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Abstract—We address constraint-coupled optimization for a
system composed of multiple cooperative agents communicating
over a time-varying network. We propose a distributed proximal
minimization algorithm that is guaranteed to converge to an
optimal solution of the optimization problem, under suitable
convexity and connectivity assumptions. The performance of
the introduced algorithm is shown on a numerical example of
a charging scheduling problem for a fleet of plug-in electric
vehicles.

Index Terms—Optimization algorithms, distributed control,
agents-based systems

I. INTRODUCTION

IN this letter, we consider a system composed of multi-
ple agents that have computational capabilities and can

communicate with neighboring agents to solve a (convex)
optimization problem involving the entire system. Each agent
has its own decision variables, cost function and constraint
set, and the goal is to minimize the sum of the agents’
cost functions subject to a coupling constraint involving all
decision variables (Constraint-Coupled Problem – CCP). The
presence of the coupling element makes the problem solution
challenging, especially in a distributed framework where no
central authority is available to coordinate the agents and each
agent has no knowledge of the local information of the other
agents.

Even though CCPs arise naturally in practical applications,
typically due to the fact that agents share resources with a finite
capacity, most of the literature on distributed optimization fo-
cuses on optimization problems where the agents are coupled
because they have to agree on common decision variables
(Decision-Coupled Problems – DCPs).

The earliest distributed solutions to DCPs are algorithms
based on a combination of standard (sub)gradient methods
for the optimization of the agents local cost functions and
consensus schemes to drive the agents towards a common
optimal decision, see, e.g., [1], [2]. Subsequent works propose
solutions resting on consensus-based primal-dual approaches,
see, e.g., [3]. Finally, the work in [4] deals with DCPs
combining a consensus scheme with the proximal minimiza-
tion algorithm instead of the (sub)gradient method for the
optimization of the agents local cost functions.

Note that, in principle, the distributed methods developed
for DCPs could be applied to CCPs by defining as common
decision variables the collection of the decision variables of
all the agents. However, this would require each agent to
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store and update the tentative solutions of all other agents
and have access to the whole coupling constraint rather than
its portion only, thus increasing communication and compu-
tational burden and ultimately hampering the applicability of
such strategies.

Approaches to directly tackle CCPs leverage Lagrangian
duality to deal with the coupling constraint. Works based
on primal-dual algorithms (e.g., [5]) seek to find the saddle
point of the Lagrangian, but require an additional procedure
to recover the optimal solution of the CCP. Methods based on
dual decomposition (e.g., [6]) solve the dual of the CCP via a
distributed subgradient method, and still require a recovery
procedure. Finally, the approach in [7] is also based on a
distributed subgradient scheme but adopts successive duality
steps to obtain the optimal solution of the CCP without calling
for any recovery procedure.

In this letter, we introduce a proximal-based algorithm for
CCPs and analyze its convergence properties. The proposed
approach is the counterpart of [4] for DCPs, exactly as [6]
and [5] are the counterpart of [1] and [3], respectively. The
dual of the addressed CCP has the structure of a DCP, but
since it does not match the assumptions in [4], a nontrivial
extension of the convergence analysis in [4] is required. Also,
recovery of the primal optimal solution has to be worked
out. Proximal-based algorithms are known to be more stable
than their gradient counterpart ([8]), and indeed the proposed
method presents a smoother behavior through iterates when
compared to [6] and also [5], as shown in the numerical
example section.

All the cited approaches, including the one proposed here,
work under mild assumptions on the regularity of the cost
function and on the communication network. However, they
require a vanishing step-size for the gradient update or an
increasing penalty for the proximal operator, which ultimately
leads to a slow convergence rate. A first attempt to improve the
convergence rate by using a fixed step-size is presented in [9]
where a consensus scheme is used together with the Alter-
nating Direction Method of Multipliers (ADMM, see [10]) in
place of the (sub)gradient method, but the approach requires
stricter assumptions on the communication network. Linear
convergence rate for distributed algorithms with constant step-
size solving DCPs has been recently achieved by the so-called
gradient-tracking schemes (see, e.g., [11], [12]), where the
gradient method is used together with a technique known
as dynamic average consensus (firstly proposed in [13] and
further elaborated in [14]) in place of the original consen-
sus algorithm. In these methods, however, more restrictive
assumptions on the agents’ local cost functions are imposed.
Similarly to DCPs, latest distributed algorithms for solving



TABLE I
DISTRIBUTED ALGORITHMS FOR DCPS AND CCPS.

Vanishing step-size Constant step-size
DCP CCP DCP CCP

Gradient [1], [2] [6], [7] [11], [12]
Proximal [4] this work

Saddle point [3] [5] [15]
ADMM – – [9] [16], [17]

CCPs are aiming at improving the convergence rate via a
constant step-size. A primal-dual algorithm with constant step-
size is proposed in [15], but requires smoothness of the
local cost functions. An approach based on ADMM and
consensus is derived in [16], and a strategy combining ADMM
and dynamic average consensus with faster convergence is
presented in [17]. Both approaches impose stricter assumptions
on the communication network.

This short review of the literature is summarized in Table I,
where contributions are classified in the (sub)gradient min-
imization, proximal minimization, saddle point seeking, and
ADMM categories. Many variants of the mentioned algorithms
have been proposed in the last decade but are here omitted in
the interest of space.

This letter completes the picture of the methods in the
vanishing step-size column, by introducing a proximal-based
algorithm for CCPs. Our contribution then lays the foundations
for future development of improved distributed proximal-based
algorithms.

The rest of the paper is organized as follows. In Section II
we present the set-up of constraint-coupled optimization prob-
lems. In Section III we derive the proposed distributed dual
proximal algorithm and state its convergence properties. In
Section IV we apply our algorithm to a realistic application
related to the optimal charging schedule for a fleet of electric
vehicles. In Section V we draw some conclusions. Proofs of
the main results are reported in the Appendix.

II. CONSTRAINT-COUPLED OPTIMIZATION

We consider a multi-agent system composed of N agents
that are willing to cooperate while addressing a decision
making problem involving the whole system. Specifically,
all agents shall set their local decision variables xi ∈ Rni ,
i = 1, . . . , N , so as to find an optimal solution to the following
constrained optimization program

min
x1,...,xN

N∑
i=1

fi(xi) (P)

subject to:
N∑
i=1

Aixi = b

xi ∈ Xi i = 1, . . . , N,

where Ai ∈ Rp×ni and b ∈ Rp specify the coupling constraint,
fi : Rni → R and Xi ⊂ Rni are, respectively, the local cost
function and constraint of agent i, i = 1, . . . , N , which satisfy
the following assumption:

Assumption 1 (Convexity and compactness). For all i =
1, . . . , N , the function fi is convex and the set Xi is convex
and compact.

To deal with problems in the form of P , a common practice
is resorting to duality theory to handle the coupling constraint.
Let x = [x>1 · · · x>N ]>, consider a vector λ ∈ Rp of Lagrange
multipliers and let

L(x, λ) =

N∑
i=1

fi(xi) + λ>
( N∑
i=1

Aixi − b
)

=

N∑
i=1

fi(xi) + λ>(Aixi − b
N ) (1)

be the Lagrangian function obtained by dualizing the coupling
constraint

∑N
i=1Aixi = b. The dual of P is then

max
λ∈Rp

min
x∈X

L(x, λ) = max
λ∈Rp

N∑
i=1

ϕi(λ), (D)

where X = X1 × · · · × XN , and the i-th contribution ϕi is
defined as

ϕi(λ) = min
xi∈Xi

fi(xi) + λ>(Aixi − b
N ). (2)

The next assumption ensures that P and D are well-posed.

Assumption 2 (Existence of optimal solutions). Problem P
admits an optimal solution x? = [x?1

> · · · x?N>]> and prob-
lem D admits an optimal solution λ?.

Remark 1 (Inequality coupling constraint). Note that a linear
coupling constraint of the form

∑N
i=1 α

>
i xi ≤ β, αi ∈ Rni

and β ∈ R, can easily be rewritten as an equality con-
straint by adding a slack variable si for each agent and
imposing the equivalent constraint

∑N
i=1(α>i xi + si) = β,

with si ∈ [0,Mi] and Mi ≥ maxxi∈Xi(
β
N − α>i xi). This

can be trivially generalized to the case of multiple linear
inequality coupling constraints, thus showing that P includes
also coupling constraints that are (linear) inequalities.

III. DISTRIBUTED DUAL PROXIMAL ALGORITHM

In this section we first introduce the distributed compu-
tational framework of interest, and then propose a novel
proximal-based algorithm exploiting such a framework for
solving P . Finally, we analyze its convergence properties.

A. Distributed Computation Framework

In the considered distributed set-up, the cost function fi,
constraint set Xi, and contribution Ai to the coupling con-
straint have to be regarded as private information of agent i
not to be disclosed to other agents, whereas the total amount
b available to the overall multi-agent system is known to
everybody.

To cooperatively solve P , the agents must repeatedly ex-
change information through the communication network.

At each iteration k, communications among the agents are
modeled as a directed graph Gk = (V, Ek), where the set
V = {1, . . . , N} represents the agents, and the set Ek ⊆ V×V



collects the set of communication links that are active at
k, with (i, j) ∈ Ek modeling the fact that agent i receives
information from agent j during iteration k. We denote by
Ni,k = {j ∈ V | (i, j) ∈ Ek} the set of neighbors of agent i
at k. We assume that (i, i) ∈ Ek for all i = 1, . . . , N and for
all k ≥ 0.

Let E∞ = {(i, j) : (i, j) ∈ Ek for infinitely many k}.
To ensure that the agents communicate sufficiently often, we
impose the following assumption.

Assumption 3 (Connectivity). The graph (V, E∞) is strongly
connected, i.e., for every pair of vertices in V there exists a
directed path of arcs in E∞ that connects them. Moreover,
there exists a T ≥ 1 such that for every (i, j) ∈ E∞
agent i receives information from agent j at least once every
consecutive T iterations.

B. Proposed Algorithm

We start by noticing that D is a DCP and thus it could
be solved in a distributed way by applying the proximal
Algorithm in [4]. Accordingly, agent i would run the following
two steps at each iteration:

`i,k =
∑
j∈Ni,k

wij,k λj,k (3a)

λi,k+1 = argmax
λi∈Rp

ϕi(λi)−
1

2ck
‖λi − `i,k‖2. (3b)

where ck is a penalty coefficient and wij,k is the weight
associated to edge (i, j) ∈ Ek at iteration k and models how
much agent i values the information received by agent j at k.
For those (i, j) /∈ Ek, wij,k = 0, modeling the fact that agent
i does not receive any information from agent j at k.

The penalty coefficient and the network weights should
satisfy the following conditions to get convergence of (3) to
an optimal solution λ?.

Assumption 4 (Penalty coefficient). Sequence {ck}k≥0 is
positive, non-increasing, and satisfies

∑∞
k=0 ck = +∞ and∑∞

k=0 c
2
k < +∞.

Assumption 5 (Network weights). There exists η > 0 such
that, for all i, j = 1, . . . , N and k ≥ 0, wij,k ∈ [0, 1), wii,k ≥
η, and wij,k > 0 implies wij,k ≥ η. Furthermore, for all
k ≥ 0,
•
∑N
i=1 wij,k = 1 for all j = 1, . . . , N ,

•
∑N
j=1 wij,k = 1 for all i = 1, . . . , N ,

and wij,k > 0 if and only if (i, j) ∈ Ek.

Assumptions 3–5 are common in the consensus-based dis-
tributed optimization literature, see, e.g., [1], [2]. For the
choice of the network weights, see the discussion after As-
sumption 3 in [18].

In (3a), agent i constructs a weighted average `i,k of its own
estimate λi,k of the dual optimal solution and the estimates
λj,k of its neighboring agents, then, in (3b), it updates its local
estimate by solving a local maximization problem where the
cost function is given by its local contribution ϕi(·) to the dual
function ϕ(·), plus a quadratic term that penalizes the distance
of the new estimate from the average `i,k computed in (3a).

Algorithm 1 Distributed Dual Proximal Algorithm
1: Initialization
2: xi,0 ∈ Rni , λi,0 ∈ Rp, x̂i,0 ∈ Rni , k = 0

3: For each iteration k do
4: `i,k =

∑
j∈Ni,k

wij,k λj,k

5: xi,k+1 ∈ argmin
xi∈Xi

fi(xi) + `>i,kAixi + ck
2 ‖Aixi −

b
N ‖

2

6: λi,k+1 = `i,k + ck(Aixi,k+1 − b
N )

7: x̂i,k+1 = x̂i,k + ck∑k
s=0 cs

(xi,k+1 − x̂i,k)

8: k ← k + 1

Note that the optimizer λi,k+1 in (3b) always exists and is
unique due to the strict convexity of the quadratic penalty
term.

Unfortunately, step (3b) involves maximizing a function
ϕi(·) implicitly defined via a minimization (cf. (2)), which
is not easy in general. We therefore shall first derive an
equivalent formulation of (3) which is easier to implement.

Since the maximization in (3b) is unconstrained, for λi,k+1

to be the optimal solution it must hold that

0 ∈ ∂ϕi(λi,k+1)− 1
ck

(λi,k+1 − `i,k), (4)

where ∂ϕi(λi,k+1) is the set of all subgradients of ϕi(λ) at
λ = λi,k+1 (subdifferential). Moreover, as a consequence of
the Danskin’s theorem (see [19, Proposition B.25]), we have
that the subdifferential can be characterized as

∂ϕi(λi,k+1) =
{
Aixi,k+1 − b

N :

xi,k+1 ∈ argmin
xi∈Xi

fi(xi) + λ>i,k+1Aixi

}
. (5)

Using (5) together with (4), we can conclude that there must
exist some xi,k+1 such that

xi,k+1 ∈ argmin
xi∈Xi

fi(xi) + λ>i,k+1Aixi (6a)

0 = Aixi,k+1 − b
N −

1
ck

(λi,k+1 − `i,k). (6b)

Condition (6b) can be rewritten as

λi,k+1 = `i,k + ck(Aixi,k+1 − b
N ) (7)

and plugged into (6a) to obtain

xi,k+1 ∈ argmin
xi∈Xi

fi(xi) + `>i,kAixi + ck(Aixi,k+1− b
N )>Aixi

which is equivalent to

xi,k+1 ∈ argmin
xi∈Xi

fi(xi) + `>i,kAixi + ck
2 ‖Aixi −

b
N ‖

2 (8)

thanks to the result of [4, Lemma 4] interpreting ck(Aixi,k+1−
b
N )>Ai as the gradient of ck

2 ‖Aixi −
b
N ‖

2 with respect to
xi evaluated at xi,k+1. Note that computing xi,k+1 using (8)
does not require the knowledge of λi,k+1 as instead suggested
by (6a) and computing λi,k+1 from (7) does not require to
maximize ϕi(·) as instead suggested by (3b).

The resulting distributed strategy is summarized in Algo-
rithm 1 from the perspective of agent i. Note that even though
xi,k+1 is typically not unique, Aixi,k+1 is unique as the



function to be minimized in (8) is strictly convex in Aixi
and this ensures that also λi,k+1 is unique. Algorithm 1 and
the method in (3) thus generate the same {λi,k}k≥0 sequences
and are therefore equivalent.

In the next theorem, we state our first main result, which
shows that Algorithm 1 converges to an optimal solution of D.
The result builds on the work in [4] for DCPs, which cannot be
directly applied because it would require the common decision
variable λ to belong to a compact set (see [4, Assumption 1]).

Theorem 1 (Dual optimality). Under Assumptions 1-5, the
sequences {λi,k}k≥0, i = 1, . . . , N , generated by Algorithm 1,
converge to an optimal solution λ? of D.

Unfortunately, as it is typically the case for duality-based
strategies, convergence of the dual variables to an optimal
solution of D does not necessarily mean that the primal
tentative solutions xi,k+1 computed in Step 5 converge to
an optimal primal solution. However, in many applications,
one is interested in obtaining an optimal solution x? of P
and not only its optimal cost. This is typically the case for
finite-horizon optimal control of dynamical systems, where
the optimal primal solution coincides with optimal strategy
to control the system. To recover primal optimality each agent
need to locally construct an auxiliary sequence (cf. Step 7)
which appropriately averages the terms of its corresponding
{xi,k}k≥0 sequence. The sequence generated by Step 7 can
be equivalently obtained as

x̂i,k+1 =

∑k
s=0 csxi,s+1∑k

s=0 cs
. (9)

If we define x̂k = [x̂>1,k · · · x̂>N,k]>, then we have the
following result.

Theorem 2 (Primal optimality). Under Assumptions 1-5, all
limit points of the sequence {x̂k}k≥0 are optimal solutions
for P .

The proofs of Theorems 1 and 2 are given in the Appendix.

IV. NUMERICAL EXAMPLE

The proposed algorithm is tested on a modified version
of the plug-in electric vehicles optimal charging schedule
problem described in [20]. We consider a fleet of N electric
vehicles which need to find a minimum-cost overnight charg-
ing strategy while coping with local constraints (target state of
charge and battery limits) and network constraints (maximum
power that the grid can provide). For simplicity we consider
the “only charging” case in which vehicles only draw energy
from the network without injecting any, over each time slot
of the charging time horizon. The problem can be written in
the form of P , using Remark 1. Due to space limitations, we
refer the reader to [20], the only difference being that we allow
each vehicle to also optimize the charging rate at any time slot
instead of deciding only whether to charge or not the battery.

In our simulation we considered a fleet of N = 50 vehicles,
each one with 24 decision variables representing the charging
rate over each 20-minute time slot of the 8-hour charging
horizon, and 24 additional slack variables to account for the
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Fig. 1. Relative optimality gap (top plot), relative violation of the joint
constraints (middle plot), and relative dual convergence (bottom plot), across
iterations. Blue lines: proposed proximal method; red lines: primal-dual
method in [5]; yellow lines: subgradient method in [6].

24 coupling constraints (see Remark 1). The communication
network was taken to be fixed across iterations and was built
according to the following randomized procedure. For each
possible agent pair, the corresponding edge was included in
the graph with probability 0.25, and we kept generating graphs
until a strongly connected one was found. The corresponding
weight matrix was also taken to be fixed across iterations
and was constructed applying the procedure in [21] to the
adjacency matrix of the randomly-generated graph, satisfying
Assumption 5 with η = 0.03.

We run Algorithm 1 for 104 iterations, setting ck =
10−3/(k + 1)0.51. For comparison purposes we also run one
algorithm for each category in the same column of Table I:
the primal-dual algorithm in [5] and the distributed subgradient
method in [6]. In Figure 1 we report, the behavior across iter-
ations of the relative optimality gap between the value of the
cost function achieved by the primal tentative solution x̂k and
the optimal cost f? computed by a centralized solver (top plot),
the relative violation of the joint constraints (middle plot), and
the relative dual convergence (bottom plot), measured as

|
∑N
i=1 fi(x̂i,k)− f?|

|f?|
,
‖
∑N
i=1Aix̂i,k − b‖
‖b‖

,
‖λ̄k − λ?‖
‖λ?‖

,

with λ̄k = 1
N

∑N
i=1 λi,k. Not surprisingly, the convergence

rate of the three methods is similar, as they all make use of
the same vanishing step-size sequence. However, the proposed
method generates less oscillating iterates for the tentative dual
variables (all λi,k’s behave similarly to λ̄k) compared to [5]
and [6], which can make it easier for the agents to check the
algorithm progress.

V. CONCLUSIONS

In this paper, we have extended the distributed proximal
minimization-based approach presented in the literature for
decision-coupled problems to constraint-coupled problems in



which the sum of local cost functions has to be minimized
subject to both individual constraints and a linear coupling
constraint. The proposed distributed algorithm guarantees con-
vergence of the decision variables of each agent to an optimal
solution, with a rate that is similar to its distributed subgradient
counterpart.
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APPENDIX

Proof of Theorem 1 (Dual Optimality)

We prove Theorem 1 by showing that [4, Thm. 1] holds for
the method in (3) even if the λ domain in D is not compact.
The statement of Theorem 1 then follows directly from the
equivalence between (3) and Steps 4-6 in Algorithm 1.

We start the proof by checking that all the assumptions of
[4] but the compactness in [4, Ass. 1] are satisfied.

To see that D fits the problem in [4, Eq. (2)] it is sufficient to
see that it is equivalent to minλ∈Rp

∑N
i=1−ϕi(λ) where all the

local sets in [4, Eq. (2)] are given by Rp. By definition of ϕi(λ)
in (2), ϕi(λ) is the point-wise minimum of affine functions of
λ and is therefore concave, meaning that −ϕi(λ) is convex,
which together with the convexity of Rp, satisfies the convexity
in [4, Ass. 1]. Also, setting the agents local constraint sets
to Rp trivially satisfies [4, Ass. 3]. Assumptions 3, 5, and 4
are respectively equivalent to [4, Ass. 2, 5, and 4]. The only
assumption that is not satisfied in our set-up is the compactness
in [4, Ass. 1].

We now revisit the proofs of [4] and show how compactness
can be removed in all steps where it is used. Symbols hereafter
refer to quantities in [4].

In [4, Sec. V-A] the sequence v̄(k) is considered as a
feasible counterpart for the average v(k) of the tentative
solutions xi(k), for each k. Indeed, even if xi(k) ∈ Xi for all
k, v(k) does not necessarily belong to

⋂m
i=1Xi, whereas v̄(k)

does. Since in our set-up Xi are all equal to Rp, then v(k)
readily belongs to

⋂m
i=1Xi = Rp, meaning that we can safely

replace v̄(k) with v(k) and set µ = 1 in all derivations without
requiring compactness of all Xi’s, effectively bypassing [4,
Lemma 1].

The proof of [4, Lemma 3] uses compactness to bound
the term ‖xi(0)‖ in [4, Eq. (63)] and the term ‖ei(1)‖ in
[4, Eq. (66)]. Since xi(0) is finite for all i = 1, . . . ,m,
then zi(0) and xi(1) computed as in [4, Steps 7 and 8 of
Algorithm 1] are also finite, which implies that also ei(1) =
xi(1) − zi(0) is finite. The compactness requirement of [4,
Lemma 3] can thus be relaxed replacing D in [4, Eq. (66)]
with max{‖xi(0)‖, ‖xi(1)‖, ‖zi(0)‖} < +∞.

The proof of [4, Lemma 5] leverages compactness under [4,
Eq. (41)] to exploit Lipschitz continuity of the agents’ local
cost functions. Here we do not have compactness of the λ
domain, but we can exploit compactness of the local constraint
sets in our primal problem P to show Lipschitz continuity of
each ϕi(·). To see this recall the definition of ∂ϕi(λ) (cf. (5))
and note that, under Assumption 1, there exists a uniform
upper bound Li for ‖∂ϕi(λ)‖.

In the proof of [4, Prop. 2] compactness is required to use
[4, Lemma 3] (which we have shown not to need compactness)
and to bound the term ‖xi(1)−x?‖ in [4, Eq. (43)]. Similarly
to our prior discussion, xi(1) is finite while x? is finite due to
our Assumption 2. Therefore [4, Prop. 2] also holds without
compactness.

The proof of [4, Prop. 3] uses compactness to bound the
term ‖xj(s)‖ in [4, Eq. (45)] for a fixed s. Since [4, Step 8 of
Algorithm 1] is always well defined, for any fixed iteration s,
‖xj(s)‖ will be finite for all j = 1, . . . ,m. We can thus take



the lim supk→∞ of the line above [4, Eq. (45)] and still get
[4, Eq. (46)], thus relaxing the compactness assumption also
for this result.

We now prove [4, Thm. 4], which requires compactness, in
an alternative way. Consider [4, Eq. (37)]. First rearrange the
terms so that

∑m
i=1 ‖xi(k + 1) − x?‖ is the only one on the

left hand side. Then notice that the terms −
∑m
i=1 ‖ei(k+1)‖2

and 2c(k)
∑m
i=1(fi(x

?)−fi(v̄(k+1))) on the right hand side
are negative and can be discarded. We are left with

m∑
i=1

‖xi(k + 1)− x?‖2︸ ︷︷ ︸
uk+1

≤
m∑
i=1

‖xi(k)− x?‖2︸ ︷︷ ︸
uk

+ 2L̄c(k)

m∑
i=1

‖xi(k + 1)− v̄(k + 1)‖︸ ︷︷ ︸
βk

, (A.10)

where
∑∞
k=0 βk < +∞ due to [4, Eq. (47)]. We can then

apply [22, Lemma 2 in Sec. 2.2.1] to (A.10) with uk and βk
as defined in (A.10) and αk = 0, for all k, to get the result of
[4, Thm. 4].

Finally, in the proof of [4, Thm. 1], the compactness
assumption is used to bound the terms ‖xi(1) − x?‖, i =
1, . . . ,m, which are however finite owing to xi(1) and x?

being finite as per our discussion above, even without requiring
compactness. This concludes the proof.

Proof of Theorem 2 (Primal Optimality)

We start by showing that the limit points of the {x̂k}k≥0
sequence are feasible for the coupling constraint. Consider the
average violation of the coupling constraint of the tentative
solution x̂k+1

1

N

(
N∑
i=1

Aix̂i,k+1 − b

)
(a)
=

1

N

N∑
i=1

(
Ai

∑k
s=0 csxi,s+1∑k

s=0 cs
− b

N

)
(b)
=

1

N

N∑
i=1

(∑k
s=0 cs(Aixi,s+1 − b

N )∑k
s=0 cs

)
(c)
=

1

N

N∑
i=1

(∑k
s=0 λi,s+1 − `i,s∑k

s=0 cs

)

(d)
=

∑k
s=0

(
1
N

∑N
i=1 λi,s+1 − 1

N

∑N
i=1 `i,s

)
∑k
s=0 cs

(e)
=

∑k
s=0

(
λ̄s+1 − λ̄s

)∑k
s=0 cs

(f)
=
λ̄k+1 − λ̄0∑k

s=0 cs
(A.11)

where in (a) we used the definition of x̂i,k+1 in (9), in (b)
we brought Ai and b

N inside the convex combination, in (c)
we used Step 6 with s in place of k, in (d) we exchanged the
two summations, in (e) the fact that, due to Assumption 5,

1
N

∑N
i=1 `i,s = 1

N

∑N
i=1 λi,s = λ̄s, and in (f) the fact that

the summation is telescopic. By taking the limit for k → ∞
on both sides of (A.11), owing to the fact that λi,k → λ?

for all i = 1, . . . , N , and thus also λ̄k → λ?, together with∑∞
k=0 ck = +∞ thanks to Assumption 4, we get

lim
k→∞

1

N

(
N∑
i=1

Aix̂i,k+1 − b

)
= 0, (A.12)

meaning that all limit points of {x̂k}k≥0 are feasible for the
coupling constraint.

Consider now (6a). By optimality of xi,k+1 we have

fi(xi,k+1) + λ>i,k+1(Aixi,k+1 − b/N)

≤ fi(x?i ) + λ>i,k+1(Aix
?
i − b/N).

Adding λ?>(Aixi,k+1− b/N) and λ?>(Aix
?
i − b/N) on both

sides and rearranging some terms we obtain

fi(xi,k+1) + λ?>(Aixi,k+1 − b/N)

≤ fi(x?i ) + λ?>(Aix
?
i − b/N)

+ (λ? − λi,k+1)>(Aixi,k+1 − b/N)

+ (λi,k+1 − λ?)>(Aix
?
i − b/N). (A.13)

Setting xk = [x>1,k · · · x>N,k]>, collecting (λi,k+1 − λ?) in
the last two terms, summing (A.13) over i = 1, . . . , N , and
recalling (1), we have

L(xk+1, λ
?) ≤ L(x?, λ?)

+

N∑
i=1

(λi,k+1 − λ?)>(Aix
?
i −Aixi,k+1)︸ ︷︷ ︸

γk+1

, (A.14)

where we know that limk→∞ γk = 0 thanks to the fact that
limk→∞ λi,k = λ?, for all i = 1, . . . , N , by Theorem 1
together with xi,k and x?i being bounded under Assumption 1.

By convexity of L(·, λ?) it holds that

L(x̂k+1, λ
?) ≤

∑k
s=0 csL(xk+1, λ

?)∑k
s=0 cs

(a)

≤
∑k
s=0 csL(x?, λ?)∑k

s=0 cs
+

∑k
s=0 csγs+1∑k
s=0 cs

(b)
= L(x?, λ?) +

∑k
s=0 csγs+1∑k
s=0 cs

,

where in (a) we used (A.14) and in (b) the fact that L(x?, λ?)
does not depend on s. Owing to the fact that limk→∞ γk =
γ̄ = 0 together with

∑∞
k=0 ck = +∞ by Assumption 4, we

have that limk→∞

∑k
s=0 csγs+1∑k

s=0 cs
= γ̄ = 0 and hence

lim sup
k→∞

L(x̂k+1, λ
?) ≤ L(x?, λ?),

which, together with L(x̂k+1, λ
?) ≥ L(x?, λ?), implies

limk→∞ L(x̂k+1, λ
?) = L(x?, λ?). This shows that all limit

points of {x̂k}k≥0 achieve the optimal value of P and, since
they are feasible for the coupling constraint (cf. (A.12)), we
can finally conclude that they are optimal solutions of P .
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