribution from unit i
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