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ABSTRACT The rapid increase in the number of electric vehicles around the world, the high demands
on the charging stations, and the challenges for locating the charging stations made researchers around the
globe to think for a proper solution. In this paper, a new method to locate EV’s charging infrastructures,
based on the parallelism between mobility needs and heat equation implemented with Finite Element
Method analysis (FEM), is proposed. The method is applied for two cities with similar metropolitan area:
Boston (USA) and Milan (Italy), with further results. Although FEM is a mathematical tool for solving
physical problems, the behavior of different parameters in this paper is modeled as physical objects.
In addition, the parameters are modeled according to the heat equation. Heat density maps are elaborated for
the considered case studies. The two cities with extremely different characteristics are chosen to demonstrate
the general application of the proposedmethod. Heat density maps show the likely demand points to establish
charging infrastructures for EV’s. The annual electricity consumption maps of the two considered cities are
reported. The analysis of heat density and electricity consumption maps, together with the considerations
of mains supply capacity can give a perspective for the location of charging stations in the future urban
environments. The developed method contributes to deploy charging stations in an urban environment.

INDEX TERMS Charging infrastructures, EV’s, finite element methodologies, planning analysis.

I. INTRODUCTION
Electric Vehicles (EVs) distribution has grown rapidly,
exceeding 5.1 million units. In 2018, around 45% of the
electric cars in circulation were in China, while Europe repre-
sented 24% of the world fleet, and the United States 22% [1].
The number of charging stations globally was estimated
around 5.2 million at the end of 2018, with an increase
of 44% over 2017 in which more than 90% was related to
the private section. Energy demand of electric vehicles is
expected to reach nearly 640 terawatt-hours (TWh) in 2030
(1110 TWh in the EV30@30 Scenario [1]). One can also
mention that the concerns regarding the levels of greenhouse
gases and other air pollutants, in addition to global warming
which emanates from industries and consumption of fossil

The associate editor coordinating the review of this manuscript and

approving it for publication was Mouloud Denai .

fuels by vehicles around the world has been increased in the
recent years [2]. On the other side, the gradual reduction of
fossil fuel resources has raised the idea of using alternative
fuel sources. One of the most popular trends towards the
reduction of pollutants is using electricity as the primary
source of energy for vehicles. The growth in investigations
and researches on development of electric vehicles over the
past decade indicates the importance of this topic among
scientists, researchers and car companies.

Despite the benefits of such vehicles, the expansion of
EV’s as daily driving cars has resulted in raising other con-
cerns. ‘‘Range anxiety’’ is quite common among the electric
car owners in these days. Not being able to charge a vehicle
over night or lack of enough charging stations on the road
may lead in arising of unreliability of electric cars at the
first place among people. Establishing enough number of
charging stations at the right spots on the roads with right
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charging equipment installed onboard on the cars not only
overcomes ‘‘range anxiety’’, but also can turn electric vehi-
cles to reliable daily driving vehicles among commuters. Due
to the rapid spread of EVs, it is important to ensure that
charging of electric vehicles does not impact on the effective
energy management systems. EV’s Slow chargers flexible
service are estimated to account for more than 60% of the
total electricity consumption globally in 2030. A review of
charging infrastructures topologies (chargers and wireless)
for electric vehicles, together with the analysis of powertrains
configurations is conducted in [3].

II. LITERATURE REVIEW
In [4], Amini and Mohammadi conducted a holistic approach
applied to power systems and electrified transportation net-
work in smart cities for deployment of charging stations.
Their fully distributed consensus-innovations approach pro-
vides an optimal decision making on charging strategies
among plug-in electric vehicles which involves all the agents
inside a smart network. In this way the external information
of one agent can affect internal operation of other agents.
A multi objective optimization problem for scheduling elec-
tric vehicles in smart grids to minimize costs and pollution
in a power system from Portugal is formulated in [5]. In the
paper, the authors used a multi criteria Cuckoo search to
schedule green energy sources and electric vehicles for mini-
mizing the operation and pollution costs. They evaluated and
compared the efficiency of their proposed algorithm in two
power systems (a 33-bus standard power system and a 94-bus
Portugal network) with other algorithms such as Genetic
Algorithm (GA). In [6], the analysis of the impact of traffic
network topology on the charging characteristics of electric
vehicles group for Guangzhou (China) is conducted. They
found out, based on the simulations of JADE/Multi-Agent,
that charging power probability of regional EV’s follows
a logarithmic normal distribution with a cyclical variation.
Comparing the traffic network data from different cities, they
presented how traffic topological features impact the charging
characteristics of EV’s. A classificationmethod for predicting
the location of charging spots using Geographic Informa-
tion Systems and data on charging infrastructure is proposed
in [7]. In the paper, using the l1-regularized logistic regres-
sion, gradient boosted decision trees and random forests,
the popularity of charging pools was represented. According
to their findings, charging pools located in frequently visited
places were more likely to become popular. The charging
spots located in areas periodically visited by small number of
EV owners were associated with a lower popularity. A pricing
methodology considering the charging facility service ratio,
traffic flow and renewable energy generation, was proposed
and tested in [8]. This method maximizes the use of charging
stations and renewable energy sources applied to the Dublin
(Ireland) traffic. Their methodology increased wind energy
consumption and improved solar energy use for wind-rich
and solar-rich charging stations, also reducing traffic jams in

both on-peak and off-peak hours. The mathematical problem
of locating charging stations for public electric vehicles in
Beijing to increase the sharing charging level is formulated
and analyzed in [9]. To tackle the problem three factors were
considered: public electric vehicles (PUEVs) distribution,
passenger distribution, and mileage. Then, an optimization
of charging stations location was done using a multi agent
algorithm based on the Non-deterministic Polynomial (NP)
model.

Reference [10] discussed the uncontrolled charging of
electric vehicles in one day, based on Monte Carlo method.
The simulation results determined that charging electric vehi-
cles in an uncontrolled way will increase the peak load
curve. To address this challenge, the authors proposed a
two-stage scheduling optimization model considering the
thermal power units, electric vehicles and basic power load.
Using K-means clustering algorithm, they divided vehicles
into different groups to avoid the ‘‘dimension disaster’’
caused by the centralized dispatching of large numbers
of electric vehicles. Finally, particle swarm optimization
algorithm is used to provide scheduling for each specific
group of EV’s.

In [11], a charging optimization for delivery electric vehi-
cle fleets based on dynamic programming methods is pro-
posed. Each individual vehicle has been optimized separately
within the fleet to provide globally optimal solution regarding
the charging status. The battery models of each vehicle were
realized using recorded data for an electrical vehicles fleet in
Croatia. A novel electric vehicle (EV) classification scheme
for a photovoltaic (PV)-powered EV charging station (CS),
that reduces the effect of intermittency of electricity sup-
ply and the cost of energy trading of the CS is proposed
in [12]. An analysis of electric vehicle charging impact on
the electric power grid based on smart grid regional demon-
stration project in Los Angeles is done in [13]. This paper
presents monitoring of actual EV charging behavior of 64 EV
owners (5 brands, 8 models) and charging stations for more
than one year. Plug-in electric vehicles (PEV) are becoming
more commonplace on streets all around the globe. A typical
summer-winter load profile for domestic customers in UK
has been evaluated firstly in [14], for 100 customers. Three
scenarios are considered in this research: 1) uncontrolled
domestic charging 2) off peak domestic charging 3) charging
scheduling. In the first scenario, it has been assumed that the
uncontrolled domestic charging, has no control over mod-
ification of load scheduling. Thus, users will tend to plug
their vehicles into the charging outlets, as soon as they get
home from work – at approximately 6:00 p.m. Apart from the
impact of electric vehicles on thewhole network, the charging
methodologies should not be disregarded, since they play a
crucial role in decreasing the time and charging costs of elec-
tric vehicles. Despite of its environmental performance, large
scale photo voltaic (PV) production is bounded by its limited
predictability and high variability that enhances solicitations
and raises needs for spinning reserves as highlighted in [15].
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The introduction of large-scale storage unit into the grid is one
of the investigated solutions to compensate for production
variability [16], [17]. The impact of the electrochemical aging
mechanism on the bulk storage of electricity relevance has
been highlighted in [18].

Gong, Fu and Li proposed a hybrid optimization strategy
for public fast charging stations (PFCSs) planning in [19].
The maximization of the probability of charging BEVs repre-
sents the main objective of this paper. This is done under the
constraints of minimizing the infrastructure cost of PFCSs,
mitigating their negative impacts on both the transportation
system and the power system, and enhancing long-term social
benefits They exploited an abstract-map-based multi-layer
optimization strategy in which three layers are considered.
The results from each layer are used as inputs for the next
layer. Transportation system factors such as population and
vehicle distribution, road network, traffic conditions, and
householder travel behavior are considered in the first layer.
For the second layer, the electric power systemwith respect to
the impact of BEV charging load is taken into account. Third
layer combines features of first and second layer to achieve
an integrated panning of PFCS’s. In [20], the researchers sug-
gested an analysis of electric vehicle charging infrastructure
allocation within a city and a region, based on open source
GIS tools. According to their methodology, there are several
high potential locations inside cities for placing the charging
infrastructure. In rural regions, the charging stations should
be placed in already build areas, like gas stations or rest areas
to reduce investment costs. A genetic algorithm for predicting
the locations of EV’s charging infrastructures is proposed
in [21]. Due to the scarcity of data regarding EV’s, the origin-
destination (OD) of conventional vehicles is used in this
paper. This approach deploys a plan for locating the charging
stations and is able to cover up to 80% of electric vehicles
demands in Greece. In [22], the authors propose a mixed
integer linear programming optimization model for allocat-
ing plug-in electrical vehicle charging stations based on trip
success ratio. By setting this ratio above a threshold and using
different charging station service ranges, the authors apply
the optimization model for locating charging station in a city
of 100 km2 and on Ontario 401 highway. A two-level mul-
ticriteria method is proposed for locating charging stations
on a country territory in [23]. The authors use a macroscopic
(district) and microscopic level (small hexagons) approach
to locate the charging stations in Hungary close to park and
ride facilities, concentrated services or high-density area.
A methodology based on geographic information system
coupled with multi-criteria decision analysis (using fuzzy
analytical hierarchy process) to locate electric vehicles charg-
ing station in the city of Ankara is proposed in [24]. The
authors proposed and used 15 criteria from environmental-
geographical, economic and urban domains for possible loca-
tion of charging stations, the potential station sites being
ranked using techniques for order preference by similarity to
ideal solution.

The rapid increase in the number of electric vehicles
around the world and high demands on the charging stations
and the problems regarding projections of charging station
locations made us to think of a proper solution. All the
referred papers previously, are mainly based on proposing
some new methods to reduce the impact of EV’s on the
whole electrical grid, not considering the fact that plan-
ning’s regarding the location of charging stations is an
important part of the development of electric vehicles in
the future. To address this issue, in this paper, a planning
method with respect to the location of charging infras-
tructures based on the parallelism between mobility needs
and heat equation implemented with FEM analysis, is
proposed.

This paper is organized as follows: the methodology and
the explanation regarding the usage of FEM are presented in
section III. FEM mathematical development needed to solve
the heat equation is explained in section IV. The application
of FEM on projection of EV’s charging infrastructures is
realized in section V and the electricity consumption data
for the two considered cities are provided in section VI. The
results are summarized in section VII. Finally, conclusive
remarks are presented in section VIII.

III. METHODOLOGY
The finite element method (FEM) is a numerical method
for solving problems of engineering and physics. Typical
areas of application include structural analysis, heat transfer,
fluid flow, mass transport, and electromagnetic potential [25].
The analytical solution of these problems generally requires
solving partial differential equations, providing boundary
and/or initial conditions. The method yields approximate
values of the unknowns at discrete number of points over
the domain [26]. The finite-element method thermal analysis
is often applied in electrical engineering, e.g. machines in
electrical vehicles [27], [28].

In this paper, a method based on the Finite Element
Methodology (FEM) to forecast the location of charging
infrastructures is proposed. For addressing this, the involved
parameters like population, roads, and power transmission
lines are modeled based on the heat equation. For establish-
ing the charging infrastructures for EV’s, the peak load in
the electrical network should be considered. The following
hypothesis is made: the concentration of population, routes,
and grid somehow implies peak load spots in the near future.
Hence, the demands for charging infrastructures in locations
with a large number of people, routes and grid could be
considered higher compare to those with lower concentration
of mentioned parameters. The city populations are points that
are scattered randomly on the map. All the data are converted
to points with coordinates in ArcGIS for further processes in
MATLAB.

ArcGIS is used for creating and using maps, compiling
geographic data, analyzing mapped information, and manag-
ing geographic information in a database [29]–[31].
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IV. MATHEMATICAL MODELS
The implementation of FEM to solve a two-dimensional heat
equation, finding the points’ temperature in a mesh, is pre-
sented. The steps to solve this heat equation are:

1) establishing strong formulation for 2D heat conduction;
2) establishing weak formulation for 2D heat conduction;
3) discretization over space;
4) weight and shape functions;
5) defining load vectors;
6) assembling.
The heat equation is given by:

q = −D · ∇T (1)

where q is the heat flow,D is the thermal conductivity matrix,
and T is temperature.
This expression can be written in matrix form as:

q =
(
qx
qy

)
= −

[
kxx 0
0 kyy

]
∂T
∂x
∂T
∂y

 (2)

According to the energy conservation law, the amount of
heat supplied to the body per unit of time must be equal to
the amount of heat leaving the body per unit time:∫

A
Q · t dA =

∮
L
qn · t dL (3)∮

L
qn · t dL =

∮
L
qT · nt dL =

∮
L
(t · q)T n dL

=

∮
A
div(t · q)dA (4)

where Q is the internal heat supply [J/m3s] and t represents
the thickness [m] of the solid. Expression (3) can be written
in form of (4) based on the Gausses’ divergent theorem with
the divergent formula:

div(tq) = t
∂qx
∂x
+ t

∂qy
∂y

(5)

Rearranging (3) results in:∫
A
(Q · t − div(t · q)) dA = 0⇔ Q · t − div(t · q) = 0 (6)

Substituting (1) in (6) leads to the:

div(t · D · ∇T )+ t · Q = 0 (7)

Expression (7) can be written as:

div(t · D · ∇T )+ t · Q =
∂

∂x
(tkxx

∂T
∂x

)+
∂

∂x
(tkyy

∂T
∂y

)+ tQ

= 0 (8)

By multiplying the strong formulation and the weight
function v(x, y), and integrating over the domain A it can be
obtained:∫

A
v · div (t · D · ∇T ) dA+

∫
A
v · t · Q dA = 0 (9)

FIGURE 1. Triangular element in the population mesh.

Applying the Green-Gauss theorem, the first term of (9) can
be expressed as:∫

A
vdiv (tD∇T ) dA

=

∮
L
v(tD∇T )T n dL

∫
A
(Dv)T tD∇T dA (10)∮

L
vtqn dL −

∫
A
(Dv)T tD∇T dA+

∫
A
vtQ dA = 0 (11)

The first term in (11) is the boundary integral which is
splitted into two terms reflecting different types of boundary
conditions:∮

L
vtqn dL =

∮
Lq
vtq dL +

∮
LT
vtqn dL (12)

The weak form of 2D heat flow can be written as:∫
A
(∇v)T tD∇T dA =

∮
Lq
vtq dL+

∮
LT
vtqn dL +

∫
A
vtQ dA

(13)

where the last term in (13) is the internal heat supply (heat
load). Substituting B = ∇N in (13), the stiffness matrix
regarding each specific triangular element in the population
mesh (see Fig. 1) as [25]:

K =
∫
A
BT tDB dA (14)

with

B =


∂N1

∂x
∂N2

∂x
∂N3

∂x
∂N1

∂y
∂N2

∂y
∂N3

∂y

 and
D =

[
kxx 0
0 kyy

]
(15)

where N1,N2,N3 are the interpolation functions of a single
triangular element. There are different forms of interpolation
functions used in FEM. In this paper, the interpolation func-
tion of the Simplex elements is used.

The simple triangular plate element is considered and illus-
trated in Fig. 2. In a heat conduction problem, the primary
unknown is temperature T with 8(x,y) = T(x,y) and the
corresponding nodal quantities are: 81 = T1, 82 = T2, and
83 = T3.
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FIGURE 2. Simple triangular element for FEM.

Because there is only one nodal value, i.e., the temperature
involved, it may be assumed the following linear interpola-
tion function to link the element temperature T (x,y) and the
corresponding nodal values:

T (x, y) = α1 + α2x + α3y (16)

Leading to the nodal values:

T1 (x, y) = α1 + α2x1 + α3y1 node 1

T2 (x, y) = α1 + α2x2 + α3y2 node 2

T3 (x, y) = α1 + α2x3 + α3y3 node 3 (17)

where α1, α2, and α3 are constant coefficients. The inter-
polation function in FEM connects the element quantity
8(x, y, z) and the corresponding Nodal quantities: 81, 82,
and83. The8(x, y, z) is the primary unknown for a triangular
plate element. The terms x1, x2, x3 and y1, y2, y3 are constant
values. A ‘‘linear function’’ relating 8(x, y) and ∅(x, y) and
81, 82, and 83 is assumed [25]:

∅(x, y)=α1+α2x1+α3y1= [ 1 x y ]

α1α2
α3

=RTα (18)

Substituting all the coordinates in (18), the expressions for
each specific node are obtained as:

∅1 = α1 + α2x1 + α3y1 node 1

∅2 = α1 + α2x2 + α3y2 node 2

∅3 = α1 + α2x3 + α3y3 node 3 (19)

or in a matrix form:

{∅} = [A]{α} (20)

and

{α} = [A]−1 {∅} = [h] {∅} (21)

MatrixA in (20) and (21) contains the coordinates of the three
nodes:

A =

 1 x1 y1
1 x2 y2
1 x3 y3

 (22)

The matrix h could be performed as following:

h =
1
|A|

 x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y1
y2 − y3 y3 − y1 y1−y2
x3 − x2 x1 − x3 x2 − x1

 (23)

where |A| is the determinant of matrix A. Its equal to area of
the triangular element [25]. The formation of an internal heat
source is shown in (24) and (25).

fb = −
∮
Lq

NT t q̄ dL −
∮
LT

NT tqn dL (24)

In case of internal load vector, the internal heat supply must
be converted to the nodal values as mentioned previously:

fb =
∫
A
NT tQ dA (25)

V. APPLICATION OF FEM
For exemplification, the method is applied for charging sta-
tion sitting in Boston (USA) and Milan (Italy). These two
cities, geographically distant and with different characteris-
tics, were considered to demonstrate how the method can be
applied in a useful way in completely different contexts. The
population points are scattered randomly in each quartier of
the city as shown in Figs. 3 and 4.

FIGURE 3. Boston population points.

FIGURE 4. Milan population points.

A mesh generated throughout the whole map using tech-
niques in MATLAB is generated for solving the equations
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FIGURE 5. Boston routes and Boston route points.

using FEM. The route maps are downloaded from the official
government website of two cities. Figs. 5 and 6 show routes
of Boston andMilan which are converted to coordinate points
using ArcGIS, for further processes in MATLAB.

In the next step, the whole map is considered as a solid sub-
stance which is exposed to heat sources. The heat conducts on
the surface of the solid material (map) with the heat sources
based on the roads, population and power lines. Considering
the heat conduction equation helps to find out the temperature
at vertices of triangles inside the generated mesh. The higher
the temperature is at a vertex, the demand for power would be
higher. Therefore, such locations are not suitable to establish
EV’s charging infrastructures in the future.

Thermal conductivity is the property of the material to
conduct heat. However, it does not play a role in this paper
as there is not a physical problem in which the temperature
is important. The important aspect is the heat density where
the temperature in a spot is 1 degree or 1000 degrees. Thick-
ness is another parameter that is considered for solving heat
equation. Thicker material means less heat transfers on the
surface and this fact is applied in the field of heat insulation
materials. Thickness could be substituted with any random

FIGURE 6. Milan routes and Milan route points.

number because, like thermal conductivity, its impact is only
on the temperature. In the other words, thickness and thermal
conductivity are set for the sake of solving equations and
obtaining heat density map. Simulations with different values
of thickness and thermal conductivity were carried onmaking
sure that, in each round, the heat density maps remain the
same, while the temperatures change. Solving heat equation
using FEM requires also the internal heat source.

In the proposed method, an internal heat source is ded-
icated to each triangular element of generated mesh. The
summation of the number of population points, route points
and grid points which are generated by ArcGIS inside of each
triangular element in the mesh is defined as the internal heat
source of the corresponding element. It was assumed that the
elements with the higher number of points inside get heated
with a bigger internal heat source, which will be resulted in
a hotter spot in the heat density map. These hot spots show
higher demands.

Figs. 7 and 8 illustrates the population random points, road
points and the grid points of each city. Each population point
represents 100 people.
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FIGURE 7. Population points, routes points, and grid points inside Boston
mesh.

FIGURE 8. Population points, routes points, and grid points inside Milan
mesh.

VI. ELECTRICITY CONSUMPTION MAPS
The Italian Regulatory Authority for Energy, Networks and
Environment (ARERA) stipulates that typical family’s elec-
tricity consumption is 2700 kWh per year [32]. In the EU,
the average annual consumption, per m2, for all types of
buildings is about∼200 kWh/m2, from which 32% is related
to the electricity consumption [33], [34]. The number of fam-
ilies living in each district of Milan and occupying the total
building area given in [35] can give an estimation of the elec-
tricity consumption in different districts of this city. In [36],
the most important measurement in the energy balance of
United States is the annual total consumption of 3902 billion
kWh. Per capita, this leads to an average of 11944 kWh. The
population of Boston, per districts, is given in [37]. Knowing
the per capita energy consumption in the USA and the Boston
population, by district, the annual electricity consumption of
Boston can be found.

FIGURE 9. Boston electricity consumption map.

FIGURE 10. Milan electricity consumption map.

FIGURE 11. Boston heat density map.

The electricity consumption maps for the districts of Milan
and Boston are illustrated in Fig. 9 and Fig. 10, respectively.

VII. RESULTS
The projection on the location of charging infrastructures
for electric vehicles is based on the hypothesis that each
population point represents 100 people. These points are
spread randomly through the whole map. Solving the heat
equation using FEM with the proposed internal heat sources,
the obtained results are shown in Figs. 11-14. The simu-
lations are repeated for different thermal conductivity and
thickness values. As mentioned previously, the heat density
map implies the severity of demands which may lead to grid
overload in spots where there is high electricity consump-
tions. The results were also repeated with a refined mesh of
both cities.
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FIGURE 12. Boston heat density map with refined mesh.

FIGURE 13. Milan heat density map.

FIGURE 14. Milan heat density map with refined mesh.

Based on Figs. 11-14, the ideal locations for charging
stations are those with high demand and low electricity con-
sumption, since there would not be much concern regarding
the congestion of the electrical network. Figs. 11-14 also indi-
cate that some of hot spots which overlap locations with high
electricity consumptions should be avoided for the establish-
ment of EV’s charging infrastructures in the future in case of

lack of electrical grid capacity. Therefore, one shouldmention
that installation of charging stations on these spots should
not be considered without accurate analyzing on the capacity
of electrical network. In this way, it is avoided the possible
burden on the main grid, or the main grid could be supported
by renewable energy sources, if there is a requirement to
locate charging stations on high demand locations. In this
way, not only the congestion of the grid will be reduced, but
also the maximum grid capacity could be exploited without
overloading it in areas with high demand and low electricity
consumption.

The hot spots are illustrated in Figs. 11-14 with red color.
These are locations where there is a concentration of popula-
tion and route points, as the internal heat sources are higher
according to the made definition. Obviously, the higher
the concentrations of roads and population, the higher the
demand would be in that corresponding spot. The grid points
do not affect the results in these two cases, since grid points
are in minority with respect to population and route points.

Thus, the concentration of heat is not at locations with
the presence of all three parameters. Using FEM, the results
could be expanded to each entire country for the projection
of EV’s charging infrastructure locations.

VIII. CONCLUSIONS
Finite Element analysis is amathematical tool to solve numer-
ical problems in different fields of science. In this paper,
FEM is applied to project the critical spots for the location of
charging stations for electric vehicles in the near future based
on the population, routes and power system. Thermal conduc-
tivity and thickness are considered as low importance, since
these parameters affect temperature in physical problems.
However, in this paper, the temperature of each node or each
element inside the mesh is not required. Like thickness and
thermal conductivity, the size of parameters doesn’t affect
the results as they only impact on temperatures obtained by
solving problems in the realm of mechanics. An internal heat
source is defined inside of each triangular element.

The summation of population points, route points and grid
points it was assumed to lead in the formation of internal heat
sources. Thus, a greater internal heat source is expected when
a high number of populations, routes and grids are inside an
element at the same time. This will result in spots with higher
temperature on heat density map. This would not represent
a challenge if EV’s charging stations are highly demanded
in a location with low electricity consumption. Heat density
maps demonstrate some locations where may be pruned to
overload, as some of these spots have high electricity con-
sumption. If the grid capacity is not sufficiently high, net-
work overloading can occur. Therefore, the charging stations
can be transferred to the vicinity of these places with lower
electricity consumption. Photovoltaic power plants may also
be considered to be located in such areas with higher temper-
ature due to higher demands for further support to the grid.
More accurate forecasts could be obtained using heat density
maps with more refined meshes, as shown in Figs. 12 and 14.
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The results clearly demonstrate the utilization capability
of the proposed method in cities with different characteristics
and geographical locations.
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