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Model-Based Estimation of Lithium Concentrations and Temperature in
Batteries Using Soft-Constrained Dual Unscented Kalman Filtering

Stefano Marelli and Matteo Corno

Abstract— This brief proposes an electrochemical model-based
estimator of the Lithium-ion (Li-ion) concentration and temper-
ature of a Li-ion cell. The use of the electrochemical approach
allows for the estimation of the spatial distribution of lithium
concentration and temperature. The estimation is based on a
soft-constrained dual unscented Kalman filter (DUKF) designed
on the pseudo-2-D model of a Li-ion cell. The dual structure,
along with parallelization, reduces the computational complexity,
whereas the soft-constraint improves convergence. A simulation
analysis validates the approach showing bulk state of charge
(SoC) estimation error lower than 1.5%, solid-phase lithium
concentration estimation errors of less than 4%, and temperature
estimation errors within 0.2 ◦C from the true value in any point
of the cell.

Index Terms— Dual unscented Kalman filter, electrochemical–
thermal model, Li-ion batteries, soft-constraint.

I. INTRODUCTION

L ITHIUM-ION (Li-ion) batteries are the most widely
adopted technology for electric mobility and consumer

electronics. Li-ion batteries require battery management sys-
tems (BMSs) to be safely operated [1], [2]. The BMS prevents
internal states from exceeding safe limits. In demanding
current conditions, while averaged electrochemical quantities
such as voltage (V ) and state of charge (SoC) may reside in
their safe region, areas in the electrodes may suffer from local
conditions that are detrimental to the cell life and/or perfor-
mance [3]. For this reason, using reactions overpotentials and
lithium concentration limitations rather than voltage limita-
tions leads to improvements in terms of energy extraction and
aging. This approach can only be implemented if a sufficiently
accurate estimate of the lithium concentrations available [4].
In addition, electrochemical dynamics are heavily affected
by temperature [5] and large differences between surface
and core temperatures can occur during normal cell opera-
tion [6]. Similar to what happens for concentrations, if one
only monitors the average temperature, a thermal runaway
may not be promptly detected, thus leading to premature cell
degradation [7].

Several models of Li-ion batteries exist. They are classified
according to their complexity and accuracy from very simple
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electro-equivalent models to fully computational fluid dynam-
ics (CFDs) models. The choice of the model entails different
estimation accuracy. In [8], the authors employ a simple
electro-equivalent model to estimate average quantities. The
single particle model (SPM) is a rather common and successful
approach that accounts for the electrochemical dynamics in a
simplified fashion and yields good results in estimation [9].
For example, in [10], the authors adopt an approximated
version of the SPM and propose a way to compensate for
model uncertainty and electrolyte dynamics simplification. The
pseudo-2-dimensional (P2D) electrochemical model, adopted
in works such as [11]–[15], is widely recognized as a valuable
tradeoff between detailed modeling and computational cost.
This model, relying on partial differential algebraic equations
(PDAEs), requires particular care in the implementation and
in the observer formulation.

In this brief, the P2D model is coupled with a distrib-
uted thermal model of a cylindrical Li-ion cell. A finite
difference method (FDM) space-discretization technique is
employed for the PDAEs, because it allows for easy order
rescaling while maintaining the physical meaning of all
the variables and parameters. Elsewhere, the P2D model is
employed by proposing different approaches for order reduc-
tion: Smith et al. [4] estimate the instantaneous available
current; in a previous contribution, we estimate the bulk SoC
using an extended Kalman filter (EKF) on a space-discretized
and reduced-order version of the P2D model [16]; Finally,
Bizeray et al. [15] estimate the lithium concentrations and a
bulk temperature using orthogonal collocation and a Kalman
filter.

To the best of the authors’ knowledge, the field of simul-
taneous spatially distributed concentration and temperature
estimation is still rather unexplored. This brief extends our
previous contribution [17], where we estimate only the lithium
concentrations disregarding the temperature. In this brief,
we propose an approach to estimate both the electrochemical
and thermal states. The algorithm estimates both the average
values of these states as well as their spatial distribution.
This information is critical to achieve full exploitation of a
cell, minimizing the risk of damaging it. We achieve our
objective using a soft-constrained dual unscented Kalman filter
(DUKF). In summary, in this brief, we propose an estimator
capable of

1) synchronously estimating local lithium concentration
and temperature inside the cell;

2) improving convergence, thanks to a physically motivated
soft-constrained approach that promotes the conserva-
tion of mass;

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2644-7487


MARELLI AND CORNO: MODEL-BASED ESTIMATION OF LITHIUM CONCENTRATIONS AND TEMPERATURE IN BATTERIES 927

3) improving computational efficiency thanks to paral-
lelization. The algorithm does not require a paral-
lel implementation, but, as automotive-grade multicore
hardware is becoming more common [18], our imple-
mentation is capable of exploiting its advantages.

The estimation is based on a DUKF, this design is advan-
tageous under several aspects:

1) It does not require a closed-form of the dynamic system,
thus avoiding the need to solve the algebraic constraints
analytically or to numerically compute the Jacobian.
An EKF implementation would require either operation.

2) The UKF is more computationally efficient (having
fewer particles) than particle filters.

3) It can easily accommodate the inclusion of soft-
constraints that, this brief shows, improve estimation
convergence.

4) It is prone to parallel implementation.
5) The dual structure allows for a reduction of the order

of the model used in the estimation without appreciable
loss of accuracy.

Note that the proposed approach neglects aging phenomena.
While extremely important, aging phenomena dynamics are
slower than thermal and diffusion dynamics. Another observer
could be designed to estimate aging and update the model
parameters as [19] does for the SPM.

This brief is structured as follows. Section II briefly recalls
the coupled electrochemical–thermal model. Section III details
the soft-constrained DUKF. Section IV validates the approach
through a simulation campaign before the final conclusions
are drawn in Section V.

II. COUPLED ELECTROCHEMICAL–THERMAL MODEL

This section recalls the model used in designing the
observer. The model is composed of two parts, namely the P2D
electrochemical model and the thermal model. The P2D model
describes the dynamics of the concentrations of lithium in the
cell; the thermal model describes the temperature dynamics,
driven by local heat generation mechanisms. These two parts
exhibit bidirectional interactions, in that the electrochemical
reactions influence the temperature dynamics and vice versa.

A. P2D Electrochemical Model

The P2D is a standard and accepted model in control-
oriented electrochemical modeling of Li-ion cells. It describes
the dual-intercalation process along one physical dimension
(the cell longitudinal axis) and a pseudo-dimension (the radius
of the active particles). In the model, cs is the lithium con-
centration in solid phase; ce is the Li-ion concentration in
electrolyte phase; is is the electronic current in solid phase; ie

is the ionic current in electrolyte phase; φs is the solid-phase
potential; φe is the electrolyte-phase potential, j Li is the molar
flux, η is the reaction overpotential. I is the cell current, which
is the input of this model (assumed positive in discharge).
Also, Ds is the solid-phase diffusion coefficient; F is Faraday’s
constant; as is the electrode specific interfacial area; Deff

e is the
effective diffusion coefficient; t0+ is Li-ion transference number

(assumed as a constant); σ eff is the effective conductivity; keff

is the effective ionic conductivity, while keff
D is the effective

diffusion conductivity. Finally, a few geometrical quantities
are defined: A is the electrode plate area; δn, δp, and δs are
the negative and positive electrodes and separator thicknesses;
L = δn + δp + δs is the overall film thickness; Rs is the radius
of the active material spherical particles.

We employ the FDM to spatially discretize the P2D model:
the cell is discretized along x in Nn , Np , and Ns elements,
respectively, for the negative and positive electrodes, and the
separator; each element occupies a space �xn, �x p, and �xs .
Each electrode is modeled as a collection of active material
spherical particles equal to the ratio between the effective
electrode volume and the volume of a single sphere

νn = δn A εs;n
4
3π R3

s

; νp = δp A εs;p
4
3π R3

s

where εs;n is the solid-phase volume fraction of negative
electrode and εs;p of the positive electrode. As such, in each
discretized element of the electrodes, there is a number of
spherical particles respectively equal to

ν�x
n = νn

Nn
; ν�x

p = νp

Np
.

Each active material spherical particle is further discretized
along its radius r in Nr elements, spaced with �r . Since all
equations are written with volume-specific quantities, there
is no need to consider all the ν�x

n and ν�x
p spheres for

each discretized element, but just one sphere is representative
also for the dynamics of all the others within the same
element. Overall, the electrochemical model is described by
(Nr +1)(Nn+Np)+Ns ordinary differential equations (ODEs),
plus 5(Nn + Np) + 2Ns − 3 nonlinear algebraic constraints.

The conservation equations for the resulting discretized
model are summarized in Table I, in the form of differential
algebraic equations (DAEs). In the table and in the following,
index m identifies discretized elements along x and index
p along r . The discretized Butler–Volmer kinetics equation
results

j Li
m = as j0

[
exp

(
αa F

RT
ηm

)
− exp

(
−αc F

RT
ηm

)]
(1)

where αa and αc are the anodic and cathodic transfer coef-
ficients, respectively; R is the universal gas constant; T is
the temperature at which the reaction takes place; j0 is the
exchange current density. The reaction overpotential is defined
as

ηm = φs,m − φe,m − U(cs,(m,Nr ))

where U is the thermodynamic equilibrium potential and is
a nonlinear function of the surface concentration cse [12].
Furthermore, we can write

is,m − is,m−1 = −�xm j Li
m , ie,m − ie,m−1 = �xm j Li

m .

The cell output equation is

V = φs,Nn+Ns +Np − φs,1 − R f

A
I
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TABLE I

DISCRETIZED ELECTROCHEMICAL MODEL—CONSERVATION DAES
(BOUNDARY CONDITIONS ARE MARKED WITH GRAY BACKGROUND)

where R f is the electrode surface film resistance. Finally, the
SoC is computed as

SoC = 1

Nn R3
s

Nn∑
m=1

Nr∑
p=1

cs,(m,p)

(
r3

p − r3
p−1

)
(2)

where rp is the radius of the pth discretized element, equal to
p�r .

The coupling with the thermal part of the model takes place
through the temperature term T . It determines the values of
the exchange current density i0, the diffusion coefficient in
the solid phase Ds , the diffusion coefficient in the electrolyte
phase De, and the electrolyte ionic conductivity k. All these
parameters depend on the temperature according to the Arrhe-
nius equation (see [20])

�(T ) = �act exp

[
E�

act

R

(
1

Tact
− 1

T

)]
(3)

where � is the generic parameter, �act is the value of the
parameter at the reference temperature Tact = 25 ◦C, E�

act
is the activation energy for the parameter � . Note that the
dependence on the temperature effectively introduces a spatial
dependence of the cited parameters. To better understand this
dependence, we introduce the thermal model.

Fig. 1. Discretization of Li-ion cell along the rc direction.

B. Thermal Model

The thermal model describes the heat generation mech-
anisms by means of partial differential equations (PDEs).
It assumes that the temperature gradient along the cylinder
axial direction y is negligible (see [21], [22]); thus, the
temperature dynamics are those of heat conduction along the
radius of a cylinder.

Also in this case, the model PDEs are discretized using the
FDM, as depicted in Fig. 1. The cell is discretized along rc in
Nc elements, using a constant-volume approach. This means
that all the Nc subcells have the same volume, and the resulting
radial increment is not uniform.

The temperature dynamics are

ρcpṪz = kt

[
Tz−1 − 2Tz + Tz+1(

�rc
z

)2

]
+ kt

r c
z

[
Tz+1 − Tz

�rc
z

]
+ Qz

which is a set of Nc ODEs with boundary conditions

T1 − T0 = 0,
TNc+1 − TNc

�rc
Nc

= − h

kt
(TNc − T∞).

In the equations above, index z is used for discretized elements
along rc. The radial increment �rc

z is the space occupied by
the zth subcell

�rc
z = rc

z − rc
z−1.

T∞ is the environment temperature (considered constant),
kt is the thermal conductivity, ρ is the density, h is the
convection heat transfer coefficient, cp is the specific heat
capacity, Q is the volumetric heat generation rate, and Rc is the
radius of the cylinder. Since the cylinder is a heterogeneous
domain, being composed of two different phases (solid and
electrolyte) distributed in three domains (negative electrode,
positive electrode, and separator), the heat capacity Cp with
the method proposed in [23] and using the parameters of the
cell under study

Cp = ρcp =
∑
i,k

δiεk,i ρk,i cp,k,i

L

where subscript k = (s, e) indicates the phase (solid or elec-
trolyte) and subscript i = (n, s, p) indicates the component.

The volumetric heat generation is

Qz = Q j,z + Qo,z + Q f,z
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and

Q j,z = 1

L

∑
m

j Li
m,zηm,z�xm

Qo,z = 1

L

∑
m

[
σ eff

(
φs,m+1,z − φs,m,z

�xm

)2

+ keff

(
φe,m+1,z − φe,m,z

�xm

)2

+ keff
D

(
ln(ce,m+1,z) − ln(ce,m,z)

�xm

)

·
(

φe,m+1,z − φe,m,z

�xm

)]
�xm

Q f,z = R f

L

(
Iz

Az

)2

.

The term Iz is the input current to the zth subcell (a fraction
of the total input current I ), while Az is the subcell electrode
plate area.

The entire volume of the cell is divided into Nc subcells,
each characterized by its own temperature, and consequently
by a set of time-varying parameters to be used in the elec-
trochemical model as discussed in (3). This yields a total of
Nc[(Nr +1)(Nn + Np)+ Ns ] states for the discretized coupled
electrochemical–thermal model. Also, since the current collec-
tor is a common element of all subcells, they are all connected
in parallel; this means that they exhibit the same terminal
voltage. Thus, an additional set of algebraic constraints arises

Vz − Vz−1 = 0 with z ∈ [2, Nc]. (4)

In total, there are Nc[5(Nn + Np) + 2Ns − 3] − 1 algebraic
constraints. Finally, we define the average temperature as

Tbulk = 1

Vol

Nc∑
z=1

Volz Tz (5)

where Vol is the total cell volume and Volz is the zth subcell
volume.

Note that the coupling with the electrochemical part of the
model takes place through volumetric heats Q j and Qo that
depend on several electrochemical algebraic variables, and
thus on the electrochemical states.

The following simulations and analysis adopt the cell para-
meters proposed and experimentally identified in [5], [12], [24]
and [25]. In particular, the parameters are representative of
the dynamics of 18 650 cells with a graphite anode, a LiCoO2

cathode.1 Different chemistries will behave similarly, but the
main features of the dynamics do not change.

III. SOFT-CONSTRAINED DUKF ESTIMATOR

The UKF is a sigma-point Kalman filter with a particular
choice of weighting coefficients (see [26] for the complete
details). In the UKF formulation, a set of sigma-points is
deterministically sampled starting from the previous-step a

1The list of the entire parameters used in the model can be found at
https://home.deib.polimi.it/corno/publications.htm

Fig. 2. Scheme of the DUKF estimator. The meaning of the signal nt is
explained in Section III-B.

posteriori state estimate and covariance matrix. In the time-
update step, each of these points is propagated through the
system nonlinear state equation; the results are then weighted
to generate the current step a priori state estimate and covari-
ance matrix. Also, a priori sigma-points are passed through
the system nonlinear output equation and then weighted to
give an estimate of the output and its covariance matrix.
Furthermore, the state and output cross-covariance matrix
is estimated. Finally, in the measurement-update step, the
Kalman gain is applied to the difference between the actual
and estimated output, in order to compute the current-step
a posteriori state estimate and covariance matrix. It can be
observed that the time-update step of the algorithm is naturally
amenable to parallel computing implementation; in fact, each
a priori sigma-point computation, starting from x̂+

k−1 and
P+

xx,k−1 , is completely independent of other sigma-points.
If nx is the dimension of the state vector, the sigma-

points are 2nx + 1. The covariance matrix P+
xx,0 of the initial

state estimate is a tuning parameter, which rules the initial
dispersion of the sigma-points around the initial state estimate
x̂+

0 , that is another tuning parameter. The covariance matrix
Qξξ of the process disturbance and the covariance matrix
Rυυ of the measurement noise are also important tuning
parameters, as well as the other, minor tuning parameters.

Applying the UKF structure to the coupled
electrochemical–thermal model would lead an intractable
problem because of the system dimension. Instead, we propose
a dual filter structure to reduce its complexity. The
filter exploits the assumption that the electrochemical
quantity observation can be carried out assuming a uniform
temperature. Fig. 2 represents the resulting structure. The
overall observer is composed of two parts: the electrochemical
UKF and the thermal UKF. The electrochemical UKF includes
only the P2D model of the cell. It receives as inputs the
current, the voltage, and the estimated bulk temperature,
T̂bulk, which comes from the thermal observer. It provides
estimates of all discretized elements of cs and ce, and of
the SoC. The dimension of the state for the electrochemical
part of DUKF is nx = (Nr + 1)(Nn + Np) + Ns . On the
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other hand, the thermal UKF includes only the thermal
model of the cell and assumes all the Nc subcells to be
characterized by the same electrochemical states cs and ce

(distributed along x and r ). It receives as inputs the current
and the estimated concentrations vector, which come from the
electrochemical part of the observer; it receives the surface
temperature as the measured quantity; finally, it provides
estimates of the temperatures of all the subcells, gathered in
the estimated state vector T̂ . The dimension of the state for
the thermal part of DUKF is nx = Nc . The electrochemical
UKF assumes a uniform temperature; the estimation of
the electrochemical quantities will be more accurate in the
regions whose temperature is closer to the fed one. For this
reason, we opted to use the bulk temperature. This leads to
an estimation error whose maximum is lower than if we used
the core temperature. Using the core temperature would lead
to a more accurate estimation of the electrochemical states in
the core, but a worse estimation on the surface.

From the computational efficiency standpoint, the proposed
structure offers two main advantages:

1) It solves the problem of the parallel configuration
for the subcells. Instead of implementing the alge-
braic constraints (4), as is done in the coupled
electrochemical–thermal simulator, the measured quan-
tity V is forced to be the same for all the subcells
through the assumption that all the subcells have the
same electrochemical state.

2) The monolithic single observer would have an order of
((Nr + 1)(Nn + Np) + Ns )Nc against the order of the
DUKF which is ((Nr + 1)(Nn + Np) + Ns) + Nc. This
comes with a loss of accuracy due to the fact that the
electrochemical dynamics is integrated considering the
bulk temperature; however, Section IV will show that
the loss of accuracy is negligible.

A. Bulter–Volmer Linearization

The UKF is based on the propagation, through the nonlinear
dynamics, of 2nx + 1 sigma-points at each sampling time; for
this particular system, the nonlinear dynamics are character-
ized by algebraic constraints determined by the Butler–Volmer
kinetics (1) in the form of implicit equations. Solving for these
constraints is inefficient; in order to speed up the computation,
the UKF implementation uses the linearized Butler–Volmer
kinetics

j Li
k = as

Rct
[φsk − φek − U(cs(k,Nr ))] (6)

where

Rct = RT

j0 F(αa + αc)
.

B. Soft-Constrained UKF

The straightforward implementation of the DUKF does not
lead to satisfactory performance. In many simulations, yet
the estimation error of the internal states diverges, when this
happens, the total mass of lithium in the model varies. This
is of course a nonphysical behavior. Fig. 3 plots the actual
and estimated number of moles of Li (nt ) along with the

Fig. 3. Number of estimated and simulated moles of lithium during the
current pulse cycle (top plot) and estimated bulk SoC (bottom plot).

estimated bulk SoC during a current pulse cycle, designed to
keep the SoC around 50%. From the figure, one can see that
the estimated SoC diverges, reaching unfeasible values. This
happens because the algorithm does conserve the total number
of moles of available lithium, or, equivalently, the conservation
of total lithium mass. As a matter of fact, although the single
sigma-point transformation through the model state equation
conserves the total lithium mass, being based on the P2D
model formulation, other steps in the UKF algorithm do not
provide the same feature. Three steps possibly alter the total
lithium mass because of their purely statistical nature: 1)
sigma-points computation based on previous step a posteriori
state estimation and covariance matrix; 2) a priori state esti-
mation via weighted sum of sigma-points; and 3) a posteriori
state estimation via the measurement correction step.

Based on the above considerations, the structure of the
electrochemical UKF is amended to avoid divergence in the
number of moles of lithium. In the literature, two approaches
are present: a hard-constraint approach, adding additional
algebraic constraints in the sigma-points computation; or a
soft-constraint approach.

The latter idea consists in modifying the input–output struc-
ture of the model by adding a virtual measurement, namely
the total number of moles of available lithium nt (constant
signal). In this framework, the measured output becomes

y =
[

V
nt

]
where nt is the total number of moles of lithium in the solid
phase (ns) and in the electrolyte phase (ne) computed as

ns = 3A

R3
s

∫ L

0

∫ Rs

0
εsr

2cs drdx

ne = A
∫ L

0
εece dx . (7)

In this way, we effectively add an additional parameter to
the observer. This parameter prevents the drift of the number
of lithium moles. Note that nt is a constant for a given cell
at a given aging state and it can be either derived from the
identified parameters of the model or can be considered as a
tuning parameter of the observer and treated in the same way
as Rυυ or Qξξ .

C. Implementation With Parallel Computing

Each sigma-point a priori propagation takes place indepen-
dently of other sigma-points; this structure is thus suitable for



MARELLI AND CORNO: MODEL-BASED ESTIMATION OF LITHIUM CONCENTRATIONS AND TEMPERATURE IN BATTERIES 931

Fig. 4. Ratio between simulation time required by sequential and parallel
computing implementation of UKF estimator, for different discretization
levels Nr .

parallel computing implementation. Most of the time-update
step computational cost can be distributed on multiple cores,
so that the time required for this step is ultimately significantly
reduced.

The following computational cost analysis quantitatively
illustrates this advantage. The dual estimator is run on a
sequence of pulses at 10 ◦C followed by rest periods, both of
10 s duration. Simulations were run in MathWorks MATLAB,
with the Parallel Computing Toolbox, on a quad-core machine
(2.4 GHz) with 12 GB RAM and solid-state drive. Fig. 4 plots
the ratio between the simulation time required by the sequen-
tial and parallel implementation, respectively, called T seq

sim and
T par

sim as a function of Nr , with Nn = Ns = Np = 3 and
Nc = 6. By observing the figure, it is clear that the estimation
algorithm computational burden is reduced by a factor between
1.3 and 2.5 thanks to the parallel implementation.

IV. VALIDATION

This section validates the proposed approach. In the fol-
lowing, we feed the observer data generated using a simu-
lation model. This complete electrochemical–thermal model
considers the full set of PDAEs, meaning that it does not
decouple the thermal and electrochemical parts, and it does
not linearize the Butler–Volmer kinetics. As a result, the order
of the simulation model is ((Nr + 1)(Nn + Np) + Ns )Nc.
The discretization parameters of the simulation model are
Nr = 50, Nn = Np = 5, Ns = 3, and Nc = 10, whereas
the parameters of the estimation model are Nr = 5, Nn =
Np = Ns = 3, and Nc = 6. See [27] for more details on
how the bidirectional coupling is integrated. As a final step,
all the measured variables (voltage and surface temperature)
are corrupted by zero-mean white noise.

The first step of the validation is the comparison of the
simulation model against an experimentally validated CFD
model [13]. Fig. 5 plots the comparison between the terminal
voltage predicted by our simulator and the output of the CFD
model during a phase of the dynamic test shown in Fig. 6. As
shown in the figure, the model used in simulation accurately
tracks the voltage behavior of a standard validated model.

Armed with this verification, we discuss the performance
of the estimation. In what follows, the covariance matrices
P+

xx,c,0 , P+
xx,T,0 , Qξξ,c, Rυυ,c, and Rυυ,T are all chosen as

diagonal matrices. Recall that Rυυ,c accounts also for the
virtual nt measurement.

Fig. 7 presents the bulk SoC estimation error (expressed
in percentage) during a series of 10 ◦C current pulses. The

Fig. 5. Voltage response of the model with high rate charge and discharge
current profile.

Fig. 6. Current input profile used to validate the DUKF in the dynamic test.

Fig. 7. Bulk SoC estimation results for the current pulses, with several values
of SoC0,UKF and T0,UKF.

Fig. 8. Bulk temperature estimation results for the current pulses, with several
values of SoC0,UKF and T0,UKF.

DUKF is initialized at different initial guesses of SoC and
Tbulk, indicated as SoC0,UKF and T0,UKF, respectively. Fig. 8
plots the bulk temperature estimation, comparing it against
the real bulk temperature and the core and surface ones. From
the figures, one concludes the following.

1) The estimator converges to the true values of SoC and
Tbulk even for large initialization errors in both the
electrochemical and thermal parts, respectively, of up
to 50% and up to 30 ◦C.

2) The initial convergence rate is very fast. For all consid-
ered initializations, the SoC error goes below 10% in
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Fig. 9. Surface stoichiometry distribution along the x direction, at different
time instants (left). Stoichiometry distribution along the r direction of the
spherical particle at x = L , at different time instants (right).

less than 40 s, while the bulk temperature error goes
below 5 ◦C in less than 60 s.

3) After the initial transient (roughly 250 s), the SoC error
keeps always under 3% (in the absolute value) and
reaches values as low as 1.5% by the end of the test
in all cases apart (SoC0,UKF = 50%, T0,UKF = 40 ◦C);
the bulk temperature error is always below 0.1 ◦C (in
the absolute value) after the initial transient.

Fig. 9 plots snapshots at different time instants of the
estimation of lithium concentration. The left panel plots the
estimation of surface stoichiometry along x ; the right panel
plots the estimation of stoichiometry along the radial direction
of a spherical particle close to the positive current collector.
The reported simulated results show the electrochemical vari-
ables for each of the Nc subcells, each with a different temper-
ature; the DUKF accurately estimates the variables of interest.
Note that the surface stoichiometry has a faster convergence
than for the center of the active material. This happens
because the surface stoichiometry more directly affects the
measured voltage. Also, the simulation reaches near-depletion
stoichiometry values at the surface (e.g., at t = 660 s); in
these conditions, the equilibrium potential U exhibits a strong
nonlinear dependence on θse. The DUKF observer is accurate
also when this strong nonlinearity is excited. Furthermore,
when a consistent temperature gradient along the rx direction
arises (i.e., around t = 660 s and to a lesser extent at
t = 220 s), the different subcells have different stoichiometry
distributions along r , in this case, the DUKF estimate sits
within the subcell variability, proving that the assumption on
which the dual filter structure is based is reasonable.

Finally, Fig. 10 shows the temperature distribution in the
cylindrical cell at several time instants. From the figure, the
surface temperature converges to the true value in the first
seconds of the test, because it is a measured quantity; on
the contrary, the convergence of the core temperature requires
more time. At the end of the test, a difference of about 7.5 ◦C
is generated between the surface and the core.

A. Remark on Observer Dual Structure

This section further illustrates the advantages and features
of the dual structure. The analysis shows that joint temperature

Fig. 10. Temperature distribution along the rc direction of the cylindrical
cell, at different time instants (depicted with different colors) for the current
pulses.

Fig. 11. Simulated temperature profiles at surface and in the core of the cell,
under the same current of Fig. 6.

and chemical dynamics estimation is required for accurate
cell management; at the same time, the analysis exemplifies
how the DUKF structure achieves this result with a limited
increase in complexity with respect to chemical dynamics only
estimators.

Consider the electrochemical UKF subject to the input
current of Fig. 6, and initialized with 20% initial SoC
error. The simulated temperature profiles from the coupled
electrochemical–thermal model are shown in Fig. 11, for the
surface and core subcells. Note that the simulator is initialized
at T = 10 ◦C. In these conditions, the electrochemical UKF
is run with four different temperature inputs: 1) a constant
temperature equals to Tact, which is equivalent to fix the
P2D model parameters to their nominal value; 2) a wrong
constant temperature measurement, namely T = 10 ◦C, that
is the initial cell temperature in the simulated test; 3) the
bulk temperature measurement; and 4) the core temperature
measurement. Fig. 12 compares the estimated solid-phase
stoichiometry against the stoichiometry of the six subcells
that arise from the thermal dynamics discretization. From this
analysis, one concludes the following.

1) Lithium concentrations estimation is strongly affected
by thermal dynamics. In fact, while surface stoichiom-
etry is estimated with an acceptable accuracy in all
considered cases, the stoichiometry at the center of the
active material sphere is not correctly estimated by the
electrochemical UKF that does not receive at least a
bulk temperature measurement.

2) Using the bulk or the core temperature as an input to the
electrochemical UKF yields similar results. As expected,
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Fig. 12. Solid-phase stoichiometry at surface (top) and active particle core
(bottom) of the particle located close to positive electrode current collector
for four different estimated temperature profiles.

when using the core temperature, the estimated stoi-
chiometry better tracks the core stoichiometry. The use
of the bulk temperature yields an estimation with a lower
maximum error considering the six subcells.

These simulations show that the estimation of local temper-
atures, and in particular of core temperature, is critical for
the cell safety and performance. At the end of the test, while
the surface temperature (measurable quantity) is still at about
50 ◦C, the core temperature reaches 95 ◦C. A simple bulk
temperature estimation may not be enough to detect a thermal
runaway under demanding input currents.

V. CONCLUSION

We presented an electrochemical–thermal model-based
DUKF observer capable of simultaneously estimate the local
temperature and Li concentration in a Li-ion cell. This brief
tackles these issues by introducing a soft-constraint that pro-
motes the conservation of mass.

The proposed UKF has several advantages: it does not
require a closed-form system; it provides tools for a sim-
ple integration of the additional lithium mass conservation
constraint; it is amenable to parallel implementation; and
it achieves fast and robust convergence from large initial
estimation errors.
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