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Abstract

Data-driven tuning is an alternative to model-based controller design where
controllers are directly identified from data, avoiding a plant identification step.
In this paper, an approach to tune limited-complexity controllers from data for
linear systems is proposed. The controller is parametrized as a linear combina-
tion of a large set of basis functions and the proposed algorithm allows to select
a sparse subset of bases, guaranteeing a bounded approximation error. A fea-
sibility condition allows to adjust the trade-off between accuracy and sparsity.
The controller design is performed by solving a set of linear programming prob-
lems, allowing to handle large data-sets. The proposed strategy is evaluated by
means of a Monte-Carlo simulation experiment on a flexible transmission bench-
mark model. Results show that the proposed solution offers similar results than
previous approaches for large data-sets, requiring less adjustable parameters.
However, for reduced data-sets, the presented algorithm shows better perfor-
mance than the compared approaches.

Keywords: Identification for control, Uncertain systems, Linear systems,
Model/Controller reduction.

1. Introduction

In a standard approach to model-based controller design (MB), two opti-
mization problems are to be solved. First, a system model is built (either from
first principles, estimated from experimental data or a mix of both). Secondly,
a controller is selected or tuned, which is possibly optimal in some sense, with
respect to the built model. Sometimes an order reduction step of the resulting
controller is required.
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The performance of the derived controller relies, on great measure, on the
quality of the employed model. Note that, obtaining reliable models of industrial
processes turns out to be a complex task and their construction might involve
excessive costs [1]. Data-driven control (DDC) approaches do not rely on an
estimated plant model, since the available input-output data, experimentally
collected from the plant, is directly used to design the controller, reducing the
design problem to a single optimization step. A theoretical comparison between
MB and DDC design is reported in [2].

In a linear framework, sequential and batch methods have been developed
to deal with the DDC problem. In sequential methods, a series of experiments
are required to adjust the controller parameters, whereas, in batch methods
a single experiment allows to obtain the controller parameters. Some of the
most known batch methods are Virtual Reference Feedback Tuning (VRFT)
and Non-iterative Correlation based Tuning (CbT).

The VRFT method is developed in an stochastic framework and uses instru-
mental variables as the identification method employed to solve the controller
identification problem. In the presence of noisy measurement, a second exper-
iment or a plant model is required, see e.g., [3]. The VRFT method has been
extended to non-linear systems in [4]. An extension to MIMO linear systems
has been developed in [5]. Some applications can be found in [6, 7, 8].

The CbT method in [9] follows also a stochastic approach, where a properly
constructed signal is required to deal with noisy measurements. In a real setting
such signal might be difficult to obtain. Satisfactory applications and extensions
of these methods have been reported. In [10], closed loop stability conditions
for the CbT method have been proposed.

Set Membership (SM) estimation techniques, where noises are assumed as
unknown-but-bounded signals, have been satisfactorily applied in system iden-
tification [11, 12], filter design from data [13, 14, 15] and controller design from
data [16, 17, 18, 19]. The problem of data-driven controller tuning for linear
systems has been investigated in [16, 17]. In [17], the SM Errors-in-Variables
(SMEiV) identification method is applied to solve the controller tuning problem.
Convex relaxations are employed to solve the resulting polynomial optimization
problems, leading to computationally demanding solutions and therefore limit-
ing the amount of experimental data that can be considered, even for a reduced
set of controller parameters. In [16], set over-bounding techniques are used to
derive efficient linear programming problems from the original non-convex prob-
lem, allowing to manage larger data sets. In the case of non linear systems, the
controller design from data problem has been tackled in [18, 19], where all state
variables are assumed to be measured and a feasible state trajectory is required
as reference signal, generated for example by an expert human operator.

As stated in [20], in industrial practice low complexity controllers are pre-
ferred. The main problems related to high complexity controllers implementa-
tion are essentially two:

• When the number of controller parameters is large, many arithmetic oper-
ations, i.e., multiplications and additions,are required, thus slowing down
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the computational processing.

• High-complexity controllers are fragile, i.e. highly sensitive to round-off
errors.

In literature, low complexity controllers design has been addressed by means
of different approaches. In [21], techniques to derive low order controllers by
previously performing model order-reduction are exposed. Another alterna-
tive is shown in [22] where the high-complexity controllers derived from high-
complexity models can be approximated with low-complexity ones by means
of controller order-reduction. In [23], fixed-order controllers are tuned from
high-complexity models without explicit order-reduction. All the previous ap-
proaches are model-based, requiring a mathematical model of the process.

A data-driven approach to reduced-order controller design was proposed in
[20]. Specifically, an iterative algorithm based on CbT and ℓ1 regularization
to design sparse-controllers was proposed. The framework assumes stochastic
noises and the solution is based on an iterative process that can present conver-
gence problems.

In this paper, an alternative DDC approach to design low-complexity con-
trollers using a Set Membership estimation framework is proposed. The main
contributions are:

• An efficient algorithm to derive sparse controllers from data is proposed.
Linear and quadratic programming programs are employed to estimate
optimal controller parameters, avoiding polynomial problems.

• The problem of noisy measurements is addressed without statistical as-
sumptions on the disturbance signals, overcoming the limitations suffered
by existing statistical solutions when reduced data sets are available.

• The proposed controller tuning algorithm does not require iterations or
multiple experiments. Moreover, a criterion is provided to suitably manage
the trade-off between accuracy and sparsity.

The outline of the paper is as follows. In Section II, the problem formulation
is presented. In Section III, a Set Membership framework to sparse-controller
tuning is comprehensively described. Finally, in Section IV the proposed solu-
tion is evaluated on a benchmark problem, comparing its performance with an
existing approach using sparse CbT. The conclusions end the paper in Section
V.

2. Problem formulation

In this Section the main problem is formulated. First, the setting and main
assumptions are presented.

Consider a discrete-time linear-time invariant (LTI) single-input single-output
(SISO) feedback control scheme, as depicted in Fig. 1, where q−1 denotes the
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Figure 1: Assumed feedback control structure

backward shift operator, P (q−1) is the plant transfer function, C(θ, q−1) is the
controller transfer function, θ is a vector of controller parameters, r(k) is the
reference signal, v(k) is output noise, u(k) and w(k) are the plant input and
output signals, respectively. For the system interconnection in Fig. 1, the aim
of the controller tuning procedure is to select an optimal controller Co minimiz-
ing some performance criterion. For example, an optimization problem can be
stated as:

Co(θo, q−1) = arg min
C(θ,q−1)∈C

J(C(θ, q−1)) (1)

For the cost function

J(θ) =

∥

∥

∥

∥

M(q−1)−
P (q−1)C(θ, q−1)

1 + P (q−1)C(θ, q−1)

∥

∥

∥

∥

s

(2)

Being s a proper system norm, C the set of LTI systems where the controller is
selected, θ a real vector parameterizing C(θ, q−1) and M(q−1) a reference model
for the closed-loop system, where performance specifications are embedded. If
P (q−1) is known, Problem 1 can be seen as a loop-shaping problem and, for H2,
H∞ and ℓ1 norms, known techniques exist to solve it under proper controllability
(reachability) and observability (detectability) conditions. See e.g., [24],[25].

If system P (q−1) is unknown, Problem (1) can not be solved directly. The
common procedure to controller design for unknown plants is to follow a two-step
procedure where first a system model P̂ (q−1) is estimated from data, possibly
with some uncertainty model and then, a controller is obtained solving problem
(1) for P̂ (q−1).

In the framework proposed in this paper, the controller is parametrized as a
linear combination of fixed basis functions, that is,

C(θ, q−1) =

mmax
∑

i=1

θiβi(q
−1) (3)

Where mmax is designated as the maximum allowable controller complexity.
Then, the controller that solves problem (1) is selected from the set:
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C =
{

C(θ, q−1) : θ ∈ Θ ⊆ R
mmax

}

The following assumptions define the framework of the data-driven controller
tuning problem.

Assumption 1. P (q−1) is unknown. The available information on P (q−1) is
a set of noisy input-output data generated by P (q−1), initially at rest,

D = {w(k), u(k), k = 1, 2, ..., N} (4)

Where

w(k) =
k
∑

j=0

hP
j u(k − j) + v(k),

hP
j are the impulse response coefficients of P (q−1) and v(k) is the plant output

noise/disturbance.

Remark 1. Input u(t) is assumed sufficiently informative, i.e., it allows to
obtain bounded sets of controller parameters. However, no hypotheses are es-
tablished about the plant operation during the experiment. Either open or closed
loop data can be employed.

Assumption 2. An internally stabilizing controller C(θ0, q−1) exists such that
the minimum of (2) is 0, that is,

M(q−1) =
P (q−1)C(θ0, q−1)

1 + P (q−1)C(θ0, q−1)

for some θo ∈ Θ.

The previous assumption is required for the derivation of theoretical results
of the controller tuning method proposed here.

Assumption 3. The optimal controller C(θ0, q−1) is sparse, in other words

∥

∥θ0
∥

∥

0
≪ mmax

where

‖θ‖0 = card(supp(θ))

supp(θ)
.
= {i ∈ {1, 2, ...,mmax} , θi 6= 0}

and card(.) is the set cardinality.

Assumption 3 is reasonable, because one would expect that from a ”large”
set of basis functions, only some of them are useful for solving problem (1), if
the set C is properly parametrized.
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Assumption 4. Any controller C(θ, q−1) ∈ C can be expressed as:

C(θ, q−1) = Co(θo, q−1)
(

1 + ∆(θ, q−1)
)

with ∆(θ, q−1) a proper and stable transfer function.

The previous assumption is motivated by the fact that common controller struc-
tures are usually stable or marginally stable (with pure integrators). Then, if
Co and C share poles in z = 1 with the same multiplicity, the difference between
them is always a stable system.

The noise sequence v(k) is modeled as an unknown but bounded (UBB)
signal, without any statistical assumption about it, as follows:

Assumption 5. Noise v(k) is an (UBB) signal, such that

‖v(k))‖ℓp ≤ ǫp

with ℓp ∈ {2,∞}. In this framework, energy and amplitude limited noise se-
quences can be considered.

Based on the previous assumption, the data-driven controller tuning problem
can be stated as follows:

Problem 1. Sparse-controller tuning: Given a data set D, generated as in
Assumptions 1 and 5; a reference model M(q−1) and a set of basis functions
βi, i = 1, ...,mmax satisfying assumptions 2, 3 and 4 identify a coefficient vector
θ such that

1. θ is sparse

2. J(θ) in (2) is ”small”

Note that, since J(θ) depends on the plant but according to Assumption
1 it is unavailable, it is necessary to express the cost function in terms of the
available data.

3. A sparse Set Membership framework for controller tuning

Departing from the assumptions stated in the previous section, in this sec-
tion, Problem 1 is cast into a Set Membership identification framework and an
efficient algorithm is proposed to find sparse controllers from data.

Let the model matching error be defined as the argument of the cost function
J(θ) in (2):

Em(θ) = M −
PC(θ)

1 + PC(θ),
(5)

where the shift operator q−1 has been removed for simplicity. This notation is
maintained in the following when possible.

First, the model matching error is expressed in a convenient form.
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Theorem 1. For any controller C(θ, q−1) ∈ C , satisfying assumption 4, the
model matching error Em(θ) in (2) can be expressed as:

Em(θ) =
1

1 +M∆(θ)

(

M(1−M)− C(θ)(1 −M)2P
)

(6)

Proof: See Appendix 5.
Fig. 2 shows a block-diagram of the equivalent model matching error sys-

tem, derived in Theorem 1. Note that the system contains an output inverse
multiplicative uncertainty structure that allows to state the following Corollary:

M(1-M)

P (1-M)
2

v(k)

u(k) e (0,k)

C(0,k) M

m
e (0,k)
m

Figure 2: Model Matching block diagram

Corollary 1. Given a controller C(θ) ∈ C, the transfer function Em(θ) is
input-output stable if:

|∆(θ, ejω)| < |M(ejω)|, ∀ω ∈ [0, π] (7)

The result follows from the Nyquist stability condition for the inverse multi-
plicative uncertainty structure in eq. (6).

The following Corollary allows to transform the model-based controller de-
sign problem in eq. (1) into an identification problem.

Corollary 2. Given a data set D generated as in assumption 1, affected by
noise bounded as in assumption 5, any controller C(θ) ∈ C, guaranteeing an
internally stable loop, satisfies the time-domain relations:

em(θ, k) =
1

1 +M∆(θ)
∗ em(k) (8)

em(θ, k) = [M(1−M)] ∗ u(k)−

[C(θ) (1−M)
2
] ∗ w(k) + d(θ, k) (9)

d(θ, k) = (1 + ∆(θ))Co (1−M)2 ∗ v(k) (10)

and d(θ, t) is an UBB signal with bound

‖d(θ, k)‖ℓp ≤
∥

∥

∥
(1 + ∆(θ))Co (1−M)2

∥

∥

∥

ℓp,ℓp
ǫp = δp (11)
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Moreover, for an optimal controller Co(θo), it holds:

em(k) = em(k)

M(1−M) ∗ u(k) + d(θo, k) = Co(θo)(1−M)2 ∗ w(k)

(12)

Proof: The results are the time domain relations of applying the signal
u(k) to the model matching error system in (2) and using the experimentally
measured plant output w(k) as input to the sub-system (1 −M)2 in the lower
branch of the block-diagram in Fig. 2.

The resulting output noise d(θ, k) is bounded because the transfer function
in (10) is input-output stable under the hypotheses that ∆(θ) is stable and
Co(θo) guarantees an internally stable loop.

From the previous development, it is possible to cast the data-driven con-
troller tuning problem into an identification problem.

let

yc(k) = M(1−M) ∗ u(k) (13)

uc(k) = (1−M)2 w(k) (14)

Then, for an optimal controller C(θ0), eq. (12) can be rewritten as

yc(k) + d(θo, k) = C(θ0)uc(k) (15)

Note that, equation (15) corresponds to an identification problem with ad-
ditive noise, where the system to be estimated is C(θ0).

While the available data set is generated within an errors-in-variables set-
ting, with the unknown signal v(k) affecting the controller input, in this work, it
is proposed to perform an over-bounding of the noise, moving it to the controller
output, thanks to the guaranteed output noise bound established in (11). Previ-
ous approaches have used errors-in-variables identification algorithms, that in a
Set-Membership setting lead to highly complex optimization problems, see e.g.
[17].

3.1. The Feasible Parameters Set

From the previous analysis, we are in position to define the Feasible Parame-
ters Set (FPS), that is, the set of all controller parameters θ that are compatible
with hypotheses and data.

Definition 1. Feasible Parameter Set (FPS):

FPS =
{

θ ∈ Θ : ‖Yc − Φθ‖ℓp ≤ δp

}

(16)

where
Yc = [yc(1), yc(2), . . . yc(N)]T ,
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Φ = [φ1, φ2, . . . φmmax ]

and
φi = [yβi(1), yβi(2), . . . yβi(N)]T ,

with

yβi(k) =

k
∑

j=0

hβi

j uc(k − j),

where hβi

j corresponds to impulse response of the basis βi.
Notice that, in a noise-free case, i.e., v(k) = 0, it is possible to find a con-

troller C(θ) = C(θ0), such that em(θ, k) = 0. However, in any practical setting
we have δp > 0 and then, the Set Membership approach is suitable to find a set
containing all the controllers C(θ) that are compatible with data, noise bound
δp and a priori information on the reference model M and the controller struc-
ture, defined by the basis set.

Under the definition of the FPS and previous assumptions, the next theo-
rem is stated.

Theorem 2. Given a data set D, a reference model M(q−1) and a set of basis
functions {β1(q

−1), β2(q
−1), . . . , βmmax

(q−1)}. If δp ≥ δmin
p , for δmin

p the
solution to the convex optimization problem

δmin
p = minθ∈Θ δ (17)

s.t.

‖Yc − Φθ‖ℓp ≤ δ

δ ≥ 0

Then, FPS 6= ∅.

Proof:

Note that θ∗, the argument minimizing (17), guarantees,

‖Yc − Φθ∗‖ℓp ≤ δp

Then, θ∗ ∈ FPS.
The previous theorem gives a tool to determine if a set of a priori hypotheses

is compatible with the available data. For example, it allows to evaluate if a
reference model is achievable with the selected basis functions with acceptable
error.

3.2. Finding a sparse controller

The FPS defined in the previous subsection does not take into account as-
sumption 3, that is, the feasible controllers can have any cardinality. Under
Assumption 3, a feasible parameters set can be defined, where controllers have
the structure of Co(θo), i.e.,
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Definition 2. Feasible Sparse Parameters Set (FSPS):

FSPS =
{

θ ∈ Θ : supp(θ) = supp(θ0),

‖Yc − Φθ‖ℓp ≤ δp

}

(18)

However, the support of the optimal controller is unknown. The sparsest
controller, compatible with hypotheses and experimental data might be found
solving the following optimization problem:

θ0 =argmin
θ∈Θ

‖θ‖0 (19)

s.t.

‖Yc − Φθ‖ℓp ≤ δp

In fact, maximizing the sparsity of a vector corresponds to minimizing its l0
quasi-norm. However, the ℓ0 quasi-norm is a non-convex function and its min-
imization is, in general, an NP-hard problem. In an identification framework,
convex relaxations, see e.g. [26, 27, 28], and greedy algorithms, see e.g. [29],
are the main approaches to deal with this problem.

Instead of minimizing the support of the controller, a different approach is
to limit the complexity of the controllers set to a fixed number of basis functions
mθ. This leads to the next limited complexity feasible parameters set:

Definition 3. Limited complexity Feasible Parameter Set (FPS):

FPS(mθ) =
{

θ ∈ Θ : ‖Yc − Φθ‖ℓp ≤ δp ∧ ‖θ‖0 = mθ

}

(20)

Note that FPS(mθ) is the union of (mmax
mθ

) subsets with the same cardinality
and, to fully characterize the set, it is necessary to verify the feasibility condition
established in Theorem 2 for each sub-set of bases guaranteeing ||θ||0 = mθ, this
is a combinatorial problem intractable for large sets of basis functions.

Instead of verifying the feasibility of each sub-set in FPS(mθ), in this work
we propose an “smart” selection of active basis functions, following an approach
similar to [30], where a greedy algorithm is proposed in the context of system
identification for fault detection.

The proposed limited-complexity controller estimation algorithm has two
steps. First, the support of a particular controllers set is estimated and then,
an interpolatory solution is provided.

Consider the optimization problem

θ1 =argmin
θ∈Θ

‖θ‖1 (21)

s.t.

‖Yc − Φθ‖ℓp ≤ δp
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where δp guarantees a non-empty FPS, according to Theorem 2. Recall that
the ℓ1 norm is the convex envelope of the ℓ0 quasi-norm, and its minimization
yields a sparse vector θ1 [26, 27, 28].

From the optimal solution θ1 obtained in (21), the following definition pro-
vides an ordered set of bases.

Definition 4. Let

r(θ1)
.
=

{

i1, ...immax
:
∣

∣θ1i1
∣

∣ ≥ ... ≥
∣

∣θ1immax

∣

∣

}

.

For any mθ ∈ {1, 2, . . . ,mmax}, the support of any controller of complexity
mθ is

λ(mθ) = {i1, i2, . . . , imθ
} (22)

Note that r(θ1) is the set of basis indexes, sorted by the amplitude of the
elements of θ1.

From the previous ordered set of bases, the Feasible Sparse Parameters Set
is defined as:

Definition 5. Feasible Sparse Parameters Set (FSPS) of complexity mθ:

FSPS(mθ) =
{

θ ∈ Θ : ‖Yc − Φθ‖ℓp ≤ δs ∧

θi = 0, ∀i 6∈ λ(mθ)} (23)

Lemma 1. If δs ≥ δmin
s (mθ), for δmin

s (mθ) the solution to the convex opti-
mization problem

δmin
s (mθ) = minθ∈Θ δ (24)

s.t.

‖Yc − Φθ‖ℓp ≤ δ

δ ≥ 0

θi = 0, ∀i 6∈ λ(mθ)

Then, FSPS(nθ) 6= ∅.

Corollary 3. Let ǫ(mθ) = δmin
s (mθ)− δmin

p , then ǫ(mθ) ≥ 0.
Moreover, if ǫ(mθ) = 0, then FSPS(mθ) ⊂ FPS.

The previous results follow from the fact that, for any δ, the feasible set in
optimization problem (17) contains the feasible set in problem (24).

For any mθ, such that ǫ(mθ) = 0, the selected subset of basis functions guar-
antee the same accuracy explaining the available data than the full basis set. It
follows that the behavior of ǫ(mθ) is an indicator of the trade-off between accu-
racy and sparsity, allowing the designer to select a proper controller complexity
mθ.

Once the support of the controller is defined, the final step in the controller
tuning procedure is to select a vector of parameters θ̂ belonging to FSPS(mθ),
guaranteeing an small closed-loop error. Two solutions are proposed:
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• The following optimization problem allows to identify an interpolatory
estimate, minimizing the controller output error on the available data set:

θ̂I = arg min
θ∈Θ

‖Yc − Φ(t)θ‖ℓp (25)

s.t.

θi = 0, ∀i /∈ λ(mθ)

• A central estimate, given by the Chebyshev center of the FSPS(mθ), can
also be employed, minimizing the worst-case error in the parameter space,
but increasing the computational complexity of the tuning process.

θ̂C = arg min
θ

max
θ′∈FSPS(mθ)

‖θ − θ′‖ℓq (26)

s.t.

θi = 0, ∀i /∈ λ(mθ)

Now we are in a position to propose a limited-complexity controller estimation
algorithm as follows.

Algorithm 1. Sparse Set Membership tuning algorithm (SSMT)

1. Collect a data set D performing an experiment starting with the plant
initially at rest. Note that the assumptions on noise do not require open-
loop operation.

2. Select a proper reference model M and basis functions set {β1, β2, . . . , βmmax
}.

3. Obtain a lower noise bound δp (see Theorem 2).

4. Solve the optimization problem

θ1 =argmin
θ∈Θ

‖θ‖1 (27)

s.t.

‖Yc − Φθ‖ℓp ≤ δp

and construct vector r(θ1) as in Definition 4.

5. Select an sparsity error tolerance bound ǫmax and perform the following
iteration:

12



for j = 1 : mmax − 1

mθ = mmax − j

θ(j) = argmin
θ∈Θ

‖Yc − Φθ‖ℓp

s.t.

θi = 0, ∀i 6∈ λ(mθ)

if ‖Yc − Φθ(j)‖ℓp ≤ δp + ǫmax

θ̂ = θ(j)

else

break

end

After, arranging the elements of θ1 in decreasing amplitude order, in step
5 the bases with smaller coefficients are removed, one by one, until the given
threshold ǫmax for the output error increment is reached.

Remark 2. ǫmax can be tuned to suitably manage the trade-off between accu-
racy and sparsity in step 5, since large values of ǫmax lead to large sparsity, that
is, mθ ≪ mmax.

Under suitable conditions on Φ and θ1, the results in [31] guarantee that θ̂,
derived by Algorithm 1, is maximally sparse with the same support as θo.

4. Numerical Case Study

In this section, the proposed approach is evaluated on simulated data, gen-
erated by a flexible-transmission model, comparing its performance against a
sparse-CbT algorithm, proposed in [20]. As far as the authors are aware, it is
the only reported method that uses a sparse approach to solve Problem 1.

Consider the flexible transmission system introduced as a benchmark for
digital control design in [32]. The plant transfer function is:

P (q−1) =
0.28261q−3 + 0.50666q−4

1− 0.418q−1 + 1.589q−2 − 1.316q−3 + 0.886q−4

The control objective is given in terms of model-reference specifications,
given by:

M(q−1) =
(1− α)

2
q−3

(1− αq−1)
2

where α indicates the location of the poles defining the desired loop speed and
bandwidth. As in previous works with this benchmark, it is used Ts = 0.05 s
and α = 0.6. The basis functions parametrizing the controller are:
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βi(q
−1) =

q1−i

1− q−1
, i = 1, 2, ...,mmax.

It is assumed mmax = 12.
First, a data set of N = 200 samples is generated with the system operat-

ing in open loop, input u(k) is generated as a sequence of i.i.d. samples of a
Gaussian distribution with zero mean and variance 4. The plant output w(k) is
affected by additive output noise v(k) generated as i.i.d. samples of a uniform
distribution with zero mean an a Signal to Noise Ratio (SNR) of 20dB. The
SNR is calculated as

SNR = 10log

∑N

t=1 y(t)
2

∑N
t=1 v(t)

2
.

Then, Theorem 2 is employed to determine lower bounds on the output noise
norm δmin

p . p = 2 is selected as signal norm and different reference models (i.e
different α values) are tested for several mmax values. In this case, all the mmax

basis functions are employed. Results are shown in Figure 3. Note that, for fast
reference models (α small), the noise bound is high even for a large set of basis.
On the other side, for α = 0.6, δmin

2 ≈ 2.8 can be selected as a validated bound.
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Figure 3: Lower noise bounds for different reference models and controller complexities
(mmax).

The next step is to execute step 5 in Algorithm 1. Different ǫmax values are
considered, in order to highlight the trade-off between accuracy and sparsity.
Results are reported in Figure 4. It is shown that increasing ǫmax leads to
higher sparsity. When ǫmax = 0, i.e., FSPS ∈ FPS, 10 bases are selected
by the algorithm, while ǫmax = 0.8 offers an acceptable trade-off to obtain a
”low-complexity” controller. In this case the estimated sparse-controller is:

C(θ̂) =
0.1006− 0.0308q−1 + 0.0625q−5

1− q−1
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The complexity is mθ = 3, and the bases selected by the algorithm are

βi(q
−1) = q1−i

1−q−1 , i = 1, 2, 6.
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Figure 4: Sparsity results for different ǫmax values.

Finally, the solution proposed in [20] is applied to the available data set.
The sparse CbT algorithm relies on ℓ1 regularization. The cost function to be
minimized is:

θ̂(j) = argmin
θ

[

J(θ) + λ
∥

∥

∥
W (j)θ

∥

∥

∥

1

]

(28)

where J(θ) is the 2-norm of the correlation signal between a model error and
a properly selected instrumental variable, W is a weighing diagonal matrix and
j is a counter index.

Parameters l = 30 (instrumental variable length), λmax = 0.15 (upper bound
on regularization weight), jmax = 10 (maximum number of iterations), and
ǫ = 0.01 (lower bound of weights in matrix W ) are selected, according to the
criteria given in [20]. Initially, λ = 0.01 is employed but the algorithm does not
converge (i.e. when j = jmax, ‖θ‖0 > mθ ), results are reported in Table 1. A
second test with λ = 0.12 is performed and the results are reported in table 2.
It can be seen that the algorithm converges after 3 iterations.

Table 1: SCbT convergence results for λ = 0.01

iteration 1 2 3 4 5 6 7 8 9 10
‖θ‖0 12 12 10 8 8 8 8 7 7 7
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Table 2: SCbT convergence results for λ = 0.12

iteration 1 2 3 4 5 6 7 8 9 10
‖θ‖0 12 5 3 3 3 3 3 3 3 3

The sparse-controller obtained is

C(θ̂) =
0.0951− 0.0235q−1 + 0.0643q−5

1− q−1

Note that the bases selected by the SCbT algorithm coincide with those
identified by the SSMT algorithm.

4.1. Monte-Carlo test

A final test is performed, where a Monte-Carlo experiment allows to evaluate
the behavior of the algorithm for 100 realizations of noise v(t), leading to 100
data sets D, all of them maintaining a SNR ≈ 20dB.

For each data set and method, a controller has been tuned and tested on the
model of the plant P . Four cases are addressed, N = 300, N = 200, N = 100
and N = 70. The controllers have been tuned as described in the previous
example. In the SCbT method l = 30 or l = 20 is used according to data length
N .

For each data set size N , the performance of the estimated controllers is
measured via simulation. The quality of the resulting control action is measured
as the maximum error (Me) and the root mean square error (RMSE) of the
closed-loop step response with respect to the reference model. The average and
worst-case results are shown in Table 3.

As can be seen in Table 3, for the case of N = 300 the results are comparable
for both methods. But, for N = 200, the RMSE almost doubles for the SCbT
method. For the cases N = 100 and N = 50, both performance measures for the
controllers obtained via SSMT method keep constant, while those achieved via
SCbT algorithm increase. It is highlighted that in all cases the SSMT method
proposed in this work shown better results than the SCbT method.

Figure 5 shows the percentage of experiments (noise realizations) for which,

each algorithm properly estimated the optimal basis functions βi(q
−1) = q1−i

1−q−1 , i =
1, 2, 6.. For N = 300 both methods are able to recover the correct basis. How-
ever, for smaller data sets, the SCbT method is not always able to find the
correct bases to construct the sparse-controller, even when the number of itera-
tions jmax = 15 is selected. For N = 70, correct bases are obtained in less than
50% of the experiments for the SCbT method. This was expected because the
condition ℓ/N ≪ 1 is not fulfilled, such condition is required for the correlation
method (see details in []). Moreover, in some cases it produces unstable closed-
loops. However, the performances measures reported in Table 3 consider only
stable controllers.
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Table 3: Results for Monte-Carlo experiment

Case Measure SSMT SCbT

N=300, RMSE/max(RMSE) 0.0048/0.0051 0.0068/0.0093
l=30 Me/max(Me) 0.1996/0.2025 0.2437/0.2770

N=200, RMSE/max(RMSE) 0.0050/0.0051 0.0100/0.0102
l=30 Me/max(Me) 0.1941/0.2053 0.2641/0.2745

N=100, RMSE/max(RMSE) 0.0041/0.044 0.0235/0.1153
l=30 Me/max(Me) 0.1914/0.1950 0.3650/0.5602

N=70, RMSE/max(RMSE) 0.0048/0.0051 0.0812/0.1133

l=20 Me/max(Me) 0.1914/0.1950 0.2599/0.2776
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Figure 5: Results for bases selection.

5. Conclusion

We have developed a new Data-Driven approach to design limited-complexity
controllers for linear systems using Set Membership techniques and sparse iden-
tification methods. An algorithm has been proposed in order to solve the sparse-
controller tuning problem, supported by feasibility theorems that provide a
single parameter to adjust the complexity-accuracy trade-off. The algorithm
proposed here avoids solving big combinatorial problems that arise when the di-
mension of the vector parameterizing the candidate controllers is large and the
number of desired parameters is much lower. A benchmark flexible transmission
model is employed to illustrate the performance of the proposed methodology
(SSMT), in comparison to the sparse correlation based tuning approach (SCbT).
It is found that both approaches offer similar performance when the size of the
data set is much larger than the dimension of the controller parameters vector.
Notwithstanding, the SCbT controllers are strongly affected when data set size
is reduced, while the SSMT controllers exhibit good performances even when the
controller parameters are estimated from reduced data sets. Moreover, SSMT
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method has just one parameter to be adjusting and it has a direct interpretation
as modelling error bound, simplifying the tuning procedure.
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Appendix A. Proof of Theorem 1

Proof: From assumption 2, it is known that

M =
CoP

1 + CoP

and

1−M =
1

1 + CoP
.

Then, the model matching error system can be expressed as:

Em(θ) = M −
C(θ)P

1 + C(θ)P

=
CoP

1 + CoP
−

C(θ)P

1 + C(θ)P

After some algebra we have,

=
CoP − C(θ)P

(1 + CoP )(1 + C(θ)P )

=
CoP − C(θ)P

(1 + CoP )(1 + (1 + ∆(θ))CoP )

=
CoP − C(θ)P

(1 + CoP )2(1 + Co∆(θ)P
1+CoP

)

=
1

1 +M∆(θ)

(

CoP

(1 + CoP )2
−

C(θ)P

(1 + CoP )2

)

=
1

1 +M∆(θ)

(

M(1−M)− (1−M)2C(θ)P
)

arriving to the stated modelling error system.
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