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aDepartment of Chemistry, Materials and Chemical Engineering “Giulio Natta”,4

Politecnico di Milano, Piazza Leonardo da Vinci, 20133 Milan, Italy5

bStem Cell Laboratory, Department of Pathophysiology and Transplantation, Università6
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Abstract9

Duchenne muscular dystrophy (DMD) is a muscle degenerative disease caused

by a mutation in the dystrophin gene. The lack of dystrophin leads to

persistent inflammation, degeneration/regeneration cycles of muscle fibers,

Ca2+ dysregulation, incompletely regenerated fibers, necrosis, fibrotic tissue

replacement, and alterations in the fiber ultrastructure i.e., myofibril mis-

alignment and branched fibers. This work aims to develop a comprehensive

chemo-mechanical model of muscle-skeletal tissue accounting for dispersion

in myofibrillar orientations, in addition to the disorders in sarcomere pattern

and the fiber branching. The model results confirm a significant correlation

between the myofibrillar dispersion and the reduction of isometric force in

the dystrophic muscle and indicate that the reduction of contraction velocity

in the dystrophic muscle seems to be associated with the local disorders in

the sarcomere patterns of the myofibrils. Also, the implemented model can

predict the force-velocity response to both concentric and eccentric loading.

The resulting model represents an original approach to account for defects

in the muscle ultrastructure caused by pathologies as DMD.
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1. Introduction13

Duchenne muscular dystrophy (DMD) is a common inherited muscle14

degenerative disease caused by a mutation in the dystrophin gene. The15

pathophysiology of the dystrophin deficiency in DMD muscle underlying16

the progressive weakness remains still an open question. Dystrophin pro-17

vides mechanical stability to the sarcolemma but is also related to Ca2+18

ion channel function (Petrof et al., 1993; Friedrich et al., 2008). As a con-19

sequence, the lack of dystrophin triggers persistent inflammation, degenera-20

tion/regeneration cycles of muscle fibers, and Ca2+ dysregulation. This set21

of events comprises the driving force for muscle degeneration, necrosis and22

fibrotic tissue replacement (Messina et al., 2006; Acharyya et al., 2007).23

Studies in mdx mice, an animal model that reflects some of the hu-24

man pathologies associated with DMD, show that the altered function of25

ion channels and the calcium overload in muscle fibers trigger cell damage26

pathways. This increases the frequency of degeneration/regeneration cy-27

cles leading to incompletely regenerated fibers, and gross alterations in the28

fiber ultrastructure i.e., morphologically abnormal, deformed and branched29

fibers (Friedrich et al., 2010; Buttgereit et al., 2013). These structural alter-30

ations steadily increase with age in the mdx mice after dystrophic onset as31

shown in Head et al. (1992). In contrast, in vitro motility assays of single32

mdx fiber myosin extracted by Friedrich et al. (2010) demonstrated unaltered33
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sliding velocities. In other words, motor protein function is preserved in dys-34

trophic skeletal muscle. Therefore, it is expected that structural changes35

occurring during the course of the disease be associated with progressive36

muscle weakness.37

Developments in nonlinear second harmonic generation (SHG) techniques38

have allowed characterizing how the dystrophic process affects myofibril ar-39

rangement and sarcomere geometry. Garbe et al. (2012) used a combined40

SHG microscopy together with tensor-based image processing to quantify41

morphological changes in the mdx mouse with age. They characterized fiber42

morphology at the myofibril and sarcomere scales. Two structural signatures43

were used, namely: the cosine angle of sum (CAS) that quantifies myofibrillar44

alignment, and the “Verniers” density (VD) that refers to local disruptions of45

the regular sarcomere lattice. They reported the appearance of fiber branch-46

ing and morphological alterations throughout the course of the disease in47

mdx mice. In a posterior study by the same group, Buttgereit et al. (2013)48

showed morphological alterations to be a landmark for the onset and pro-49

gression of the disease in the mdx mouse. They demonstrated the increase of50

fiber branching together with an increment in myofibril misalignment with51

age in dystrophic muscle. However, more interestingly, they report the pres-52

ence of “chaotic” fibers with abnormal sarcomere arrangement (larger vernier53

density) and relative myofibrillar misalignment, with respect to the healthy54

case, even at a younger age where unbranched fibers still predominate. This55

suggests that branched fibers may develop from the chaotic fiber type. In ad-56

dition, they also observed a significant reduction in CAS with age suggesting57

that CAS may explain, at least in part, muscle weakness in mdx fibers. This58
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aspect has been demonstrated by Schneidereit et al. (2018) by studying how59

alterations in the fiber ultrastructure affect single muscle fiber force produc-60

tion. Using a biomechatronic system combined with SHG microscopy they61

found a significantly reduced specific force in the mdx mouse as compared to62

the healthy subject. This reduction in specific force was directly correlated63

with a reduced Ca2+ sensitivity, and lower CAS and higher VD values in the64

dystrophic muscle, consistent with an abnormal fiber ultrastructure. They65

also reported an increase in myofibrillar disorder during concentric contrac-66

tion.67

Modern mathematical models of healthy and dystrophic muscle simulate68

the dynamic behavior of the tissue by coupling cross-bridge kinetics with69

cross-bridge distortion responsible for the active force generation (Heidlauf and Röhrle,70

2014; Karami et al., 2019; Stefanati et al., 2020). However, most mathemat-71

ical models consider neither myofiber misalignment nor fiber branching in72

their formulation. In other words, most models of skeletal muscle assume per-73

fectly aligned myofibrils and perfect sarcomere lattice. The aim of this work74

is to develop a comprehensive chemo-mechanical model of muscle-skeletal75

tissue accounting for dispersion in myofibril orientations, in addition to the76

effect of fiber branching, in order to simulate the effect that changes in the77

muscle ultrastructure have on muscle weakness i.e., reduction in isometric78

force and contraction velocity. This model presents an evolution of our pre-79

viously developed model (Stefanati et al., 2020) by explicitly introducing a80

more detailed description of the muscular fiber ultrastructure by incorporat-81

ing the distribution of myofibril orientation in the model formulation. The82

resulting model represents an original approach to account for micromechan-83
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ical deffects i.e., myofibril misalignment associated with the DMD pathogen-84

esis as eported by Schneidereit et al. (2018) and Buttgereit et al. (2013) on85

the dystrophic fiber. We assume, however, that the myosin function is not86

affected by the dystrophin lack (Friedrich et al., 2010). The manuscript is87

organized as follows, Section 2 elaborates on the modifications performed to88

the model of skeletal muscle proposed by Stefanati et al. (2020) to account89

for myofibril misalignment. This section also describes the specialization of90

the model to the one-dimensional case and the parameter identification pro-91

cedure. Section 3 describes the main results obtained with the model and92

the comparison with experimental data reported in the literature. Finally,93

Section 4 presents some discussion and concluding remarks.94

2. Methods95

2.1. Mechanical model96

The proposed model of skeletal muscle departs from the recent work97

by Stefanati et al. (2020) where the chemo-mechanical representation of the98

model is composed of two parts: (i) the myofilament Ca2+ kinetics and cross-99

bridge force generation (see Appendix A), and (ii) the mechanical model of100

the muscle composed of the active response of the fiber and the passive re-101

sponse of ECM (see Fig. 1a).102

The mechanical characterization of the muscle is represented as a passive103

elastic element associated with the extracellular matrix (ECM) in parallel104

with an active element (fiber) composed of two elements: i) the myofib-105

rils consisting on an active contractile element (myotubes) in series with an106
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elastic element, and ii) another elastic element in parallel with myofibril as-107

sociated with the passive response of the muscle fiber (see Fig. 1a).108

Figure 1: a) Mechanical representation of the muscle. The mechanical model is composed

of a contractile element describing the myofibril response and a passive element describing

the ECM elastic response. b, top-left) Myofibril organization in the healthy condition

(adapted from Schneidereit et al. (2018)). b, bottom-left) Orientation distribution func-

tion in the C57Bl case (for b=20). b, top-right) Myofibril organization in the dystrophic

condition (adapted from Schneidereit et al. (2018)). b, bottom-right) Orientation distri-

bution function in the mdx case (for b=3).

Following Stefanati et al. (2020), we postulate the existence of a strain en-109

ergy function (SEF) decoupled into volumetric and volume-preserving parts110

from which the stresses can be derived. In order to account for the active111

contraction of the skeletal muscle, the SEF is also a function of the active112
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stretches λw
a (pre-power stroke state) and λp

a (post-power stroke state),113

W (C,n0, λ
w
a , λ

p
a) = U(J) + W̄ (C̄,n0, λ

w
a , λ

p
a), (1)

where C = FTF is the right Cauchy-Green deformation tensor, with F the114

deformation gradient, J = detF is the Jacobian, C̄ = J−2/3C is the modified115

right Cauchy-Green deformation tensor, and n0 is the so called preferred116

direction coincident with the muscle fiber orientation. The definition of λw
a117

and λp
a is found in Appendix A.118

Following the classical approach used in modeling anisotropic soft tissues,119

the deviatoric part of the strain energy function is decoupled into a strain120

energy function related to the matrix and a strain energy function related to121

fibrous part,122

W̄
(

C̄,n0, λ
w
a , λ

p
a

)

= W̄matrix

(

C̄
)

+ ρf · W̄f

(

C̄,n0, λ
w
a , λ

p
a

)

, (2)

where ρf is the cross-section area fiber density (CSA fiber density) defined123

as the ratio between the total fiber area Af and muscle area Amusc (ρf ≤ 1).124

Differently to Stefanati et al. (2020) where the myofibrils are assumed to125

be perfectly aligned and coincident with the direction of the muscle fiber, n0,126

in the present model this condition is relaxed by allowing the myofibrils to127

be distributed with a certain dispersion with respect to n0. Figure 1b, top128

panels, shows the myofibril arrangement for the healthy and the dystrophic129

mouse respectively, where myofibril misalignment is clearly noticeable in the130

dystrophic case. Figure 1b, bottom panels, shows the corresponding myofibril131

orientation distributions (definition of the von Mises distribution given at the132

end of this section).133
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To define the fiber dispersion, we assume the existence of a uniaxial my-134

ofibril orientation distribution function (ODF) ρ(r,n0) = ρ(−r,n0) for r a135

referential unit vector (Gasser et al., 2006; Alastrué et al., 2009). Hence, the136

strain energy related to the fibers is defined as137

W̄f

(

C̄,n0

)

=
1

4π

∫

U2

ρ(r,n0)W̄mf

(

C̄, r, λw,r
a , λp,r

a

)

dA, (3)

where W̄mf (C̄, r, λw,r
a , λp,r

a

)

is the strain energy of the single myofibril with138

orientation r, and λw,r
a , λp,r

a the corresponding active stretches. In Equation139

3, U2 stands for the unit sphere, the domain of integration of the ODF (see140

Figure 2).141

Figure 2: The unite sphere, U2, the domain of integration of the continuous orientation

distribution function (ODF).
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Also, the strain energy function of the myofibril is divided into a passive142

contribution and an active contribution associated with the muscular actin-143

myosin system,144

W̄mf

(

C̄, r, λw,r
a , λp,r

a

)

= W̄mf,p

(

C̄, r
)

+ W̄mf,a

(

C̄, r, λw,r
a , λp,r

a

)

. (4)

In order to guarantee frame invariance, the SEF is expressed in terms of the145

three principal invariants of C̄, and the quasi-invariants associated with the146

preferred direction r147

Ī1 = trC̄, Ī2 =
1

2
[(trC̄)2 − trC̄2],

Ī3 = det C̄ = 1, Īr4 = r · (C̄ · r) = λ2

r.

(5)

Hence,148

W̄matrix(C̄) = W̄matrix(Ī1, Ī2), (6)

W̄mf,p(C̄, r) = W̄mf,p(Ī1, Ī2, Ī
r
4), (7)

W̄mf,a(C̄, r, λw
a , λ

p
a) = W̄mf,a(Ī

r
4 , λ

w,r
a , λp,r

a ). (8)

With the strain energy function so defined, it is possible to derive the first149

Piola-Kirchhoff stress tensor as,150

P = 2F
∂W

∂C
. (9)

We have assumed the matrix to be isotropic, whereas the myofibers are as-151

sumed intrinsically anisotropic (even though they behave as one-dimensional152

elements). The active behavior of the single myofibrils, W̄mf,a, is assumed as153

in Stefanati et al. (2020) i.e., as the sum of the contribution of the two states154
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of attached XBs: A1 (attached pre-power stroke state) and A2 (attached155

post-power stroke state),156

W̄mf,a

(

Īr4 , λ
w,r
a , λp,r

a

)

=
1

2
η1A1

[

1

2
ln(Īr4)− ln (λw,r

a )

]2

+

+
1

2
η2A2

[

1

2
ln(Īr4)− ln (λp,r

a )

]2

,

(10)

where η1 and η2 are elastic constants for the pre- and post- power stroke157

dependent on the sarcomere lattice arrangement. The equations defining A1158

and A2 are found in Appendix A.159

Note that, even though the myofibrils are intrinsically anisotropic, the160

degree of fiber anisotropy depends on the characteristics of the ODF. In this161

work, we assume a transversely isotropic and π-periodic von Mises distribu-162

tion (see Figure 1b, bottom panels)163

ρ(θ) = 4

√

b

2π

exp(b[cos(2θ) + 1])

erfi(
√
2b)

, (11)

where cos (θ) = r·n0, and the positive concentration parameter b constitutes a164

measure of the anisotropy degree i.e., b → ∞ implies transversely orthotropic,165

and erfi(x) = −i erf(x) denotes the imaginary error function (Gasser et al.,166

2006).167

2.2. Discretization on the microsphere168

In order to render Eq. 3 operative, the integral on the unit sphere is169

expressed as170

W̄f =

m
∑

i=1

wi ρ
(

ri,n0

)

W̄ i
mf =

m
∑

i=1

wi ρ
(

θi
)

W̄ i
mf , (12)
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where θi = cos−1 (ri · n0) is the angle of the ith myofibril with respect to171

n0, and wi a weighting factor. The discretisation of the continuous orienta-172

tion distribution on the unit sphere U
2 is obtained by means of m discrete173

orientation vectors
{

ri
}

i=1,...,m
and weighting factors,

{

wi
}

i=1,...,m
satisfying174

1

4π

∫

U2

ρ(θ) dA ≈
m
∑

i=1

wi ρ
(

θi
)

= 1, (13)

together with the constraints 〈r〉 ≈
m
∑

i=1

wi ri = 0 as well as 〈r ⊗ r〉 ≈175

m
∑

i=1

wi ri ⊗ ri =
1

3
I.176

In our model of the fiber, we use a discretization based on 632 direc-177

tions obtained using the efficient spherical t-design (An et al., 2010). This178

discretization provides sufficient accuracy for values of the concentration pa-179

rameter b ≤ 40. Note, that b ≥ 20 reflects a rather high degree of anisotropy180

for the fibers (Alastrué et al., 2009). Based on the symmetry properties of181

the ODF, 293 integration points, as referred to one half of the unit sphere,182

were used for the computations (see Figure 2 for the location of the inte-183

gration points within the unit sphere). Note that this discretization takes184

also into account the contribution of myofibrils directed along the prefer-185

ential direction n0. The set of directions and weights can be download at186

http://web.maths.unsw.edu.au/~rsw/Sphere/EffSphDes/index.html.187

2.3. Particularization to One-dimension188

Specification of the model to a one-dimensional case is helpful when per-189

forming the identification of the model parameters. In this case, the total190
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deviatoric strain energy function can be expressed as,191

W 1D(λ) = W 1D
matrix(λ) + ρf

∑

i

wiρ(θi)W 1D
mf (λ, λr, λ

w,r
a , λp,r

a ), (14)

where Eq. 12 has been used. The active part of the SEF now reads

W 1D
mf,a (λ, λr, λ

w,r
a , λp,r

a ) =
1

2
η1A1 [ln (λr)− ln (λw,r

a )]2+

+
1

2
η2A2 [ln (λr)− ln (λp,r

a )]2 . (15)

Instead, for the passive behavior of the myofibrils, we assumed the following

phenomenological SEF,

W 1D
mf,p (λ, λr) = C

f
10

(

Ī1 − 3
)

+ C
f
20

(

Ī1 − 3
)2

+
k
f
1

2kf
2

[

ek
f
2〈Īr4−1〉2 − 1

]

, (16)

where 〈◦〉 =
1

2
(◦+ |◦|), Ī1 = λ2 +

2

λ
and Īr4 = λ2

r, while C
f
10, C

f
20, k

f
1 and

k
f
2 are material constants assumed equal for all myofibrils and determined

to best fit the stress-strain curves from the uniaxial test performed on single

skeletal fibers reported by Rehorn et al. (2014). At last, the deviatoric strain

energy function of the extracellular matrix is taken as,

W 1D
matrix (λ) = Cm

10

(

Ī1 − 3
)

+ Cm
30

(

Ī1 − 3
)3

, (17)

where Cm
10 and Cm

30 are the material constants obtained to best fitting the192

stress-strain curves from the uniaxial-test reported in Stefanati et al. (2020).193

In summary, for the single fiber, the one-dimensional SEF results,

W 1D(λ) =
∑

i

wiρ(θi)
[

W 1D
mf,p(λ, λi) +W 1D

mf,a(λ, λi, λ
w,i
a , λp,i

a )
]

. (18)
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where W 1D
matrix (λ) = 0 and ρf = 1.

On the contrary, for the whole muscle is obtained

W 1D(λ) =W 1D
matrix(λ)+

ρf
∑

i

wiρ(θi)
[

W 1D
mf,p(λ, λi) +W 1D

mf,a(λ, λi, λ
w,i
a , λp,i

a )
]

. (19)

The first Piola-Kirchhoff stress tensor in the one-dimensional case is found194

as,195

P =
∂W

∂λ
. (20)

2.4. Characterization of the distribution function196

The concentration parameter of the von Mises distribution, b, was identi-197

fied as the best fit to the dispersion data reported in Schneidereit et al. (2018)198

in terms of the cosine angle of sum (CAS) defined as (Buttgereit et al., 2013)199

CAS =
1

4π

∫

U2

cos(θ)ρ(θ)dA =
m
∑

i=1

cos(θi)wiρ(θi). (21)

In particular, b was determined using the average CAS value for the200

undeformed configuration, i.e. λ = 1 reported in Schneidereit et al. (2018)201

for healthy (CASavg=0.98) and dystrophic fibers (CASavg=0.89). In this202

regard, we found a value of b = 3 for the dystrophic fiber, and a value203

of b = 20 for the healthy fiber, consistent with a larger dispersion for the204

dystrophic fiber. The bottom panels in Figure 1b show a representation of205

the ODF for each case.206

The model also allows computing changes in the myofibril alignment dur-207

ing concentric contraction. The modified CAS, ˆCAS, accounting for the208
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deformation of the fiber is easily computed as209

ˆCAS =
m
∑

i=1

[

(Fri)

‖Fri‖ · n0

]

wiρ(θi), (22)

where
∥

∥Fri
∥

∥ is the Euclidean norm.210

2.5. Parameters identification of the model211

The proposed framework can be used to model musculoskeletal tissue in212

general. However, since we were interested in studying mechanisms associ-213

ated with DMD, the model has been specialized for healthy and dystrophic214

(mdx) mice. In particular, the attention has been placed on the diaphragm,215

which exhibits significant fibrosis as well as greatly impaired contractile func-216

tion from an early age, and is regarded as a close phenotype to the human217

dystrophic muscle (Stedman and Sweeney, 1991).218

Model parameters can be divided in three groups: i) cross-bridge kinet-219

ics parameters that regulate the myofilament kinetics and cross-bridge force220

generation (Table A.1), ii) structural parameters used for the definition of221

the filament overlap (Table A.1), and iii) mechanical parameters associated222

with the elasticity of passive and active elements (Table 1).223

The structural parameters (except x0) and the CSA fiber density (ρf )224

are the same reported in our previous work (Stefanati et al., 2020). On225

the contrary, the passive material parameters of the fiber (Cf
10, C

f
20, k

f
1 ,226

k
f
2 ) and the ECM (Cm

10, C
m
30) were identified again using the experimental227

data from Rehorn et al. (2014) in quasi-static condition for the fiber, and228

from Stefanati et al. (2020) for the ECM.229

The remaining model parameters η1, η2, x0 and the cross-bridges kinetics230

parameters (f0, f
′
0, h, h

′, g, kCa
on , k

Ca
off shown in Table A.1) were found using231
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a constrained nonlinear fitting procedure described in Stefanati et al. (2020),232

and consisting in fitting normalized specific force-velocity curve for healthy233

and mdx mouse DIA (Coirault et al., 2003). Isometric stress for the healthy234

muscle and the concentric shortening velocity of both healthy and dystrophic235

muscle were constrained to be within the range reported in the literature.236

Due to the large variability in the reported isometric stress for the dystrophic237

muscle, this particular value was not included in the optimization process.238

However, it was verified the value predicted by the model to be within the239

experimental range. In addition, the cross-bridge kinetics parameters, the240

structural parameters, and the passive fiber response parameters were as-241

sumed equal for both the healthy and dystrophic muscle, since experimental242

observations support that the myosin function is not affected by dystrophy243

(Friedrich et al., 2010; Bates et al., 2013).244
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Table 1: Mechanical parameters of fiber and muscle in healthy and dystrophic muscle.

Parameters fiber C57Bl fiber MDX Muscle C57Bl Muscle MDX

b (–) 20 3 20 3

η1 (kPa) 0.1192× 10−1 0.3254× 10−1 0.1192× 10−1 0.3254× 10−1

η2 (kPa) 7.1837× 10−1 7.1837× 10−1 7.1837× 10−1 7.1837× 10−1

C
f
10 (kPa) 9.8114 9.8114 9.8114 9.8114

C
f
20 (kPa) 5.3625 5.3625 5.3625 5.3625

k
f
1 (kPa) 2.7972× 10−1 2.7972× 10−1 2.7972× 10−1 2.7972× 10−1

k
f
2 (–) 2.3531× 10−1 2.3531× 10−1 2.3531× 10−1 2.3531× 10−1

Cm
10 (kPa) ✕ ✕ 2.5605 1.6886

Cm
30 (kPa) ✕ ✕ 1.1186× 103 2.3130× 103

ρf (–) ✕ ✕ 1.0 0.8

The model and the optimization problem required for parameters model iden-245

tification were implemented in MATLABR© version R2019a.246

3. Results247

This section summarizes the model’s ability to reproduce the experimen-248

tal data reported in the literature as well as its predicting capabilities. In249

this regard, model parameters associated with the passive response have250

been identified using stress-strain data at the fiber and muscle level. For251

the parameters associated with the active behavior, the isometric stress, the252

maximum concentric velocity, and the normalized concentric force-velocity253

curve at the muscle level were used. The performance of the identified model254
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was evaluated by comparing both the predicted eccentric force-velocity curve255

at the muscle level and the normalized concentric force-velocity curve at the256

fiber level with experimental data reported in the literature.257

3.1. Concentric contraction258

The optimization process has allowed reproducing the experimental data259

of maximum isometric force, maximum contraction velocity and the normal-260

ized concentric force-velocity curve for the healthy and dystrophic muscle re-261

ported in Coirault et al. (2003). The identified model parameters are found262

in Table 1 for the mechanical part and in Table A.1 for the myofilament kinet-263

ics and cross-bridge force generation, whereas Figure 3 shows the normalized264

specific force-velocity curve (F-V curve) obtained by the model using the pa-265

rameters resulting from the fitting against the experimental curve reported266

in Coirault et al. (2003).267
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Figure 3: Normalized concentric specific force-velocity for C57Bl and mdx mouse di-

aphragm (Coirault et al., 2003), where σ is the total stress, σmax is the isometric stress,

V is dλ/dt and Vmax is the concentric velocity in unloaded conditions.

The fitting of the model is excellent as evidenced in the figure. Remarkably,268

the difference between healthy and dystrophic response is due to differences269

in the myofibril misalignment (different concentration parameter b) and in270

the value of parameter η1, both parameters related to the ultrastructure of271

the underlying fibers. The maximum contraction velocity for the healthy272

and dystrophic muscles are within the experimental range, even though the273

percentage velocity reduction predicted by the model is slightly smaller as274

compared to the average value reported in the literature (see Table 2), but275

still within the experimental range. Regarding the dystrophic muscle, the276

model predicts isometric stress of 41.58 kPa, a 41% reduction with respect277

to the healthy case. This value corresponds to the average experimental value278

reported in the literature (Coirault et al., 1999; Bates et al., 2013).279
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Table 2: Simulations results of the mathematical model, where σmax is the maximum

isometric stress, Vmax = ln(λmin) is the maximum shortening velocity in concentric con-

traction and εmin = ln(λmin) is the maximum shortening strain in concentric contraction.

σmax results for single fiber and DIA muscle

σmax σmax (%) Experiments (kPa)

(kPa) mdx vs C57Bl mean ± SD

fiber C57Bl 70.06
−25.81

68.7± 4.3 (Pellegrino et al., 2003)

fiber mdx 51.98 −

Muscle C57Bl 70.06
−40.65

67.69± 18.69 (Bates et al., 2013)

Muscle mdx 41.58 22.56± 1.70 (Bates et al., 2013)

60.28± 35.40 (Coirault et al., 1999)

Vmax results for single fiber and DIA muscle

Vmax Vmax (%) Experiments (s−1)

(s−1) mdx vs C57Bl mean ± SD

fiber C57Bl −7.95
−19.15

−6.59± 2.71 (Pellegrino et al., 2003)

fiber mdx −6.43 −

Muscle C57Bl −7.19
−17.18

−8.28± 1.09 (Coirault et al., 2003, 1999)

Muscle mdx −5.96 −5.13± 0.99 (Coirault et al., 2003, 1999)

εmin results for single fiber and DIA muscle

λmin εmin εmin (%)

(mm/mm) (mm/mm) mdx vs C57Bl

Fiber C57Bl 0.6631 −0.4108
−19.84

Fiber mdx 0.7194 −0.3293

Muscle C57Bl 0.8275 −0.1893
−22.55

Muscle mdx 0.8636 −0.1466
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Regarding tissue organization, the model predicts an increment in myofibrils280

misalignment during concentric contraction as shown in Figure 4. This281

behavior is in good agreement with the observations of Schneidereit et al.282

(2018) for both healthy and dystrophic fibers.283
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Figure 4: a) Concentric F-V curve reporting CAS values at the maximum shortening

stretch for fixed loads in healthy fiber. b) Concentric F-V curve reporting CAS values at

the maximum shortening stretch for fixed loads in dystrophic fiber.

In Schneidereit et al. (2018), the CAS value is reported as a function of the284

single fiber stretch λ. Therefore, in order to perform a more quantitative285

comparison between model and experiments, we computed the CAS value286

for the range of contraction stretches reported in Schneidereit et al. (2018)287

with the result shown in Table 3. As shown in the table, the agreement with288

the experiments is excellent confirming the model’s ability to reproduce the289

effects of increase myofibril disorganization during the active response of the290

muscle.291
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Table 3: Model CAS values obtained in the healthy and dystrophic fiber during con-

centric contraction for the range of contraction stretches reported in the literature. The

experimental data of λ and CAS are taken from Schneidereit et al. (2018).

Exp. λ Exp. CAS Model CAS

(min – max) (min – max) (min – max)

Fiber C57Bl 0.729 – 1.0 0.951 – 0.996 0.968 – 0.987

Fiber mdx 0.857 – 1.0 0.844 – 0.951 0.851 – 0.889

3.2. Eccentric contraction and single fiber response292

The capabilities of the model are further demonstrated in Figure 5 where293

the concentric-eccentric force-velocity curves predicted by the model for the294

healthy and dystrophic muscle, are compared against the experimental force-295

velocity curves reported in Till et al. (2008).296
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Figure 5: Normalized F-V curve for healthy and dystrophic muscle compared with exper-

imental data of gastrocnemius medialis muscle (2 type fast fibers) of healthy adult male

Wistar rats during concentric and eccentric contractions (Till et al., 2008). In eccentric

condition (V/Vmax<0), the muscle is stretched up to a fixed stretch of 1.04 (value in the

range of experiments of Till et al. (2008)).

This example shows that the model is able to reproduce the concentric force-297

velocity curve for the rat, and predicts with reasonable accuracy the eccentric298

curve that has not been used for model parameters identification i.e., the299

eccentric response is predicted by the model.300

Another important result is that the force-velocity curve predicted by the301

model for healthy and dystrophic fibers is in the range of the experiments for302

fast rat fibers (Type 2B) reported by Bottinelli et al. (1991) and fast mouse303

fiber (Type 2X and 2A) reported by Edman (2005), indicating the model pre-304

dictive capabilities to reproduce the experimental data related to the isomet-305

ric and concentric fiber contraction (see Figure 6). We also found excellent306
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agreement between the maximum isometric force and maximum contraction307

velocity in isolated fibers with the data reported in Pellegrino et al. (2003)308

(see Table 2).309
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Figure 6: Normalized concentric F-V curve for healthy and dystrophic fiber compared with

the experimental data for slow and fast healthy fiber (Bottinelli et al., 1991; Edman, 2005).

Bottinelli et al. (1991) performed the experiments on single fibers from EDL, SOL and PL

muscles of 3-month-old male Wistar rats, while (Edman, 2005) used single fibers from the

flexor digitorum brevis muscle (FDB), where 2A and 2X fiber type were prevailing.

4. Discussion and conclusions310

The implemented formulation of the model is able to reproduce the ex-311

perimental data of maximum isometric stress and maximum contraction ve-312

locity for the healthy and dystrophic DIA, accounting for fibrosis and fat313

infiltration reported in the literature. In this regard, the maximum isometric314

stress predicted by the model for the dystrophic muscle is within the range315

23



reported in the literature. The maximum contraction velocity predicted by316

the model for the whole muscle was 7.19 and 5.96 1/s for healthy and dys-317

trophic muscle respectively, within the range of 8.28 ± 1.09 and 5.13 ± 0.99318

1/s reported in the literature (Coirault et al., 2003, 1999) for healthy and319

dystrophic muscles, respectively.320

Moreover, at the fiber level, the model provides for the dystrophic condi-321

tion a 26% decrease of maximum isometric stress, a 19% decrease of maxi-322

mum contraction velocity, and a 20% decrease of maximum shortening strain323

than the healthy case. While, at the muscle scale, the model provides for324

the dystrophic DIA a 41% decrease of maximum isometric stress, a 17% de-325

crease of maximum contraction velocity, and a 23% decrease of maximum326

shortening strain than the healthy muscle (see Table 2). These results are in327

good agreement with the values reported in the literature (Bates et al., 2013;328

Smith and Barton, 2014; Muller et al., 2001; Coirault et al., 2003, 1999), val-329

idating the soundness of the proposed formulation.330

Another important aspect of this work is that the model of the healthy331

muscle is able to reproduce the eccentric F-V curve of rat gastrocnemius me-332

dialis reported by Till et al. (2008). In addition, the concentric F-V curve333

predicted by the model for the healthy and dystrophic fibers are within the334

range of the experimental data (Bottinelli et al., 1991; Edman, 2005). This335

result supports the model’s ability to reproduce conditions not considered in336

the process of parameters identification.337

However, the most remarkable result is that the main difference in the ac-338

tive behavior i.e., isometric stress and contraction velocity, between healthy339

and dystrophic fibers is connected to the misalignment degree of the my-340
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ofibrils (ODF concentration parameter b) and the stiffness of the underlying341

myofibrils (parameter η1). The value of b was found to be lower for the dys-342

trophic fiber (b = 3) than for the healthy fiber (b = 20). This difference in b343

can be associated with alterations in the fiber microstructure, specifically in344

the myofibril alignment inside the single fiber, with a lower value of b indicat-345

ing larger dispersion. This explanation is in agreement with the recent work346

of Schneidereit et al. (2018) in which they have studied the myofibrillar dis-347

order in the single fiber of mdx EDL by means of second harmonic generation348

confocal microscopy. They measured the degree of local angular deviation of349

myofibrillar bundles from the main fiber axis (myofibrillar parallelism) find-350

ing significant myofibril disorganization in the dystrophic case with respect to351

the healthy case where highly aligned bundles were found. They also found352

a significant correlation between the loss of myofibrillar alignment and the353

reduction of contractile force in the mdx fiber, in line with the predictions of354

our model.355

In addition, and more interestingly, the model demonstrates the high356

sensitivity of muscle performance to changes in its ultrastructure. More357

precisely, the results indicate that a variation of less than a 15% in the358

CAS between the healthy and the dystrophic fiber is able to account for359

a 41% reduction in the isometric force. This result is in agreement with360

what reported by Buttgereit et al. (2013) for the mdx mouse, and confirms361

the CAS may explain the progression of dystrophic fibers weakness that is362

related to alterations in the contractile apparatus geometry when compare363

to healthy muscle.364

Myofibril misalignment also reduces the contraction velocity. However,365
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this effect on the contraction velocity is minor (less than 6%) as compared366

to the effect on the isometric force. On the contrary, contraction velocity367

was found to depend upon parameter η1, associated with the stiffness of the368

underlying myofibril. In fact, η1 was found to be about 2.5 times larger for the369

dystrophic myofibrils as compared to the healthy myofibrils. This difference370

in η1 can be associated with the chaotic organization of the sarcomeres, in371

particular with the large VD of the dystrophic myofiber (Buttgereit et al.,372

2013). The Y-shaped structures defining the so-called “Verniers” are local373

deviations from perfectly alternating sarcomere patterns. Therefore, a larger374

VD implies a more chaotic structure of the sarcomere with a consequently375

less efficient filament sliding, and so, a lower fiber contraction.376

Hence, the model suggests that at an early age, where myofibril misalign-377

ment is small (Buttgereit et al., 2013), the differences in the isometric force378

between dystrophic and healthy fibers should remain small, with this differ-379

ence increasing with age as the degree of misalignment in the dystrophic fiber380

increases. On the contrary, differences in the contraction velocity between381

dystrophic and healthy fibers should be appreciable even at an early age since382

chaotic fibers are present at an early age (Buttgereit et al., 2013). In order383

to demonstrate these hypotheses, experiments characterizing the isometric384

force and contraction velocity with age, together with measurements of mus-385

cle microstructure i.e., CAS and VD, are required. These data will certainly386

provide a more clear picture of how alterations in myofibrillar alignment and387

sarcomeric order affect the mechanical performance of dystrophic muscle.388

A limitation of the model is the lack of distinction between fast and slow389

contracting fibers that may otherwise help to reproduce more accurately the390

26



shortening velocity at the muscle level as well as helping to identify addi-391

tional mechanisms behind the loss of muscle functioning. Future investiga-392

tions will also study the fiber-ECM interaction by looking into changes in393

the microstructure of the muscle during monoaxial loading when subjected394

to controlled mechanical deformation. These observations will allow us to395

formulate a much more accurate model of the tissue, as well as to determine396

potential mechanisms of damage that compromise muscular functioning in397

DMD.398

In summary, a novel mathematical model for skeletal muscle is proposed.399

In particular, this model is an evolution of our previously developed model400

(Stefanati et al., 2020) including a specific characterization of the fiber ul-401

trastructure, i.e. myofibrils alignment, sarcomere organization, and myofiber402

branching, in order to study how the changes in fiber ultrastructure affect403

the performance of the dystrophic skeletal muscle (in terms of isometric force404

and contraction velocity). In fact, differently to Stefanati et al. (2020) where405

the myofibrils are assumed to be perfectly aligned with the direction of the406

fiber, in the present model this condition is relaxed by allowing the myofib-407

rils to be concentrated or dispersed with respect to the fiber direction, n0,408

according to a ODF, ρ(r,n0), assumed as a von Mises distribution.409

In addition, the anisotropic model accounts for the organization of the410

myofibrils and is able to reproduce the skeletal muscle contraction for healthy411

and dystrophic case, showing excellent agreement with experimental data.412

Also, the model confirms the close correlation between the degradation in413

muscle performance (in terms of isometric force and contraction velocity)414

and alterations in the myofiber ultrastructure i.e., myofibril misalignment415
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and sarcomere organization. Last but not least, since the proposed formula-416

tion is invariant based, the presented model is amenable for implementation417

within a finite element framework (FEM), similar to the model reported418

in the literature by Hernández-Gascón et al. (2013). This resulting FEM419

model will allow studying muscle response on realistic geometries that will420

help to better understand the relationship between muscle pathology and421

the underlying muscle ultrastructure, and analyze how the effects of the mi-422

cromechanical changes in the myofibrils propagate in the three-dimensional423

muscular district.424
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Appendix A.430

In the Appendix A are reported, for completeness, the cross-bridges dy-431

namics equations, and the remaining cross-bridge and structural parameters432

in a similar way as in Stefanati et al. (2020).433
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Variables

Ca(t) Time course of free activator calcium available to myofilaments

D(t) Time course of XBs in the detached state

A1(t) Time course of XBs in the attached, pre-power stroke A1 state

A2(t) Time course of XBs in the attached, post-power stroke A2 state

Structural Parameters

XB Myosin cross-bridge

SL Half sarcomere length

LA Length of thin filament

LM Length of thick filament

B Bare zone on thick filament

Ov Filament overlap zone allowing XB cycling

RT Total number of sites for XB attachment on half thick filament

ROv Number of sites available for XB attachment within Ov

x0 Average distortion of XB induced by power stroke

L0 Chosen initial half-sarcomere length

As Cross section area of a representative sarcomere

29



Kinetic Parameters

Ca50 Calcium concentration of half saturation of RU

k0
on Rate coefficient regulating switching on of RU when no calcium is bound

kCa
on Rate coefficient regulating switching on of RU when calcium is bound

k0

off Rate coefficient regulating switching off of RU when no calcium is bound

kCa
off Rate coefficient regulating switching off of RU when calcium is bound

f Rate coefficient regulating forward XB attachment step

f ′ Rate coefficient regulating backward XB attachment step

h Rate coefficient regulating forward XB power stroke

h′ Rate coefficient regulating backward XB power stroke

g Rate coefficient regulating forward XB detachment step

u Parameter grading strength of RU-RU nearest neighbor interaction

w Parameter grading strength of XB-RU nearest neighbor interaction

v Parameter grading strength of XB-XB nearest neighbor interaction

Activator Calcium Dependence.

kref
on = k0

on + (kCa
on − k0

on) ·
Ca(t)

Ca(t) + Ca50
, (A.1)

k
ref
off = k0

off + (kCa
off − k0

off ) ·
Ca(t)

Ca(t) + Ca50
. (A.2)
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Sarcomere Length Dependence: Filament Overlap (Linear function).

Ov(λ) =







































1

2
· [LM + 2 · SL]− LA if 2 · SL < 2 · LA −B,

1

2
· [LM −B] if 2 · LA − B ≤ 2 · SL < 2 · LA +B,

1

2
· [LM − 2 · SL] + LA if 2 · SL ≥ 2 · LA +B.

(A.3)

ROv(t) =
Ov

1

2
· (LM − B)

· RT , Roff (t) = ROv(t)−D(t)−A1(t)− A2(t).

(A.4)

State Variable-Dependent Coefficients: Neighbor Interactions (RU-RU, XB-

RU and XB-XB). Since the values of u, w and v are chosen equal to 1,

kon = kref
on , koff = k

ref
off , f = f0, f ′ = f0. (A.5)

Cross-bridge kinetics.

dD(t)

dt
= kon · Roff(t) + f ′ · A1(t) + g · A2(t)−

[

koff + f
]

·D(t), (A.6)

dA1(t)

dt
= f ·D(t) + h′ · A2(t)−

[

f ′ + h
]

·A1(t), (A.7)

dA2(t)

dt
= h · A1(t)−

[

h′ + g
]

· A2(t). (A.8)

Distortion imposed by shear motion between thick and thin filaments in both

the A1 weak and A2 power stroke states. The values of xw,r
s = 0.0004 and

xp,r
s = 0.0244 are the cross-bridge deformation in steady state conditions,

while λr =
√

r · (C̄ · r) is the isochoric stretch in the myofibril direction.

ds1(t)

dt
=

(

f · D(t)

A1(t)
+ h′ · A2(t)

A1(t)

)

·
[

ln
(

λr

)

− s1(t)− xw,r
s

]

,

ds2(t)

dt
= h · A1(t)

A2(t)
·
[

ln
(

λr

)

− s2(t)− xp,r
s

]

. (A.9)
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Table A.1 shows the cross-bridge kinetics and structural parameters.434

Table A.1: Parameters of the mathematical model.

Cross-bridge kinetics parameters

f0 (s−1) f ′
0 (s−1) h (s−1) h′ (s−1) g (s−1)

93.2707 841.9648 15.6093 10.9897 27.5246

kCa
on (s−1) kCa

off (s−1) k0

on (s−1) k0

off (s−1) Ca50 (ML−1)

181.5351 99.9861 0.0 198.0158 1.78× 10−6

Structural parameters

LA (µm) B (µm) LM (µm) L0 (µm)

1.2 0.2 1.6 1.1

x0 (µm) RT (adim.) As (mm2) f(Ca)

0.0268 1.62× 105 3× 10−6 0.9825
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