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Abstract—In the past decade, touchless interaction with objects
drawn increasing attention in the wide range of applications from
entertainment to the real-time control of robots. In this aim, many
devices such as Leap Motion and Microsoft Kinect developed for
tracking hand posture. However, successful realization of these
sensors for real-time touchless interaction applications still needs
to be improved. Subsequently, in this paper, adaptive sensor
fusion methodology is proposed for hand pose estimation with
two Leap Motions. Developed adaptive methodology is capable
of performing stable and continuous hand position estimation
in real-time even when a single sensor is unable to detect a
hand. Self-calibration algorithm is implemented to tolerate the
incompatibility in sensor reference frames. Two separate Kalman
filters are adopted for adaptive sensor fusion of palm position and
orientation. Proposed adaptive sensor fusion method is verified
with various experiments in six degrees of freedom in space.

Index Terms—Adaptive Sensor Fusion, Kalman Filter, Leap
Motion.

I. INTRODUCTION

IN recent decades, technological innovations have removed
the perception that human-computer interaction requires

physical contact and have introduced the methodology of
touchless interaction [1]. For touchless interaction, the key-
point is the estimation of the hand pose that includes both
position and orientation of the hand frame [2]. Nowadays,
there are various instruments available in the commercial
market such as Leap Motion Controller (LMC1) and Microsoft
Kinect2 that allows contactless interaction in the human-
computer interaction (HCI) [3], [4], [5].

Applications already spreaded to various fields such as
virtual reality (VR) surgeries [6], robot-manipulation [7] and
sign language recognition [8]. Touchless teleoperation of the
RAVEN-II surgical robot is performed by using LMC in [9].
In the literature, not only the master-slave based interaction
is considered, but also haptic feedback is introduced in [10],
by using LMC and wearable tactile devices which is real-
ized in VR application. Thanks to the non-physical sterile
interaction, applications have also extended to the clinical
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2Microsoft Kinect, https://developer.microsoft.com/en-us/windows/kinect

field [11]. Another HCI application held for medical image
data manipulation during the surgeries by using LMC realized
in [12]. Moreover, LMC is frequently used for hand gesture
recognition as we did in our previous works, a novel method
proposed by using LMC sensor to classify electromyography
signals for hand gesture recognition [13].

Almost all these papers in the literature agreed on that,
due to the occlusion problem, direct use of LMC is not
applicable and reliable in most cases. Therefore, multiple
sensors become a solution for continuous and smooth data
flow with sensor fusion [14]. Sensor fusion is possible with
the variety of sensors such as LMC-Microsoft Kinect [15],
LMC-Myo Armband [16], LMC-LMC [17]. In order to make
sensor fusion, Bayesian state estimators such as particle filter
or kalman filter used frequently in the literature [18].

Literature research showed that there is still a room for
improvements due to the lackness of stable and continous
method for touchless interaction. Therefore, in order to over-
come these problems, a more stable and accurate touchless
interface is proposed in this paper. This paper puts forth a
novel method for estimating hand pose with two LMCs. Novel
adaptive sensor fusion with two kalman filters proposed in
order to estimate position and orientation of the palm center.
The greatest strength of our method is that even if occlusion
occurs in one sensor, it can maintain smooth estimation.
Moreover, measurement covariance is adaptively changed in
order to endeavour with the changes in the environment. The
contribution of this paper includes:

• Thanks to the proposed adaptive sensor fusion methodol-
ogy, smooth and continuous palm position and orientation
estimation, even one LMC does not detect the hand.

• Real-time execution is performed without any preprocess-
ing. Synchronization of sensors is performed via ROS.

• Self-calibration algorithm automatically registers the sen-
sors to the same reference frame. Arbitrary positioning of
sensors is compensated.

In the following sections, the design, working and experi-
mental results of the proposed Sensor fusion method are dis-
cussed. In Section II, various types of sensor fusion methods
are briefly described. In Section III, a brief description of
the two sensors under study is given. In Section IV, basic
Kalman filter is discussed from sensor fusion point of view.
The model equations and parameters of the Kalman filter for
the problem of finger tip position tracking are derived. In
Section V, the experimental setup is explained and the results
are discussed which is followed by remarks and conclusions
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in the subsequent section.

II. RELATED WORKS

Sensor fusion with LMC attracted variety of researches.
An adaptive human-robot interface adopted in [19] by using
kalman filter to estimate orientation and particle filter to
estimate palm position of human hands. Proposed method
used to operate dual robots by using double hands. In the
following research [20] deployed from the same authors, they
introduced markerless human-robot interface by using interval
kalman filter to estimate palm position and improved particle
filter to estimate the orientation of the human hands. Thanks
to this new algorithm they improved accuracy of palm position
and stability of the orientation estimation with respect to their
previous work.

Apart from use of single LMC, due to the occlusion or
limited workspace problem of LMC, multiple sensors are also
considered in the literature. [16] is introduced sensor fusion of
Myo Armband - LMC sensors in order to improve the perfor-
mance and also to have full model of arm motion including
forearm, hand and fingers. More recently, [18] is developed
specialized sensor fusion schema for stable estimation of fin-
gertips with the data coming from LMC and sensorized glove
sensors. [21] is introduced another kalman filter application
with Myo Armband’s inertial measurement unit to obtain
better palm direction estimation at the measurement limits
of LMC. Moreover, they used convolutional neural network
classification to overcome drawbacks of Leap Motion’s active
finger distinguish on the measurement limits. Another kalman
filter data fusion strategy proposed by [22], to achieve stable
estimation of palm center with the position data gathered from
LMC and velocity data gathered from Microsoft Kinect.

Finally, [23] introduced use of multi-LMCs to solve oc-
clusion problem for teleoperative demonstration in the robotic
system simulation. They analyzed different configurations of
second LMC positioning to achieve optimal use of informa-
tions from the two sensors. However, in order to fuse data, they
used the data from both LMCs to choose the more reliable one,
not to obtain a smoother estimation. Moreover, their method is
not applicable to real-time scenario and suffers from manual
delay compensation for each acquisition.

III. METHODOLOGY

A. Self-calibration for coordinate transform

Goal of the proposed methodology is allowing arbitrary
positioning of the LMC sensors, as seen in Fig. 1. However,
LMC measures the hand frame with respect to LMC base
reference frame where L1TH and L2TH represents mea-
surements of hand frame with respect to the LMC-1 and
LMC-2, respectively. These measurements can not be used for
sensor fusion directly since reference frame is not identical.
Hence, calibration matrix (L1TL2) between reference frames
is required. Only then, it is possible to estimate one sensor’s
measurements on the other sensor’s reference frame. Accord-
ingly, measurements acquired by LMC-1, could be estimated
in the LMC-2 reference frame (L2T̂H) as follows:

L2T̂H = (L1TL2)−1 L1TH (1)

After the calibration, it is feasible to perform sensor fusion
by using LMC-2 measurements (L2TH) on it’s own frame and
LMC-1 measurements estimated in LMC-2 frame (L2T̂H).

Fig. 1. Experimental setup and defined coordinate systems.

In consideration of arbitrary positioning of sensors for
each experiment, calibration process designed to be performed
automatically. In order to apply self-calibration algorithm, data
is sequentially collected from two LMCs. To ensure the quality
of calibration and a variety of workspace rules in Algorithm
1 are adopted:

Algorithm 1 Proposed Self-Calibration Algorithm
while i < Ns do

if ‖L1zpos,k −L1 zpos,k−1‖ > 1[mm] &
‖L2zpos,k −L2 zpos,k−1‖ > 1[mm] then

if CL1,k > 0.8 & CL2,k > 0.8 then
L1zbuffer ←L1 zpos,k
L2zbuffer ←L2 zpos,k

end if
end if

end while
L1TL2 ← Horn′s Calibration(L1zbuffer,

L2 zbuffer)

where L1zpos,k and L2zpos,k is the k-th instant palm po-
sition measurements with respect to the LMC-1 and LMC-
2 respectively. CL1,k and CL2,k are the confidence level of
the measurements acquired by LMC-1 and LMC-2. Finally,
algorithm will stop when 500 samples (NS) are collected by
respecting these criteria. Note that, sampling frequency of sen-
sors are ≈ 110 [Hz] and data acquisition for calibration with
described criteria usually completed in 30 [sec] to 1 [min].
After the data acquisition, automatic calibration of sensor
frames is achieved by using Horn’s Method [24] between
collected trajectories from LMC-1 and LMC-2. In order to
overcome differences in linear measurements between sensors,
calibration matrix computed as transformation matrix scaled
in 3D. As a result, calibration matrix (L1TL2) is obtained
and LMC-1 measurements estimated in the LMC-2 reference
frame (L2T̂H).
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B. Sensor Fusion

1) Modeling: Hand model is treated as linear dynamical
system in space and measurements considered as Gaussian
distribution for modeling. Accordingly, state space model
of hand based on discrete-time linear stochastic difference
equation could be summed as [25]:

xk = Φkxk−1 + Γkuk + wk (2)

zk = Hkxk + vk (3)

where xk ∈ Rn is the state vector, zk ∈ Rm is an measurement
vector and uk ∈ Rl is input vector. Φk ∈ Rnxn, Hk ∈ Rmxn

and Γ ∈ Rnxl are state transition model, observation model
and control input model. wk and vk are denotes the process
and measurement noise respectively. They are assumed to be
independent white gaussian noise (WGN):

wK ∼WGN(0, Q) (4)

vk ∼WGN(0, R) (5)

where Q is the covariance of process noise and R is the
covariance of measurement noise. Also, note that for the case
of hand motion analysis, control input uk fired in the muscular
system is considered as unknown. Additionally, hand can be
modelled as rigid body in space. Linearized motion model for
rigid body in space could be written as:

xk = xk−1 + Tsẋk + T 2
s /2 ẍk (6)

ẋk = ẋk−1 + Tsẍk (7)

one that can model the acceleration term ẍk, as a process
noise. Therefore, hand motion model could be written as:

xk = Φkxk−1 + Γkwk (8)

Pointing out the difference, Γk is no longer control input,
yet it represents the model that describes effect of process
noise. In order to estimate pose of the hand, both position
and orientation of hand frame is required. State for the hand
position (xpos,k) is denoted as:

xpos,k =
[
Pk Vk

]T
(9)

where palm center position Pk =
(
Px,k Py,k Pz,k

)
and

palm center velocity Vk =
(
Vx,k Vy,k Vz,k

)
in Cartesian

coordinates of sensor reference frame. On the other hand, euler
angles (roll, pitch, yaw) are adopted. State for hand orientation
(xorien,k) is defined as follows:

xorien,k =
[
φk θk ψk φ̇k θ̇k ψ̇k

]T
(10)

Finally, by combining these assumptions, state transition
and process noise effect model for the linearized motion of
hand could be gathered as:

Φk =


1 0 0 Ts 0 0
0 1 0 0 Ts 0
0 0 1 0 0 Ts
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (11)

Γk =


T 2
s /2 0 0
0 T 2

s /2 0
0 0 T 2

s /2
Ts 0 0
0 Ts 0
0 0 Ts

 (12)

Note that, same dynamical model (Φk,Γk) used for the both
position and orientation estimation modeling. Observation
model for position estimation (Hpos) includes position and
velocity measurements of the palm:

Hpos = diag(1, 1, 1, 1, 1, 1) (13)

On the other hand, orientation estimation only depends on
the rotation matrix obtained from the hand frame. Observation
model used in the orientation estimation (Horien) is acquired
by using this rotation matrix, and consequently (roll, pitch,
yaw) angles are observed.

Horien = diag(1, 1, 1, 0, 0, 0) (14)

Rotation matrix of the hand frame constructed with the
palm normal and hand direction measured from the LMC
as it can be seen from the Fig. 2. Reference frame of hand
(xH , yH , zH) constructed as: yH = −palm normal, zH =
−hand direction and xH = palm normal × hand direction.
In this line, rotation matrix from the palm normal and hand
direction vectors measured by LMC is used to construct
rotation matrix as the following equations:

cross product = palm normal × hand direction (15)

R(α, β, γ) =

−palm normalx −hand directionx cross productx
−palm normaly −hand directiony cross producty
−palm normalz −hand directionz cross productz


(16)

On the other hand, rotation matrix can be also represented
by euler angles (roll, pitch, yaw). Let us denote α as roll angle,
β as pitch angle and γ as yaw angle. Rotation matrix could
be represented for this notation as:

R(α, β, γ) = Rz(α)Ry(β)Rx(γ) =cosα cosβ cosα sinβ sin γ − sinα cos γ cosα sinβ cos γ + sinα sin γ
sinα cosβ sinα sinβ sin γ + cosα cos γ sinα sinβ cos γ − cosα sin γ
− sinβ cosβ sin γ cosβ cos γ


(17)

In order to compute corresponding euler angles, method of
[26] is used.

2) Kalman Filter: For the sensor fusion, kalman filter
will be applied separately for both position and orientation
estimation of the hand. Kalman filter is a recursive filter. In the
each loop, it predicts the next state x̂k|k−1 and the covariance
matrix Pk|k−1 as:

x̂k|k−1 = Φkx̂k−1|k−1 (18)

Pk|k−1 = ΦkPk−1|k−1ΦT
k + ΓkQkΓT

k (19)

Inside of the each loop, process is updated iteratively.
Updated state estimate:

x̂k|k = x̂k|k−1 +Kkỹk (20)
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Fig. 2. Proposed adaptive sensor fusion schema.

where kalman gain(Kk) and measurement residual (ỹk) de-
fined as:

ỹk = zk −Hkx̂k|k−1 (21)

Kk = Pk|k−1H
T
k S
−1
k (22)

Residual variance matrix Sk is defined as:

Sk = HkPk|k−1H
T
k +Rk (23)

Updated estimate of covariance matrix:

P̂k|k = (I −KkHk)Pk|k−1 (24)

E = [ΓQΓT ] (25)

Q =

σ2
x 0 0
0 σ2

y 0
0 0 σ2

z

 (26)

E =


T 4
s /4 0 0 T 3

s /2 0 0
0 T 4

s /4 0 0 T 3
s /2 0

0 0 T 4
s /4 0 0 T 3

s /2
T 3
s /2 0 0 T 4

s /4 0 0
0 T 3

s /2 0 0 T 4
s /4 0

0 0 T 3
s /2 0 0 T 4

s /4

 (27)

In order to integrate multi leap motions with the proposed
structure parallel kalman structure is used as discussed in
[27]. Therefore, observation model (H), measurement noise
(R) and instantaneous measurements (zk) unified for parallel
multi kalman structure as:

zk =

[
zk,L1

zk,L2

]
(28)

Hk =

[
Hk,L1

Hk,L2

]
(29)

R =

[
RL1 0

0 RL2

]
(30)

3) Proposed Scheme for Adaptive Sensor Fusion: In the
Fig. 2 proposed adaptive sensor fusion method with two
separate kalman filters for hand position and orientation
estimation is visualized. Measurement noise covariance for
LMC-1 (RL1) and LMC-2 (RL2) are fixed at the beginning.
These matrices, adaptively modified during the process with
respect to the confidence level data incoming from the LMC-
1 CL1,k ∈

[
0 1

]
and LMC-2 CL2,k ∈

[
0 1

]
. Updated

measurement noise covariance denoted as R∗L1,k and R∗L2,k

for LMC-1 and LMC-2 respectively. Updating rule is given as
follows:

R∗L1,k = RL1/(CL1,k + α) (31)

R∗L2,k = RL2/(CL2,k + α) (32)

where α is arbitrarily small value that prevents resulting
infinite numbers when confidence level reaches to zero.

C. System Description
In line with the proposed algorithm, multi-sensor processing

and data analysis done with efficient, communicating multi-
computers, as shown in Fig. 3. ROS3 network used to transmit
data between computers. Synchronous data transfer ensured by
using timestamps at the ROS messages.

The first computer has an i7-4720HQ CPU 2.60 GHz
processor and 8 GB RAM, and collects hand frame data from
LMC-1 and the second computer has an i7-7700HQ 2.8 GHz
CPU, 8 GB GeForce 1070 GPU and 16 GB RAM, and gathers
hand frame data from LMC-2. The sampling rate is set at
110Hz for both devices.

Fig. 3. Overview of system description.

Finally, sensor fusion performed by the third computer with
an i9-9900K 3.6 GHz CPU, 8 GB Quadro M5000 GPU and
64 GB of RAM. The sensors of the proposed hand gesture
recognition system are listed as follows:

A Leap Motion Controller (Leap Motion, California, United
States), which consists of two cameras and three infrared
LEDs, tracking infrared light with a wavelength of 850
nanometers (up to 115 Hz);

3Robot Operating System, http://www.ros.org/
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IV. RESULTS

Results are investigated in three sections. Firstly, results of
reference frame registration between local reference frames of
LMCs are given in order to show calibration performance. In
the following sections, sensor fusion results are compared to
the raw data gathered from LMCs. In the second section of
results, hand motion is tracked without occlusion and results
showing the smoothness is given. Lastly, occlusion case where
one LMC lost detection as seen in Fig. 4 is investigated and
results showed that proposed methodology is able to track
during occlusion occurs on one LMC.

Fig. 4. When the case of occlusion occurs on one LMC and therefore only
LMC detects

A. Calibration

Resulting calibration is given in Fig. 5. On the left figure,
measurements acquired in the own reference frame of LMCs
before the calibration step is represented. As it can be seen
from the figure, it is not possible to use sensor fusion without
calibration. On the right figure, measurements taken by the
LMC-1, calibrated to the LMC-2 reference frame by the
Algorithm 1 defined in the previous sections. For a validation
of calibration result, mean absolute error (MAE) is computed
as:

MAE =
1

N

N∑
k=1

‖PL1calibrated,k − PL2,k‖ (33)

As a result of Horn’s calibration method, MAE achieved
as MAE = 5.4728[mm] between the calibrated LMC-1
estimations and LMC-2 measurements.

B. Sensor Fusion: No Occlusion

In this first scenario, two leap motions could detect the hand
without occlusion during acquisitions, sensor fusion estimates
hand pose smoothly thanks to the proposed methodology

Fig. 5. At the left, raw measurements from LMCs plotted in their own refer-
ence frame before calibration and at the right, calibrated LMC-1 estimations
and LMC-2 measurements are visualized as both in the reference frame of
LMC-2

with adaptive measurement covariance updates. In the Fig.
6 resulting sensor fusion data with the raw data acquired
from LMCs are given for position and orientation of the palm(
Px Py Pz φ θ ψ

)
.

As it can be seen from the graph, sensor fusion provides
smoother trajectory than the raw data. Especially for the orien-
tation estimation, noisy measurements fused smoothly without
missing major information. In order to validate smoothness of
the proposed method, jerk of the palm position [mm/s3] and
palm orientation [rad/s3] is computed as it can be seen in the
Table I.

TABLE I
RMS OF JERK COMPARISON BETWEEN RAW SENSORS DATA (L1, L2)

AND SENSOR FUSION ALGORITHM (SF)

Sensor
RMS of Jerk for Output States [mm/s3]

Px,k Py,k Pz,k φk θk ψk

L1 1.595 1.871 1.674 0.682 0.824 1.297

L2 1.460 1.753 1.346 0.730 0.504 1.208

SF 0.042 0.042 0.043 0.121 0.104 0.215

C. Sensor Fusion: Occlusion on One LMC
The most importantly, proposed adaptive sensor fusion

algorithm provides continuous estimations, even one sensor is
not able to detect the hand Fig. 4 due to the occlusion. In this
case, confidence level incoming from the sensor, which is not
able to detect the hand, will be equal to zero. According the
proposed methodology, this will lead very big measurement
noise covariance for that specific sensor. In this way, continu-
ous tracking is feasible even occlusion occurs on the one LMC.
Results are given in Fig. 7 for

(
Px Py Pz φ θ ψ

)
.

Regions with straight line indicate that sensor was not able to
detect hand. During the experiments, this situation simulated
by manually placing an flat object in front of the sensor.

Overall, proposed adaptive sensor fusion methodology was
able to track hands continuously, and showed smooth transi-
tions between states that two sensors tracking and only one
sensor tracking while one sensor were not able to track.

V. CONCLUSION

In conclusion, adaptive sensor fusion algorithm proposed for
hand pose tracking via multi-LMCs. Thanks to the adaptive
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Fig. 6. Estimations when two of the LMC tracks hand

Fig. 7. Estimations when one LMC lost tracking

measurement covariance update, continuous and stable pose
estimation achieved despite the impermanent detection of
hands. Proposed algorithm is able to work in real-time. As
a future works, real-time applications such as teleoperating
robots could be considered for further validation. In order to
avoid from Gimbal Lock singularity occurs naturally from
the euler angles, quaternions could be used for orientation
estimation of the hand.
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