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s u m m a r y

Droughts, like floods, represent the most dangerous, and costly, water cycle expressions, with huge impacts on society and built environment. Droughts 
are events occurring over a certain region, lasting several weeks or months, and involving multiple variables: thus, a multivariate, multi-site, approach is 
most appropriate for their statistical characterization. In this methodological work, hydrological droughts are considered, and a multivariate approach is 
proposed, by regarding as relevant variables the duration and the average intensity. A multivariate, multi-site, frequency analysis is presented, based on 
the Theory of Copulas and the joint Survival Kendall’s Return Periods, by investigating the historical drought epi-sodes occurred at five main river sections 
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of the Po river (Northern Italy), the most 
and Fans are introduced, in order to provi
nt Italian basin. The tool of Dynamic Return Period is used, and the new concepts of Hazard Trajectories 
l indications for a valuable multi-site real-time assessment of droughts.
1. Introduction

According to Beran and Rodier (1985), ‘‘Droughts are generally 
viewed as a sustained and regionally extensive occurrence of below 
average natural water availability, either in the form of precipitation, 
river runoff, or groundwater’’. In literature, several works have 
pointed out as a main obstacle to the drought investigation the lack 
of a precise definition (see, among others, Yevjevich, 1967; Wilhite 
and Glantz, 1987; Demuth and Külls, 1997).

Palmer (1965) defined droughts as a meteorological phenome-
non characterized by a prolonged and abnormal moisture defi-
ciency. Wilhite and Glantz (1987) and McKee et al. (1993) 
summarized drought definitions as a natural phenomenon that 
originates from a deficit in precipitation, which results in water 
shortage for some activities or group. In a recent review, Mishra 
and Singh (2010) have defined droughts as a temporary phenome-
non characterized by the reduction in the amount of precipitation 
received over an extended period of time, such as a season or a year.

Dracup et al. (1980a), reviewing several definitions of droughts, 
underlined that droughts are a wide concept covering different 
fields of study. Droughts have been categorized in four different
classes (Dracup et al., 1980a; Beran and Rodier, 1985; Wilhite 
and Glantz, 1987):

hydrological: relatively to below normal flow and depleted res-
ervoir storage;
meteorological: relatively to below normal precipitation;
agricultural: if the soil moisture is not sufficient to support crop
growth;
socio-economical: if the low water supply affects socio-eco-
nomic activities.

These definitions describe only qualitatively a drought. Opera-
tional definitions, which consider main drought features like onset, 
termination, duration, severity, and intensity, are necessary to 
quantitatively address the problem (Wilhite and Glantz, 1987).

Gumbel (1963) defined the hydrologic drought as the smallest 
annual value of the mean daily discharge, and used the third 
asymptotic distribution of the smallest value (i.e., EV III type law) to 
derive the return period of droughts occurred in Muskegon 
(Michigan) and French-Broad (North Carolina) rivers. Similarly 
Gannon (1964) investigated the hydrologic droughts in Michigan, 
during the period May–October, defining these as the smallest 
value of the mean discharge over periods of 1, 7, 15, and 30 consec-
utive days, and used Extreme Value distributions. A criticism to 
these approaches is that hydrological droughts are described only
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through the maximum water deficit, without considering the 
length of the drought and the total water deficit.

Yevjevich (1967) proposed a threshold approach, also called run 
method, to identify hydrologic droughts. Thus, a drought (negative 
run) is characterized by a duration, the interval during which the 
discharge is below, or equal to, a fixed threshold, and a severity, 
defined as the cumulative volume deficit below the given thresh-
old. The ratio between severity and duration is the average intensity 
of drought. Conversely, the period during which the discharge is 
above the fixed threshold is a positive run. The run method has 
been widely applied to yearly and daily data. Examples considering 
the former time scale include Sen (1977), Dracup et al. (1980b), 
Clausen and Pearson (1995), and also Clausen and Pearson (1998), 
where the threshold has been fixed equal to the long-term mean 
annual flow, or the 75% of it. Examples considering daily data 
include, among others, Zelenhasić and Salvai (1987), Tallaksen et al. 
(1997), Demuth and Külls (1997), Demuth and Heinrich (1997), 
Kjeldsen et al. (2000), Engeland et al. (2004), Byzedi and Saghafian 
(2009), and Byzedi (2010). However, the application of run method 
to sub-yearly time scales (e.g., daily ones) requires a particular 
attention to the possible presence of mutually ‘‘dependent’’ 
droughts, i.e. to the fact that a prolonged dry period may be 
interrupted by shorter ones where the flow exceeds the threshold 
level, and therefore a long drought turns out to be divided into a 
number of shorter ones.

Zelenhasić and Salvai (1987) studied the number, severity, dura-
tion, time of occurrence, largest duration, and largest severity of 
drought events of Sava river at Sr. Mitroviea, and Tisa river at Senta 
(both in ex-Yugoslavia), using the run method with daily data and, 
as thresholds, the 95-, 90-, 80-, 70-, and 60-percentile of the flow–
duration curve. They found that the 95- and 90-percentiles are 
more statistically correct to identify droughts, since the events 
belong to the region of low extremes. The maximum annual dura-
tion and severity were modeled using an exponential distribution. 
Zelenhasić and Salvai (1987) have modified the run method to 
account for the temporal dependence of consecutive drought peri-
ods. They introduced two additional conditions: (i) two consecutive 
droughts, separated by a short interval (inter-event time) during 
which the flow is slightly above the threshold, have to be consid-
ered as just one drought, with duration and severity equal to the 
sum of the two events duration and severity, respectively and (ii) 
all droughts having a severity less than 0.5% of maximum value are 
discharged.

Tallaksen et al. (1997) applied the run method to daily data of 
two catchments in Denmark, using as thresholds the 50-, 70- and 
90- percentile of the flow–duration curve. Three different proce-
dures were considered to pool together mutually dependent 
droughts: (i) an inter-event time and volume criterion, (ii) a mov-
ing average procedure, and (iii) a method based on the sequent 
peak algorithm. The first criterion, similar to the one proposed by 
Zelenhasić and Salvai (1987), states that if the inter-event time 
between two successive droughts is less than, or equal to, a critical 
duration, and the ratio between the inter-event excess volume and 
the preceding deficit volume is less than a critical value, then the 
two droughts have to be pooled into a single drought, with dura-
tion equal to the sum of the durations of the two events and the 
inter-event time, while the volume is given by the sum of the two 
events volumes minus the inter-event excess volume. The moving 
average procedure has to be applied directly to the flow time series 
to smooth it and remove the minor peaks; then, the run method 
can be applied to the smoothed time series. The sequent peak 
algorithm, used for the design purposes of reservoirs, states that a 
drought is identified as a continuous period of storage depletion; 
thus, two droughts are dependent if at the beginning of the second 
one the reservoir has not yet recovered from the first one. The 
drought volume is the maximum storage depletion within
the event, and the duration is given by the difference in time 
between the maximum depletion instant and the starting time of 
the drought. The same methodologies have been applied by Fleig et 
al. (2006) to sixteen daily flow series collected at different sites of 
the world, with thresholds equal to 70- and 90-percentiles of the 
flow–duration curve.

Demuth and Külls (1997) used the run method for analyzing 
daily data of 27 stations in the south of Germany, using as a thresh-
old the 90-percentile of the flow–duration curve. To avoid depen-
dence problem of successive droughts, a termination criterion at 
10% was used: a positive volume of a maximum 10% of the forego-
ing drought volume is allowed before terminating an event. 
Demuth and Külls (1997) extracted the maximum annual duration 
and severity, and for each of these estimated the parameters of 
LogNormal, Generalized Extreme Value, Pearson III, and General-
ized Pareto distribution using L-moments and Partial Probability 
Weighted Moments. Demuth and Heinrich (1997) investigated the 
drought duration in 111 stations located in south Germany, using 
as a threshold the 90-percentile of the flow–duration curve, and a 
termination criterion at 10%.

Kjeldsen et al. (2000) studied droughts occurrences in ten Zim-
babwean rivers (some ephemeral and others perennial) using daily 
data. In this case, the threshold was chosen to vary monthly, due to 
the strong seasonality of the region climate, and defined as the 75-
percentile of the monthly flow–duration curve. Note that, for 
ephemeral rivers, the expected flow during the dry season is zero, 
which corresponds to a truncation level equal to zero. In the case of 
a drought starting in the rainy season, the begin of the dry season 
involves an increase in the duration, but not in the severity. The 
drought can also go over the dry season and foregoing in the next 
rainy season until the daily stream flow is below the threshold. 
Perennial rivers yield no problem regarding the drought definition, 
being the thresholds different from zero in all the months. Possible 
mutually dependent droughts were identified using the sequent 
peak algorithm methodology (Tallaksen et al., 1997). To estimate 
the return period of drought severity and duration, a two-compo-
nent exponential distribution was used for both variables.

Engeland et al. (2004) applied the run method to daily Norwe-
gian data, using as a threshold the 70-percentile of the flow–dura-
tion curve, and a 10-days moving average procedure to cope with 
dependent droughts. A Generalized Extreme Value and a General-
ized Pareto distribution were fitted to the maximum annual 
severity.

Recently, Byzedi and Saghafian (2009) and Byzedi (2010) used 
the run method, with a truncation level at the 70% of the daily dis-
charge, and the inter-event time criterion to pool together depen-
dent droughts, to investigate forty-four hydrometric stations in 
South-Western Iran. A frequency analysis of the annual maximum 
drought severity and duration was performed.

In literature, until 2000, the drought frequency analysis has 
been addressed principally under a univariate framework: viz., 
by calculating the probability distribution of drought duration 
and drought severity, and considering these variables as indepen-
dent. However, droughts are multi-dimensional random phenom-
ena characterized by duration, severity and intensity variables, 
each dependent on one another. Thus, a multivariate probabilistic 
framework is advisable for a proper description of droughts.

The introduction of Copulas in hydrology (De Michele and 
Salvadori, 2003) has greatly facilitated the multivariate modeling 
of droughts: see, among others, Shiau (2006), Serinaldi et al.
(2009), Shiau and Modarres (2009), Kao and Govindaraju (2010), 
Wong et al. (2010), Song and Singh (2010, 2011), Mirabbasi et al.
(2012), Ganguli and Reddy (2012), Reddy and Ganguli (2012), 
Chen et al. (2013), De Michele et al. (2013), Ganguli and Reddy 
(2014), and also Mishra and Singh (2011) for a review. In the above 
mentioned works, with the exceptions of Kao and Govindaraju



(2010), Song and Singh (2010), Song and Kang (2011), and De 
Michele et al. (2013), the drought considered is of a meteorological 
kind, and the relevant variable is the standardized precipitation 
index. Instead, Kao and Govindaraju (2010) investigated both mete-
orological and hydrological droughts via standardized indices, 
introducing a joint deficit index to provide a probability-based 
description of the drought at different time scales. In addition, Song 
and Singh (2010) addressed hydrological droughts via a tri-variate 
analysis of duration, severity, and inter-arrival time, as identified 
by means of a threshold on the flow discharge. Further-more, Song 
and Kang (2011) considered the pair-copula construc-tion method 
to build high-dimensional dependence structures, and carried out a 
trivariate analysis of the variables duration, severity, and severity 
peak, as identified by means of a threshold on the flow discharge. 
Lastly, De Michele et al. (2013) presented a multivariate frequency 
analysis of hydrological droughts where droughts are intended as 
episodes during which the flow discharge is below a given 
threshold: in this work, the new concept/tool of Dynamic Return 
Period was introduced to assess the dangerousness of the drought 
along with its temporal evolution, and provide a practical tool to 
water resource managers to quantify dynamically (i.e., day-by-day) 
the ‘‘rarity’’ of a drought event during its occurrence.

In this paper, we shall follow the multivariate survival approach 
outlined in Salvadori et al. (2013) and De Michele et al. (2013). The 
overall behavior of the major Italian river basin will be investi-
gated, by considering some relevant historical drought episodes 
occurred at five main river sections, thus carrying out a multi-site 
analysis on the same main-stream: as we shall see, this may pro-
vide useful information for the proper management of the water 
resource. In addition, the new concepts of Hazard Trajectories and 
Fans will be introduced, which may supply suitable indications for 
the real-time assessment of droughts. As a difference with other 
works available in literature, which essentially only provide 
descriptive models of the drought dynamics, here the target is also 
to introduce new methodological tools for extracting further valu-
able information from the available data, and to show their useful-
ness for water managers.

The paper is organized as follows. In Section 2, the data base 
and the case study are presented. In Section 3, the theoretical
Fig. 1. Sketch of the Po river basin: watershed (dark thick line), river network (thin line),
to East, Piacenza, Cremona, Boretto, Borgoforte, and Pontelagoscuro.
framework adopted is briefly illustrated, and all the relevant 
notions used in the paper are introduced: these include the Sur-
vival Kendall’s Return Period, the Dynamic Return Period, and the 
Hazard Trajectories and Fans. In Section 4, the analysis of the data 
base is shown, and the main results are illustrated and discussed. 
Finally, suitable conclusions are drawn in Section 5.
2. The data base

The Po is the largest Italian river basin, covering an area of about 
74,000 km2, crossing the Pianura Padana from Western Alps to the 
Adriatic sea, with a main river length of about 650 km—see Fig. 1. 
The basin is an economic important area, with a population of 
more than 16 Millions of habitants, producing about 40% of the 
national gross domestic product. Water uses involve several strate-
gic activities: viz., agriculture, livestock, inland navigation, and 
industry. As a consequence, drought may cause serious detriments.

In this work we use daily discharge data (in m3/s) collected at 
five different river sections located along the main stream chan-nel
—see Fig. 1: namely, from West to East, Piacenza, Cremona, Boretto, 
Borgoforte and Pontelagoscuro. The observations are avail-able 
since 1924 at Piacenza and Borgoforte, since 1972 at Cremona, 
since 1943 at Boretto (but missing the years 1945 and 1946), and 
since 1923 at Pontelagoscuro; all the time series terminate in 2007. 
Further details about the data base and the morphological features 
of the sub-basins can be found in Turco et al. (2013).

Hereinafter we shall investigate hydrologic droughts, i.e. peri-
ods of time during which the discharges are smaller than pre-
scribed thresholds—see Table 1: these values are those indicated 
by the Control Room (hereinafter, CR) in a recent report (AA. VV., 
2011). In particular, the standard thresholds Q275, Q300, and 
Q355 (labeled by the CR as, respectively, ‘‘Alert’’, ‘‘Alarm’’, and 
‘‘Emergency’’) will be used: these correspond to the discharge val-
ues exceeded, respectively, 275, 300, and 355 days per year. 
Clearly, approaches different from the one presented here are pos-
sible, as thoroughly discussed in Section 1.

As in De Michele et al. (2013), two main variables are used to 
characterize each drought episode: namely, the average Intensity
and locations of the five river sections (markers) considered in this work: from West



Table 1
Values of the three discharge thresholds Q275, Q300, and Q355 (in m3/s) considered
in this work, for all the five river sections of interest. The ‘‘#’’ rows report the number
of available drought episodes extracted from the data base, while the ‘‘s’’ rows show
the values of the Kendall’s rank correlation coefficient s—see text.

Section Q275 Q300 Q355

Piacenza 536 490 376
# 327 284 112
s 0.41 0.40 0.36

Cremona 651 591 445
# 129 107 42
s 0.46 0.41 0.56

Boretto 687 616 451
# 227 197 81
s 0.49 0.43 0.37

Borgoforte 809 728 524
# 328 267 99
s 0.47 0.41 0.45

Pontelagoscuro 913 824 593
# 335 276 106
s 0.48 0.45 0.43
I (i.e., the average of all the daily differences between the threshold 
and the actual discharge, in m3/s), and the Duration D (in days). In 
addition, a minimum inter-event time of 3 days, and a minimum 
drought duration of 5 days, is used in order to identify the events of 
interest, and to circumvent possible dependencies between suc-
cessive droughts: therefore, in the following we shall consider the 
bivariate drought observations as independent and identically dis-
tributed. The number of episodes extracted is reported in Table 1: 
as expected, the sample size decreases by lowering the threshold. 
For a discussion concerning the use of other variables see De 
Michele et al. (2013, Section 2). Briefly, from a practical point of 
view, complete drought episodes are characterized by a duration 
and an average intensity. Similarly, the daily status of an evolving 
drought is characterized by a duration (i.e., the number of days 
since the beginning of the episode) and a (running) average inten-
sity: clearly, each day of an evolving drought could be the last one. 
In turn, the treatment and analyses are perfectly consistent.
Table 2
Survey of the extreme features of the available data—see text. The legend is as 
follows: ‘‘Date’’ is the initial date of the drought episode (dd.mm.yy); ‘‘I� ’’ is the 
maximum observed average intensity (in m3/s), and ‘‘D� ’’ is the corresponding 
observed duration (in days); ‘‘D� ’’ is the maximum observed duration (in days), and 
‘‘I� ’’ is the corresponding observed average intensity (in m3/s). The durations in 
parentheses indicate the actual number of days during which the discharge was 
below the corresponding Q-threshold.

Section Date I� D� Date I� D�

Q275
Piacenza 07.04.65 270 58 (57) 21.08.89 149.87 230
Cremona 24.05.06 291 114 (112) 21.08.89 177 241 (236)
Boretto 31.05.05 331 90 07.09.89 197 213 (207)
Borgoforte 08.06.45 411 63 08.09.89 224 212 (210)
Pontelagoscuro 08.06.45 512 64 03.01.44 369 191 (184)

Q300
Piacenza 10.04.65 242 53 08.09.89 115 212 (208)
Cremona 25.05.06 236 113 (110) 07.09.89 131 213 (208)
Boretto 26.05.06 321 84 20.05.03 203 165 (160)
Borgoforte 31.05.05 340 90 01.10.89 167 189 (179)
Pontelagoscuro 08.06.45 432 64 20.05.03 296 166 (162)

Q355
Piacenza 06.04.38 180 43 09.07.90 91 98 (97)
Cremona 01.06.06 165 77 01.06.06 165 77
Boretto 02.06.06 178 76 12.06.03 110 88 (84)
Borgoforte 02.06.06 219 77 13.07.62 175 92
Pontelagoscuro 03.06.06 302 77 13.07.62 138 93
As an illustration, in Table 2 we present a survey of some 
extreme drought episodes recorded in the data base. Note that 
the maximum intensity never occurs in the same event showing 
the maximum duration (with the only exception of Cremona-
Q355 in 2006): apparently, this may indicate that, in order to prop-
erly rank the threatening of a drought, both the two variables I and 
D need to be jointly taken into account, as we shall outline below.

3. Methods

The analysis of the drought data presented in the previous sec-
tion will be carried out by using the same approach, both univari-
ate and multivariate, adopted in Salvadori et al. (2013), De Michele 
et al. (2013), and Salvadori et al. (2014): we shall make reference to 
these papers for all the mathematical details, assumptions, and jus-
tifications. For the sake of clarity and completeness, below we 
briefly present the main concepts and notions of interest.

In order to construct suitable statistical models for all the five 
river sections and the three thresholds, we shall consider the same 
univariate and multivariate distributions described and used in De 
Michele et al. (2013): these are reported in Table 3. Furthermore, 
the (corrected) Akaike Information Criterion (AIC) (Burnham and 
Anderson, 2002; Claeskens and Hjort, 2008) will be used as a model 
selection strategy. In addition, the Kolmogorov–Smirnov (KS) 
Goodness-of-Fit test, returning approximate p-values calcu-lated 
by using Monte Carlo procedures (Davison and Hinkley, 1997), will 
endorse the appropriateness of the chosen univariate distributions, 
while the multivariate Goodness-of-Fit tests sug-gested in Genest 
et al. (2009, Appendix A) will validate the suitabil-ity of the 
selected copulas. Finally, the Randomization Techniques outlined in 
De Michele et al. (2013, Section 3) and Salvadori et al.(2014, Section 
3) will be used to cope with the presence of repeated values (Ties) 
in the data base—for a discussion and a graphical illustration, see 
e.g. Figs. 1 and 2 in the first cited paper. In particular, the median 
AIC’s and p-values, over all the NR ¼ 100 randomizations performed 
here, will be used as reference values for selecting and testing the 
statistical models of interest.

3.1. The multivariate Return Period

In the following, the notion of multivariate Return Period (here-
inafter, RP) will play a fundamental role. In particular, let x ¼ ðI; DÞ 
be a generic drought episode or state. Here we adopt the Survival 
Kendall’s RP jx (hereinafter, SKRP), defined in Salvadori et al.(2013) 
and De Michele et al. (2013, Eqs. (1) and (2)), as a tool for the 
multivariate frequency analysis of the droughts. As emphasized in 
Gräler et al. (2013), the SKRP provides a consistent and suitable 
framework for investigating and parametrizing the joint occur-
rences of hydrological variables (see, later, Figs. 2–4).
Table 3
List of the six univariate distributions and twelve bivariate survival copulas fitted on 
the available data—see text. The ‘‘GEV’’ and ‘‘GP’’ labels denote, respectively, the 
Generalized Extreme Value and the Generalized Pareto univariate distributions. The 
‘‘Clayton’’, ‘‘Gumbel’’, and ‘‘Frank’’ labels denote the corresponding families of 
Archimedean 2-copulas (Nelsen, 2006; Salvadori et al., 2007); the labels ‘‘Mix[AB]’’ 
denote a convex mixture C of the two families A and B indicated (i.e., C ¼ kA þ ð1 � kÞB, 
with k 2 ½0; 1�); the labels ‘‘X[AB]’’ denote the Khoudraji–Liebscher extra-
parametrization C of the two families A and B indicated (Durante and Salvadori, 2010; 
Salvadori and De Michele, 2010).

Univariate Survival copulas

Exponential Clayton XClaytonGumbel
Gamma Frank XClaytonFrank
GEV Gumbel XGumbelFrank
GP MixClaytonGumbel XClaytonClayton
LogNormal MixClaytonFrank XGumbelGumbel
Weibull MixGumbelFrank XFrankFrank
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Fig. 3. Event 2003, threshold Q355. Same as Fig. 2.
3.2. The Dynamic Return Period

The Dynamic Return Period (hereinafter, DRP) procedure, first 
outlined in De Michele et al. (2013, Section 6), consists in the cal-
culation of the sequence of SKRP’s j1; j2; . . . associated with the
temporal evolution of the drought states ðI1;1Þ; ðI2;2Þ; . . . observed
in successive days since the beginning of the episode. Generally
speaking, since the notion of Return Period represents an index
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Fig. 4. Event 2006, threshold Q355. Same as Fig. 2.
of dangerousness of the phenomenon under investigation, the DRP 
procedure applied to the drought episodes considered in this work 
will provide a daily evaluation of their threatening (see, later, Sec-
tion 4, and Figs. 2–7).
3.3. The Hazard Trajectory

A new tool, denominated ‘‘Hazard Trajectory’’ (hereinafter, HT), is 
introduced in this work (see, later, Section 4.2, and Figs. 5–7). A
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Fig. 5. Event 1943, threshold Q355. Illustration of the hazard trajectories of the pair ðR;DÞ (thick line) and ðZ;DÞ (thin line), for all the available river sections—see text. The
empty circles and stars mark a 2-weeks pace. The dashed isolines correspond to the SKRP’s indicated by the labels. In the bottom-right panel, the DRP’s of the pairs ðR;DÞ’s are
contrasted on the same plot.
HT is simply the sequence of drought states ðI1;1Þ; ðI2;2Þ; . . . drawn
in the Duration–Intensity plane, where suitable isolines corre-
sponding to given Return Periods are plotted. Such an integrated
chart can help visualize the temporal evolution of the DRP’s
quickly, offering an easy tool to monitor in real-time the threaten-
ing of a drought episode.
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Fig. 6. Event 2003, threshold Q355. Same as Fig. 5.
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Fig. 7. Event 2006, threshold Q355. Same as Fig. 5.
3.4. The Hazard Fan

An interesting novel approach concerning the risk assessment 
in engineering practice is outlined in the Directive 2007/60/EC of 
The European Parliament and of The Council (The European
Parliament and The Council, 2007): this document deals with the 
assessment and the management of flood risks, but the strategies 
proposed are paradigmatic, and can be adopted in all areas of envi-
ronmental engineering, including drought assessment. Actually, the 
term ‘‘drought’’ can be substituted for ‘‘flood’’ in the cited
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follows. The thick line in the Duration–Intensity plane represents the Hazard Trajectory, from the beginning of the drought up to the 14th day (square marker), and the thin
isolines correspond to the SKRP’s indicated by the labels. The empty circles represent three possible forecasts for day 15, and the full circles over the vertical stems indicate the
estimated probability of each scenario: this plot corresponds to the Hazard Fan.
Directive. In particular, the Directive states that (The European 
Parliament and The Council (2007, p. 30, Chapter III, Article 6.3) the 
flood risk management should require the implementation of 
suitable ‘‘flood hazard maps covering the geographical areas which 
could be flooded according to the following scenarios: (a) floods 
with a low probability, or extreme event scenarios; (b) floods with 
a medium probability (likely return period P100 years); (c) floods 
with a high probability, where appropriate.’’ Moreover, a multivar-
iate approach is recommended (The European Parliament and The 
Council (2007, p. 31, Chapter III, Article 6.4), since it is suggested to 
consider, for each flood scenario, the following quantities: ‘‘(a) the 
flood extent; (b) water depths or water level, as appropriate; (c) 
where appropriate, the flow velocity or the relevant water flow’’. In 
turn, the scope of the Directive is twofold. On the one hand, the EU 
framework requires the specification of suitable stochastic models 
for the flood events that are per se multivariate (viz., they involve a 
number of non-independent variables for the character-ization of a 
flood). On the other hand, relevant flood scenarios of interest are 
indicated, each associated with prescribed probability levels (or 
Return Periods).

Thus, following the European Parliament recommendations, a 
further new tool, denominated ‘‘Hazard Fan’’ (hereinafter, HF), is 
introduced in this work (see, later, Section 4.3, and Fig. 8). The idea 
is to combine the information about the actual state of a drought 
(and the corresponding SKRP, measuring its dangerousness) with 
possible forecasts of the future intensity, typically on a daily basis 
(as is traditional for the Po basin): the target is to provide a previ-
sional tool, able to supply useful real-time (statistical) information 
about possible near-future drought scenarios. The forecast of the 
next-day(s) intensity may be based on weather-meteo models, 
rainfall-runoff algorithms, Control Room planning, and so on. Prac-
tically, given the present drought state, several next-day states can 
be predicted, each with an associated probability. Then, by plotting 
such future states in the Duration–Intensity plane, a ‘‘fan’’ of pos-
sible scenarios can be visualized, each characterized by a well 
defined SKRP: in turn, the (statistical) evolution of the drought 
threatening can easily be monitored, and real-time decisions can be 
taken by the water managers.
4. Data analysis

As a preliminary step, according to the survival approach 
adopted in this work, the multivariate statistical modeling of the 
droughts requires to estimate the joint survival function of the 
variables I and D. In turn, as thoroughly explained in De Michele et 
al. (2013, Section 5), suitable univariate marginals and survival 
copulas must first be fitted to these two variables. Note that I and D 
are definitely concordant (Nelsen, 2006; Salvadori et al., 2007), i.e. 
positively dependent: actually, the estimates of the Ken-
dall’s rank correlation coefficient s reported in Table 1, for all the 
river sections and the thresholds considered in this work, are all 
statistically significantly positive, viz. the independence hypothe-
sis is always rejected (the same result is obtained by using the 
Spearman’s independence test).

Tables 4 and 5 show, respectively, the univariate distributions 
and the bivariate survival dependence structures selected for all the 
five river sections and the three thresholds of interest. The results 
deserve a due discussion.

As already mentioned above, the choice of the selected distribu-
tions was carried out via the (corrected) AIC, and their appropriate-
ness was checked via suitable Goodness-of-Fit tests. At first glance, 
no regular distributional patterns are present in Tables 4 and 5: 
however, this is more apparent than real. In fact, a check and a 
comparison of all the estimated AIC’s (a total of 180 values in the 
univariate case—5 river sections � 3 thresholds � 2 variables � 6 
laws—and a total of 180 values in the bivariate case—5 river sec-
tions � 3 thresholds � 12 copulas) show that, in almost all cases, 
the computed AIC’s are close to one another. Thus, in view of the 
construction of a regional model, the Gamma distribution could be 
selected for I, and the Weibull law for D: see, e.g., the cases of 
Borgoforte and Pontelagoscuro in Table 4, where the actual situa-
tion already agrees with the target of a possible homogenization 
strategy. Clearly, this choice would not be the optimal one, but it 
may simplify the univariate modeling of the droughts, without too 
a significant loss of accuracy. Similarly, the ‘‘XClaytonClayton’’ 
copula performs well in terms of the AIC strategy: in fact, even if it 
is not always chosen, the corresponding values of the AIC statistics



Table 4
List of the univariate distributions selected for the variables I and D, for all the five
river sections and the three thresholds of interest. The corresponding Monte Carlo p-
values pI and pD are also indicated—see text.

Q275 Q300 Q355

Piacenza
I Weibull Weibull Gamma
pI 0.27 0.90 0.86
D GP Weibull GP
pD 0.76 0.14 0.85

Cremona
I Weibull Gamma Gamma
pI 0.53 0.71 0.95
D GP LogNormal GP
pD 0.07 0.26 0.09

Boretto
I Weibull Gamma Gamma
pI 0.91 0.77 0.17
D GP Weibull Weibull
pD 0.05 0.59 0.14

Borgoforte
I Gamma Gamma Gamma
pI 0.81 0.37 0.83
D Weibull GP Weibull
pD 0.06 0.30 0.72

Pontelagoscuro
I Gamma Gamma Gamma
pI 0.83 0.83 0.14
D Weibull Weibull Weibull
pD 0.32 0.28 0.42

Table 5
List of the survival copulas bC’s selected for all the five river sections and the three
thresholds of interest. The corresponding Monte Carlo p-values are also indicated—
see text.

Q275 Q300 Q355

Piacenza
bC XClaytonFrank XClaytonGumbel XClaytonClayton

p 0.61 0.95 0.19

Cremona
bC XClaytonClayton XClaytonClayton XGumbelFrank

p 0.98 0.99 0.90

Boretto
bC XClaytonFrank XClaytonClayton XClaytonClayton

p 0.91 0.57 0.66

Borgoforte
bC XClaytonFrank XClaytonGumbel XClaytonClayton

p 0.96 0.68 0.75

Pontelagoscuro
bC XFrankFrank XClaytonFrank XClaytonClayton

p 0.99 0.78 0.61
are close to the ones computed for the copulas eventually selected. 
Thus, the ‘‘XClaytonClayton’’ model could be adopted as a general 
dependence structure for the river sections investigated here. 
However, in the following we shall not pursue any regionalization 
strategy, which is left for future works.

A final point that is worth stressing is as follows: the Khoudraji–
Liebscher extra-parametrized copulas are always preferred among 
the twelve dependence structures listed in Table 3. These copulas 
have the largest number of parameters (four), and hence are the 
most ‘‘penalized’’ by the corrected AIC selection procedure adopted 
here. Thus, the fact this family of copulas is always chosen to model 
the drought bivariate behavior, despite the large number of 
parameters, may indicate that its fitting ability (as expressed in 
terms of the likelihood) justify the use of additional parameters, 
with respect to the other 1- or 3-parameters copulas investigated.
For the sake of brevity, below we shall only illustrate the results 
concerning the threshold Q355, the ‘‘Emergency’’ one. However, 
similar outcomes were obtained by considering the thresholds 
Q275 and Q300. In addition, three historically relevant drought 
episodes will be considered: viz., the ones occurred in, respectively, 
1943, 2003, and 2006. In particular, as stressed in De Michele et al.
(2013), the 2003s event is the one showing the largest duration, 
and the 2006s event is the one showing the largest intensity, while 
the 1943s event is considered for historical reasons, being recalled 
as a severe drought episode managed in an emergency (war) situ-
ation. Note that the river section of Cremona is missing for the year 
1943, since no data are available. Before proceeding, we feel impor-
tant to describe the structure and the content of the figures that 
will be presented in the sequel, as summarized below.

4.1. The Dynamic Return Period

In Figs. 2–4, the temporal behavior of the variables R (the daily 
running average intensity, as in De Michele et al. (2013)) and Z (the 
daily intensity) is presented for each river section—see the first and 
third columns: this gives the possibility to monitor site-by-site the 
‘‘instantaneous’’ evolution of the drought from two different per-
spectives. Note that the droughts may begin on different dates at 
different river sections. In addition, the joint SKRP of the pair ðR; DÞ 
is contrasted on the same plot with the univariate RP’s of the 
variables R; D, and Z, on a daily pace—see the second and fourth 
columns: this gives the possibility to appreciate the differences 
between the univariate and the multivariate approaches, making it 
evident how only the latter one can appropriately account for the 
joint behavior of the variables ruling the drought state. Here a GP 
distribution is used to model the available daily intensity 
observations Z’s, for all river sections and thresholds: as a matter of 
fact, in the present work, Z is not of particular interest, and it is 
shown for the sake of comparison only. Then, since the GP law 
turned out to fit reasonably well the Z’s upper-tails for all the data 
bases considered (viz., the portion of the distribution correspond-
ing to the largest RP’s), it was used as a general fitting law, regard-
less of the possible peculiarities of each river section and/or 
threshold. Finally, in a separate panel, the R’s observed at different 
river sections are contrasted on the same plot, in order to check the 
overall daily drought state in the whole basin.

4.2. The Hazard Trajectory

As anticipated in Section 3.3, in Figs. 5–7, a new tool is intro-
duced for the real-time evaluation of the drought dangerousness, 
viz. the so-called ‘‘Hazard Trajectories’’. Practically, the fitting pro-
cedures discussed above yield, for each river section and threshold, 
suitable univariate marginals and (survival) copulas for modeling 
the random behavior of the pair ðI; DÞ. In turn, as outlined in 
Salvadori et al. (2013), De Michele et al. (2013), Salvadori et al.
(2014), corresponding appropriate bivariate dependence struc-
tures can be constructed, and suitable isolines with given joint 
SKRP can be drawn: here, six relevant multivariate RP’s are chosen, 
i.e. 5, 10, 20, 50, 100, and 200 years. The fundamental point is that 
these probability models represent the available historical infor-
mation, for each river section and threshold, and may be updated as 
soon as new data are at disposal. Evidently, the iso-frequency 
curves constitute the historical knowledge at hand concerning the 
local drought behavior, and can be used to assess the day-by-day 
threatening of the episode under investigation. The Hazard 
Trajectory is defined as the temporal evolution path of the pair ðR; 
DÞ as plotted over the fitted iso-frequency (i.e., iso-RP) curves: then, 
it is immediate to evaluate the state of a drought in terms of its 
joint SKRP. In turn, a real-time estimate of the drought dan-
gerousness can be computed for each single site. Note that, for the



sake of completeness, also the corresponding HT’s of the pair ðZ; DÞ 
are plotted on the same graphs. However, care must be taken in 
interpreting the results: in fact, the isolines crossed by the ðZ; DÞ 
HT’s are those fitted by using the average intensity data, having a 
distribution different from the one of Z. Finally, for the sake of com-
parison, the DRP’s of the pairs ðR; DÞ’s at different river sections are 
contrasted on the same plot in a separate panel: this gives the pos-
sibility to monitor, in a multi-site perspective, the overall daily 
drought evolution in the whole basin.

4.3. The Hazard Fan

As anticipated in Section 3.4, Fig. 8 illustrates the concept of 
Hazard Fan. The idea is to introduce a prognostic tool which com-
bines weather/drought short-term forecasts with the information 
supplied by the SKRP isolines discussed in Section 4.2. In the fol-
lowing, no real forecasts will be used: the example is purely illus-
trative, and constructed ad hoc, in order to show a possible 
practical situation; here, the drought episode occurred at Pontela-
goscuro in 2006 is considered (see Figs. 4 and 7). However, should 
actual information be available, it would be immediate to compute 
real hazard scenarios, as explained below.

For illustrative purposes, suppose that the sequence of drought 
states ðI1; 1Þ; ðI2; 2Þ, . . .  is known up to day 14: in turn, the corre-
sponding HT can be drawn in the Duration–Intensity plane, where 
the isolines of several SKRP’s of interest are already present, as 
shown in Fig. 8. Now, what about the drought state (and threaten-
ing) at day 15? Let us assume that three different values of inten-
sity are forecasted for the 15th day (i.e., I15) by exploiting the 
known value I14, each with an associated probability of occurrence. 
In Fig. 8, the following three ‘‘virtual’’ scenarios S’s are shown:
Scenario
 Intensity I15
 Probability (%)
S1
 0:8� I14
 20

S2
 I14
 30

S3
 1:2� I14
 50
Practically, it is assumed that the previsional models forecast a 
smaller intensity with 20% probability, no variation with 30% prob-
ability, and a larger intensity with 50% probability. Then, the pre-
dicted values are plotted in the Duration–Intensity plane at day 
15. As a result, Fig. 8 quickly gives the possibility to realize that 
the drought is likely to evolve towards: (S1) a ‘‘better’’ state (i.e., 
a SKRP of about 10 years) with 20% probability; or, (S2) a ‘‘steady’’ 
state (i.e., a SKRP of about 20 years) with 30% probability; or, (S3) 
a ‘‘worse’’ state (i.e., a SKRP of about 50 years) with 50% probability.

Evidently, hazard trajectories and fans, properly supported by 
suitable previsional models, may provide fast and valuable qualita-
tive and quantitative indications concerning the future drought 
dynamics, an important piece of information for the purposes of 
the CR. Clearly, the procedure can be iterated and generalized, pos-
sibly considering temporal horizons longer than one single day.

4.4. Discussion

The analysis of Figs. 2–7 yields the following considerations.

1. As expected, the running average intensities R’s are generally
increasingly ‘‘ordered’’ following the streamflow direction (see
Fig. 1), i.e. from Piacenza to Pontelagoscuro, as shown in the
bottom-right panels of Figs. 2–4: occasional exceptions are
due to local precipitation episodes and/or to specific rules pos-
sibly recommended by the CR for water withdrawals.
2.

3.

The first and second columns of Figs. 2–4 show an interesting 
comparison between the behavior of Z and R. In general, the 
daily intensity Z is characterized by a larger variability than the 
running average intensity R. As a matter of fact, while the former 
may only supply a sort of ‘‘instantaneous’’ picture of the 
drought, the latter inherits the whole phenomenological 
information since the very beginning of drought episode: thus, R 
is less prone to provide biased indications about the actual state 
of the drought, and its evolution.
A few facts are evident by considering the second and fourth 
columns of Figs. 2–4: below we shall use the standard notation 
TX to indicate the RP of the generic variable(s) X. First, TD is 
monotonically increasing: this is obvious, since D can only 
increase. Secondly, TR and TZ follow the daily trends of the cor-
responding variables (shown in the first and third columns of 
Figs. 2–4): this is also obvious, since these RP’s are calculated via 
a one-to-one relationship with the univariate distributions of 
the variables of interest. Instead, the SKRP TRD of the pair ðR; DÞ 
appropriately describe the joint behavior of these two variables. 
In fact, by the end of a drought episode, TRD may be large even if 
TR is small, provided that D is large enough (see,
e.g., the 1943s and 2003s cases in Figs. 2 and 3). Thus, the dura-
tion D becomes the dominant variable if the drought episode 
lasts enough days: this is an important piece of information that 
cannot be achieved via a univariate analysis only, meaning that 
even small intensities may become threatening if the drought is 
not stopped in due time. Conversely, apparently TRD is domi-
nated by the intensity variable if the drought episode is short 
enough, as for the 2006s cases shown in Fig. 4.

4.

5.

Occasionally, the univariate RP’s of R and/or Z show abrupt 
peaks and changes, related to those of the corresponding inten-
sity variables: see, e.g., the 2003s cases of Cremona and Boretto 
in Fig. 3, and all the 2006s cases in Fig. 4. Instead, the joint SKRP 
shows a smooth and regular behavior: thus, this latter multivar-
iate parameter goes around the ‘‘volatility’’ of the univariate 
RP’s, and keeps track of the previous states of a drought. In turn, 
hasty and/or improper intervention decisions may be avoided 
by using the multivariate approach.
The joint SKRP’s of all the river sections, as contrasted in the bot-
tom-right panels of Figs. 2–4, show an interesting regularity: 
apparently, for each episode, they follow the same daily trend 
over all the basin, including increasing and decreasing peaks. 
The different magnitudes shown at Pontelagoscuro (for the 
1943s event) and at Piacenza (for the 2006s event) are simply 
due to the peculiarities of these two sites. In fact, 
Pontelagoscuro is the river section closest to the outlet of the Po 
river (see Fig. 1), and is generally the one most affected by 
drought occurrences, both in terms of intensities and durations. 
Instead, Piacenza meets the converse situation. The 
simultaneous comparison of all the DRP’s provides very useful 
information to the CR for the purposes of drought assessment, 
since it is possible to monitor in real-time the evolution of the 
episode over all the basin. As a general comment, the issue of 
‘‘Multi-site Analysis’’ of droughts is an important one, since 
droughts are spatial events affecting portions (more or less 
large) of a territory, and a num-ber of sub-basins. As stressed by 
the CR (AA. VV., 2011), the case of the Po river is particularly 
complex, essentially due to the strong anthropization and the 
variety of uses embraced: as a matter of fact, the management of 
a drought affecting the whole Po basin involves a large number 
of ‘‘compromises’’ between dif-ferent, and conflicting, interests.
The multi-site comparison presented here may provide the CR 
with a novel way to look at a drought evolution. However, a 
thorough exploration of the correlation/dependence between 
various gauge stations (like, e.g., the ones concerning extreme



Table 6
Recovery time (in days) for all the five river sections, and the three drought episodes
considered in this work—see text.

Station 1943 2003 2006

Piacenza 104 134 111
Cremona – 142 110
Boretto 96 151 109
Borgoforte 99 152 112
Pontelagoscuro 120 153 116
floods presented in Salvadori and De Michele (2010), Durante 
and Salvadori (2010), and the use of multivariate 3-dimensional 
measures of association as in Salvadori and De Michele (2011)) 
is beyond the scope of this work, also considering the fact that 
the Authors have no access to the information needed to carry 
out a sensible analysis: viz., the uses of water, the rules for water 
withdrawals, the interventions decided by the CR, and so on.

6. The HT’s of the pair ðR; DÞ plotted in Figs. 5–7 represent a new
significant tool made available to the CR in order to survey
the local drought threatening: in fact, they show the real-time
(multivariate) state of a drought in terms of RP’s, and hence
are easy to read and interpret. As already mentioned, the iso-
lines shown in the plots can be regarded as a summary of the
historical information available to the CR: a clear picture of a
drought state can be immediately drawn by checking the day-
by-day evolution of a trajectory, and appropriate interventions
may be decided in real-time by exploiting suitable prognostic
models and the HF’s.

A final notion of interest is represented by the ‘‘Recovery Time’’
(hereinafter, RT) computed in terms of the running average: prac-
tically, the RT is the length of the period, since the beginning of the 
drought episode, necessary for the running average to take on the 
value zero. From a hydrological point of view, the RT indicates how 
long does it take for the basin to ‘‘balance’’ the deficit generated by 
the drought considered. The RT’s for all the five river sections, and 
the three drought episodes considered in this work, are reported in 
Table 6. Apparently, an interesting piece of information can be 
drawn by analyzing the results: viz., for a given event, the RT’s are 
of the same magnitude for all the five sites. A posteriori, this may 
indicate that the river sections considered here have recov-ered the 
status attained before the beginning of the drought at about the 
same time.

5. Conclusions

The methodological work presented in this paper was moti-
vated by three main considerations: (1) droughts are spatially
extended phenomena; (2) several are the variables that may play
a significant role in ruling the evolution of a drought; (3) droughts
are characterized by a slow temporal dynamics, ranging from
weeks to months (a fact usually not adequately addressed in liter-
ature). The first two considerations strongly suggest the use of
multi-dimensional tools for the characterization of droughts, while
the third one indicates the possibility to follow in real-time the
drought evolution and its hazard status.

This paper outlines a multivariate, multi-site, frequency analy-
sis of hydrological droughts. In particular, a drought is treated as
a multivariate event, and its co-occurrence and co-evolution at dif-
ferent river sections is investigated. As a case study, the main river
channel of the strategic Po basin (Northern Italy), sampled at five
different river sections, is considered.

The multivariate statistical framework provided by the Theory
of Copulas is exploited, and four valuable tools are used: namely,
the joint Survival Kendall’s Return Period, the Dynamic Return
Period, and the new concepts of Hazard Trajectory and Fans. As a 
result, the occurrence and the time evolution of droughts are 
described within a coherent, consistent, and organic frame with 
respect to other univariate, or local (single site), analyses available 
in literature. In turn, the procedures outlined in this paper can be 
used by the river Authorities for planning more effective real-time 
interventions to mitigate the consequences of low flows.
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